Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 870
Filtrar
1.
Front Genet ; 15: 1433060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221226

RESUMEN

Background: The WFS1 gene encodes the protein wolframin, which is crucial for maintaining endoplasmic reticulum homeostasis. Variants in this gene are predominantly associated with Wolfram syndrome and have been implicated in other disorders such as diabetes mellitus and psychiatric diseases, which increases the rate of clinical misdiagnosis. Methods: Patients were diagnosed with early-onset unclassified diabetes according to their clinical and laboratory data. We performed whole-exome sequencing (WES) in 165 patients, interpreting variants according to the American College of Medical Genetics/Association for Molecular Pathology (ACMG/AMP) 2015 guidelines. Variant verification was done by Sanger sequencing. In vitro experiments were conducted to evaluate the effects of WFS1 compound heterozygous variants. Results: We identified WFS1 compound heterozygous variants (p.A214fs*74/p.F329I and p.I427S/p.I304T) in two patients with Wolfram Syndrome-Like disorders (WSLD). Both WFS1 compound heterozygous variants were associated with increased ER stress, reduced cell viability, and decreased SERCA2b mRNA levels. Additionally, pathogenic or likely pathogenic WFS1 heterozygous variants were identified in the other three patients. Conclusion: Our results underscore the importance of early genetic testing for diagnosing young-onset diabetes and highlight the clinical relevance of WFS1 variants in increasing ER stress and reducing cell viability. Incorporating these genetic insights into clinical practice can reduce misdiagnoses and improve treatment strategies for related disorders.

2.
Genes (Basel) ; 15(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39202332

RESUMEN

Moebius syndrome (MBS) is a rare congenital disorder characterized by non-progressive facial palsy and ocular abduction paralysis. Most cases are sporadic, but also rare familial cases with autosomal dominant transmission and incomplete penetrance/variable expressivity have been described. The genetic etiology of MBS is still unclear: de novo pathogenic variants in REV3L and PLXND1 are reported in only a minority of cases, suggesting the involvement of additional causative genes. With the aim to uncover the molecular causative defect and identify a potential genetic basis of this condition, we performed trio-WES on a cohort of 37 MBS and MBS-like patients. No de novo variants emerged in REV3L and PLXND1. We then proceeded with a cohort analysis to identify possible common causative genes among all patients and a trio-based analysis using an in silico panel of candidate genes. However, identified variants emerging from both approaches were considered unlikely to be causative of MBS, mainly due to the lack of clinical overlap. In conclusion, despite this large cohort, WES failed to identify mutations possibly associated with MBS, further supporting the heterogeneity of this syndrome, and suggesting the need for integrated omics approaches to identify the molecular causes underlying MBS development.


Asunto(s)
Secuenciación del Exoma , Síndrome de Mobius , Humanos , Secuenciación del Exoma/métodos , Masculino , Femenino , Síndrome de Mobius/genética , Mutación , Niño , Preescolar , Estudios de Cohortes , Lactante , Adolescente , Predisposición Genética a la Enfermedad
3.
Genes (Basel) ; 15(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39202371

RESUMEN

We present the results of the first study of a large cohort of patients with inherited retinal dystrophies (IRD) performed for the Polish population using whole-exome sequencing (WES) in the years 2016-2019. Moreover, to facilitate such diagnostic analyses and enable future application of gene therapy and genome editing for IRD patients, a Polish genomic reference database (POLGENOM) was created based on whole-genome sequences of healthy Polish Caucasian nonagenarians and centenarians. The newly constructed database served as a control, providing a comparison for variant frequencies in the Polish population. The diagnostic yield for the selected group of IRD patients reached 64.9%. The study uncovered the most common pathogenic variants in ABCA4 and USH2A in the European population, along with several novel causative variants. A significant frequency of the ABCA4 complex haplotype p.(Leu541Pro; Ala1038Val) was observed, as well as that of the p.Gly1961Glu variant. The first VCAN causative variant NM_004385.5:c.4004-2A>G in Poland was found and described. Moreover, one of the first patients with the RPE65 causative variants was identified, and, in consequence, could receive the dedicated gene therapy. The availability of the reference POLGENOM database enabled comprehensive variant characterisation during the NGS data analysis, confirming the utility of a population-specific genomic database for enhancing diagnostic accuracy. Study findings suggest the significance of genetic testing in elder patients with unclear aetiology of eye diseases. The combined approach of NGS and the reference genomic database can improve the diagnosis, management, and future treatment of IRDs.


Asunto(s)
Secuenciación del Exoma , Distrofias Retinianas , Población Blanca , Humanos , Distrofias Retinianas/genética , Polonia , Masculino , Población Blanca/genética , Femenino , Secuenciación del Exoma/métodos , Proteínas de la Matriz Extracelular/genética , Bases de Datos Genéticas , Transportadoras de Casetes de Unión a ATP/genética , Anciano de 80 o más Años , cis-trans-Isomerasas/genética , Anciano , Persona de Mediana Edad , Adulto , Mutación
4.
Jpn J Ophthalmol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158757

RESUMEN

PURPOSE: To explore the frequency and positions of genetic mutations in CYP1B1 and FOXC1 in a Japanese population. STUDY DESIGN: Molecular genetic analysis. METHODS: Genomic DNA was extracted from 31 Japanese patients with childhood glaucoma (CG) from 29 families. We examined the CYP1B, FOXC1, and MYOC genes using Sanger sequencing and whole-exome sequencing (WES). RESULTS: For CYP1B1, we identified 9 families that harbored novel mutations, p.A202T, p.D274E, p.Q340*, and p.V420G; the remaining mutations had been previously reported. When mapped to the CYP1B1 protein structure, all mutations appeared to influence the enzymatic activity of CYP1B1 by provoking structural deformity. Five patients were homozygotes or compound heterozygotes, supporting the recessive inheritance of the CYP1B1 mutations in CG. In contrast, four patients were heterozygous for the CYP1B1 mutation, suggesting the presence of regulatory region mutations or strong modifiers. For the FOXC1 gene, we identified 3 novel mutations, p.Q23fs, p.Q70R, and p.E163*, all of which were identified in a heterozygous state. No mutation was found in the MYOC gene in these CG patients. All individuals with CYP1B1 and FOXC1 mutations were severely affected by early-onset CG. In the CYP1B1-, FOXC1-, and MYOC-negative families, we also searched for variants in the other candidate genes reported for CG through WES, but could not find any mutations in these genes. CONCLUSIONS: Our analyses of 29 CG families revealed 9 families with point mutations in the CYP1B1 gene, and four of those patients appeared to be heterozygotes, suggesting the presence of complex pathogenic mechanisms. FOXC1 appears to be another major causal gene of CG, indicating that panel sequencing of CYP1B1 and FOXC1 will be useful for diagnosis of CG in Japanese individuals.

5.
Pediatr Nephrol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138691

RESUMEN

BACKGROUND: Alport syndrome is a genetic disorder affecting the kidneys, ears, and eyes, causing chronic kidney disease, sensorineural hearing loss, and ocular abnormalities. It results from pathogenic variants in the COL4A3, COL4A4, or COL4A5 genes, with different inheritance patterns: X-linked from COL4A5 variants, autosomal recessive from homozygous variants in COL4A3 or COL4A4, digenic from variants in both COL4A3 and COL4A4, and autosomal dominant from heterozygous variants in COL4A3 or COL4A4. METHODS: We analyzed 45 patients with Alport syndrome from 11 Tunisian families to determine their clinical and genetic characteristics. Clinical data were collected retrospectively, and whole-exome sequencing was conducted on one patient from each family. Sanger sequencing validated pathogenic variants, and cascade screening extended the analysis to 53 individuals. RESULTS: We identified nine likely pathogenic variants among 11 index cases: six novel and three known variations. Of these, five were in COL4A3, and four were in COL4A5, with variants including frameshift, nonsense, missense, and alternative splicing. Most variations affected the Gly-XY codon. Among the 45 clinically identified siblings, 30 tested positive for Alport syndrome. The cascade screening identified 3 additional affected individuals, 10 unaffected siblings, and 10 unaffected parents. The mode of inheritance was autosomal recessive in six families and X-linked in four families. CONCLUSIONS: This study is the first to screen the mutational spectrum of Alport syndrome in Tunisia. It reveals novel pathogenic variants and suggests that autosomal recessive inheritance may be more common in the Tunisian population than X-linked inheritance, contrary to existing literature.

6.
Heliyon ; 10(14): e34756, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39148984

RESUMEN

Aims: Maternally inherited diabetes and deafness (MIDD) is a complex disorder characterized by multiorgan clinical manifestations, including diabetes, hearing loss, and ophthalmic complications. This pilot study aimed to elucidate the intricate interplay between nuclear and mitochondrial genetics, epigenetic modifications, and their potential implications in the pathogenesis of MIDD. Main methods: A comprehensive genomic approach was employed to analyze a Sicilian family affected by clinically characterized MIDD, negative to the only known causative m.3243 A > G variant, integrating whole-exome sequencing and whole-genome bisulfite sequencing of both nuclear and mitochondrial analyses. Key findings: Rare and deleterious variants were identified across multiple nuclear genes involved in retinal homeostasis, mitochondrial function, and epigenetic regulation, while complementary mitochondrial DNA analysis revealed a rich tapestry of genetic diversity across genes encoding components of the electron transport chain and ATP synthesis machinery. Epigenetic analyses uncovered significant differentially methylated regions across the genome and within the mitochondrial genome, suggesting a nuanced landscape of epigenetic modulation. Significance: The integration of genetic and epigenetic data highlighted the potential crosstalk between nuclear and mitochondrial regulation, with specific mtDNA variants influencing methylation patterns and potentially impacting the expression and regulation of mitochondrial genes. This pilot study provides valuable insights into the complex molecular mechanisms underlying MIDD, emphasizing the interplay between nucleus and mitochondrion, tracing the way for future research into targeted therapeutic interventions and personalized approaches for disease management.

7.
Epigenetics ; 19(1): 2392048, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39151125

RESUMEN

In patients with proximal hypospadias, often no genetic cause is identified despite extensive genetic testing. Many genes involved in sex development encode transcription factors with strict timing and dosing of the gene products. We hypothesised that there might be recurrent differences in DNA methylation in boys with hypospadias and that these might differ between patients born small versus appropriate for gestational age. Genome-wide Methylated DNA sequencing (MeD-seq) was performed on 32bp LpnPI restriction enzyme fragments after RE-digestion in leucocytes from 16 XY boys with unexplained proximal hypospadias, one with an unexplained XX testicular disorder/difference of sex development (DSD) and twelve, healthy, sex- and age-matched controls. Five of seven differentially methylated regions (DMRs) between patients and XY controls were in the Long Intergenic Non-Protein Coding RNA 665 (LINC00665; CpG24525). Three patients showed hypermethylation of MAP3K1. Finally, no DMRs in XX testicular DSD associated genes were identified in the XX boy versus XX controls. In conclusion, we observed no recognizable epigenetic signature in 16 boys with XY proximal hypospadias and no difference between children born small versus appropriate for gestational age. Comparison to previous methylation studies in individuals with hypospadias did not show consistent findings, possibly due to the use of different inclusion criteria, tissues and methods.


Asunto(s)
Metilación de ADN , Hipospadias , Humanos , Masculino , Hipospadias/genética , Proyectos Piloto , Epigénesis Genética , Islas de CpG , ARN Largo no Codificante/genética , Niño , Preescolar , Lactante , Estudio de Asociación del Genoma Completo , Estudios de Casos y Controles
8.
Hum Genomics ; 18(1): 87, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148098

RESUMEN

BACKGROUND: Recent studies suggested that genetic variants associated with monogenic bone disorders were involved in the pathogenesis of atypical femoral fractures (AFF). Here, we aim to identify rare genetic variants by whole exome sequencing in genes involved in monogenic rare skeletal diseases in 12 women with AFF and 4 controls without any fracture. RESULTS: Out of 33 genetic variants identified in women with AFF, eleven (33.3%) were found in genes belonging to the Wnt pathway (LRP5, LRP6, DAAM2, WNT1, and WNT3A). One of them was rated as pathogenic (p.Pro582His in DAAM2), while all others were rated as variants of uncertain significance according to ClinVar and ACMG criteria. CONCLUSIONS: Osteoporosis, rare bone diseases, and AFFs may share the same genes, thus making it even more difficult to identify unique risk factors.


Asunto(s)
Secuenciación del Exoma , Fracturas del Fémur , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Humanos , Femenino , Fracturas del Fémur/genética , Fracturas del Fémur/patología , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Persona de Mediana Edad , Anciano , Predisposición Genética a la Enfermedad , Proteína Wnt1/genética , Proteína Wnt3A/genética , Vía de Señalización Wnt/genética , Osteoporosis/genética , Osteoporosis/patología , Enfermedades Óseas/genética , Estudios de Casos y Controles
9.
Mol Genet Metab Rep ; 40: 101123, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39185018

RESUMEN

Aim: To analyze the clinical phenotype and genetic etiology of three cases of glutaric aciduria type 1 (GA1) in Chinese children. Methods: We performed genetic and metabolic testing using tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC/MS), followed by trio whole-exome sequencing (trio-WES) and Sanger sequencing. A literature review on glutaric aciduria type 1 (GA1) in Chinese patients was also conducted. Results: Sequencing results showed each case had compound heterozygous variants in GCDH(NM_000159.4): c.214C > G (p.Arg72Gly) and c.411C > G (p.Tyr137Term) (Case 1), c.214C > G (p.Arg72Gly) and c.1204C > T (p.Arg402Trp) (Case 2), and c.1228G > T (p.Val410Leu) and c.395G > A (p.Arg132Gln) (Case 3). These variants were inherited from their respective parents. Notably, the c.214C > G variant found in two children was a novel variant not previously reported. A review of the literature revealed that, clinically, the majority of patients experienced onset in infancy and early childhood (82%). Additionally, 38.36% were diagnosed through newborn screening, with the primary reasons for the initial visit being delayed development (32.43%) and infections (21.61%). The most common clinical manifestations included increased head circumference (77.19%) and motor developmental delay (65.15%). Biochemically, patients exhibited significant elevations in C5DC (98.51%) and C5DC/C8 (94.87%) in blood, as well as GA (94.37%) and 3OHGA (69.39%) in urine. Radiographically, patients showed a high prevalence of abnormalities in cranial MRI (86.15%) and EEG (73.33%). Genetically, 67 distinct GCDH gene variants were identified among 73 patients, with missense variants being the most prevalent type (73.97%). The most frequent variant was c.1244-2 A > C, observed in 17.12% of cases. Additionally, the majority of variant sites were located in exons 11 (25.37%) and 6 (22.39%). Conclusion: GCDH variants were identified as the causative factors in the three children. The discovery of the novel variant (c.214C > G) expands the spectrum of pathogenic GCDH variants. These findings facilitate the diagnosis and treatment of affected children and provide a basis for genetic counseling and prenatal diagnosis for their families.

10.
Sci Rep ; 14(1): 19487, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174791

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a pneumonia with extremely heterogeneous clinical presentation, ranging from asymptomatic to severely ill patients. Previous studies have reported links between the presence of host genetic variants and the outcome of the COVID-19 infection. In our study, we used whole exome sequencing in a cohort of 444 SARS-CoV-2 patients, admitted to hospital in the period October-2020-April-2022, to search for associations between rare pathogenic/potentially pathogenic variants and COVID-19 progression. We used gene prioritization-based analysis in genes that have been reported by host genetic studies. Although we did not identify correlation between the presence of rare pathogenic variants and COVID-19 outcome, in critically ill patients we detected known mutations in a number of genes associated with severe disease related to cardiovascular disease, primary ciliary dyskinesia, cystic fibrosis, DNA damage repair response, coagulation, primary immune disorder, hemoglobin subunit ß, and others. Additionally, we report 93 novel pathogenic variants found in severely infected patients who required intubation or died. A network analysis showed main component, consisting of 13 highly interconnected genes related to epithelial cilium. In conclusion, we have detected rare pathogenic host variants that may have influenced the COVID-19 outcome in Bulgarian patients.


Asunto(s)
COVID-19 , Secuenciación del Exoma , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Humanos , COVID-19/genética , COVID-19/virología , COVID-19/patología , Bulgaria , Femenino , Masculino , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Persona de Mediana Edad , Anciano , Adulto , Mutación , Cilios/patología , Cilios/genética
11.
Epilepsy Behav Rep ; 27: 100702, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39188779

RESUMEN

The BRAT1 gene plays a crucial role in RNA metabolism and brain development, and mutations in this gene have been associated with neurodevelopmental disorders. The variability in the clinical presentation of BRAT1-related disorders is highlighted, emphasizing the importance of considering this condition in the differential diagnosis of neurodevelopmental disorders. This study aimed to identify a causative variant in an Iranian patient affected by developmental delay, speech delay, seizure, and clubfoot through whole exome sequencing (WES) followed by Sanger sequencing. The WES revealed a novel biallelic variant of the BRAT1, c.398A>G (p.His133Arg), in the patient, which segregated within the family. A literature review suggests that the phenotypic variability associated with BRAT1 mutations is likely due to multiple factors, including the location and type of mutation, the specific functions of the protein, and the influence of other genetic and environmental factors. The phenotypic variability of BRAT1-related disorders underscores the importance of considering BRAT1-related disorders in the differential diagnosis of epileptic encephalopathy with rigidity. These findings provide important insights into the role of BRAT1 in neurodevelopmental disorders and highlight the potential clinical implications of identifying and characterizing novel variants in this gene.

12.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39126078

RESUMEN

Epigenetic mechanisms, including histone post-translational modifications (PTMs), play a critical role in regulating pain perception and the pathophysiology of burn injury. However, the epigenetic regulation and molecular mechanisms underlying burn injury-induced pain remain insufficiently explored. Spinal dynorphinergic (Pdyn) neurons contribute to heat hyperalgesia induced by severe scalding-type burn injury through p-S10H3-dependent signaling. Beyond p-S10H3, burn injury may impact various other histone H3 PTMs. Double immunofluorescent staining and histone H3 protein analyses demonstrated significant hypermethylation at H3K4me1 and H3K4me3 sites and hyperphosphorylation at S10H3 within the spinal cord. By analyzing Pdyn neurons in the spinal dorsal horn, we found evidence of chromatin activation with a significant elevation in p-S10H3 immunoreactivity. We used RNA-seq analysis to compare the effects of burn injury and formalin-induced inflammatory pain on spinal cord transcriptomic profiles. We identified 98 DEGs for burn injury and 86 DEGs for formalin-induced inflammatory pain. A limited number of shared differentially expressed genes (DEGs) suggest distinct central pain processing mechanisms between burn injury and formalin models. KEGG pathway analysis supported this divergence, with burn injury activating Wnt signaling. This study enhances our understanding of burn injury mechanisms and uncovers converging and diverging pathways in pain models with different origins.


Asunto(s)
Quemaduras , Epigénesis Genética , Histonas , Nocicepción , Médula Espinal , Animales , Quemaduras/complicaciones , Quemaduras/metabolismo , Quemaduras/genética , Ratones , Histonas/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Masculino , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional , Modelos Animales de Enfermedad
13.
Front Genet ; 15: 1448383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39205944

RESUMEN

This study aimed to assess the efficiency of CNV-seq and WES in detecting genetic cause of congenital heart disease (CHDs) in prenatal diagnoses and to compare CNV detection rate between isolated and non-isolated CHD cases. We conducted a retrospective study of 118 Chinese fetuses diagnosed with CHD by prenatal ultrasound. Participants underwent CNV-seq and, if necessary, WES to detect chromosomal and single nucleotide variations. The overall detection rate for pathogenic or likely pathogenic chromosomal abnormalities was 16.9%, including 7.6% aneuploidies and 9.3% pathogenic/likely pathogenic copy number variations (CNVs), predominantly 22q11.2 deletion syndrome (54.4%). The sensitivity and specificity of CNV-Seq for detecting P/Lp CNVs were 95% and 100%, respectively. CNV-Seq offered a 6.7% improvement in detecting chromosomal abnormalities over karyotyping. WES further identified significant single nucleotide and small indel variations contributing to CHD in genes such as TMEM67, PLD1, ANKRD11, and PNKP, enhancing diagnostic yield by 14.8% in cases negative for CNVs. Non-isolated CHD cases exhibited higher rates of detectable chromosomal abnormalities compared to isolated cases (32.4% vs. 9.9%, p = 0.005), underlining the genetic complexity of these conditions. The combined use of CNV-seq and WES provides a comprehensive approach to prenatal genetic testing for CHDs, unveiling significant genetic cause that could impact clinical management and parental decision-making. This study supports the integration of these advanced genomic technologies in routine prenatal diagnostics to increase detection diagnostic yields of causal genetic variants associated with CHDs.

14.
Mol Genet Genomic Med ; 12(8): e70001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39194158

RESUMEN

BACKGROUND: Feeding difficulties frequently co-occur with multisystem disorders attributed to rare genetic diseases. In this study, we aimed to describe the genetic manifestations and phenotype spectrum in infants experiencing feeding difficulties. METHODS: This case series included infants under 6 months old with feeding difficulties admitted to the neonatal department of Children's Hospital, Zhejiang University School of Medicine from October 2018 to May 2022. All infants underwent whole-exome sequencing (WES) during hospitalisation, and their clinical phenotypes and genetic results were analyzed. RESULTS: Among 28 infants studied, nine were preterm and 19 were full-term. Median admission age was 13.5 days (IQR 6.5, 35), with a median hospital stay of 16 days (IQR 10.5, 30). Overall, 12 (42.9%) cases were complicated with multiple malformations. Abnormal muscle tone (53.6%) and neurological issues (42.9%) were notable prevalent in these infants. Cranial MR abnormalities were noted in 96.2% of cases. Based on the combined analysis of WES results and clinical phenotypes, a total of 22 (78.3%) patients displayed disease-related genetic variation identified through WES; among them, 15 (53.6%) patients received genetic diagnoses, while 7 (25%) patients were suspected diagnoses. Positive findings were more frequent in full-term (89.5%) than preterm infants (55.6%). Ultimately, 24 (85.7%) patients were discharged alive, with 75% requiring post-discharge tube feeding. Following discharge, five patients developed new symptoms linked to genetic variants, and two patients died. CONCLUSIONS: Feeding difficulty may constitute a facet of the phenotypic spectrum of rare genetic diseases. Whole-exome sequencing can enhance molecular diagnosis accuracy for infants with feeding difficulties.


Asunto(s)
Secuenciación del Exoma , Fenotipo , Humanos , Masculino , Femenino , Lactante , Recién Nacido , Anomalías Múltiples/genética , Anomalías Múltiples/patología
15.
Diagn Pathol ; 19(1): 107, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107787

RESUMEN

Cystic fibrosis (CF) is an autosomal recessive inherited disease caused by variants of cystic fibrosis transmembrane conductance regulation (CFTR) gene. This report presents a case of a Chinese boy diagnosed with CF, attributed to the presence of two specific CFTR gene variations: 4056G > C (NM_000492.4) (p.Gln1352His, legacy: Q1352H) and c.1210-34TG[13]T[5] (NM_000492.4)(legacy: 5T; TG13). A ten-year-old boy was admitted to the hospital due to recurrent pneumonia, cough, and intermittent fever for seven years. Lung auscultation revealed rales, and a lung CT scan indicated parenchymal transformation with infection in both lungs. Whole Exome Sequencing (WES) identified two CFTR gene variants, Q1352H and 5T; TG13, which were significantly associated with clinical phenotype. Following a two-year course of azithromycin combined with inhalation therapy with budesonide, the patient experienced no further episodes of respiratory infections. Moreover, significant improvements were observed in pulmonary function, pulmonary infection, and bronchiectasis. The occurrence of combined variations, Q1352H and 5T; TG13, in the CFTR gene is rare and specific to Chinese populations. WES proves to be a valuable diagnostic tool for detecting CFTR gene variants.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Mutación , Humanos , Masculino , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Fibrosis Quística/diagnóstico , Niño , Pueblo Asiatico/genética , Heterocigoto , Fenotipo , Secuenciación del Exoma , Antibacterianos/uso terapéutico , Pueblos del Este de Asia
16.
Int J Dev Neurosci ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169470

RESUMEN

The SETD1B gene, located on chromosome 12q24, is one of the chromatin-modifying genes involved in epigenetic regulation of gene transcription. The phenotype of pathogenic variants in the SETD1B gene includes intellectual disability, seizures, and language delay (IDDSELD, OMIM 619000). In this study, we present a family consisting of consanguineous parents who died of cancer and their offspring. This family includes two cases diagnosed with autism spectrum disorder (ASD); six cases diagnosed with schizophrenia, bipolar disorder, or schizoaffective disorder; there cases diagnosed with cancer; and five cases who died of unknown causes in early childhood. Three affected members of this family agreed to genetic testing. We used whole exome sequencing. We report a novel in-frame deletion variant of the SETD1B gene in a family with cases diagnosed with schizoaffective disorder and ASD without seizures and intellectual disability. It was found that the phenotypic features were inherited for at least three generations in the family we presented, and it was shown that the pathogenic variant of the SETD1B gene was transmitted from the affected parent to his affected children. In addition, the father was diagnosed with both schizoaffective disorder and leukemia. We proposed an association between rare variants of SETD1B and phenotypes of ASD and schizoaffective disorder without seizures and intellectual disability. The SETD1B gene is included in both the ASD genetic database of SFARI (https://gene.sfari.org/) and the cancer database of COSMIC (https://cancer.sanger.ac.uk/cosmic). However, there are very few reports of SETD1B gene variants as clinical entities. To our knowledge, the SETD1B gene variant has not been previously reported in an individual diagnosed with both a neuropsychiatric disorder and cancer.

17.
Clin Oral Investig ; 28(8): 432, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020145

RESUMEN

OBJECTIVES: Temporomandibular joint disorder (TMD) is a complex condition with pain and dysfunction in the temporomandibular joint and related muscles. Scientific evidence indicates both genetic and environmental factors play a crucial role in TMD. In this study, we aimed to discover the genetic changes in individuals from 4 generations of an Iranian family with signs and symptoms of TMD and malocclusion Class III. MATERIALS AND METHODS: Whole Exome Sequencing (WES) was performed in 4 patients (IV-8, IV-9, V-4, and V-6) with TMD according to (DC/TMD), along with skeletal Class III malocclusion. Then, PCR sequencing was performed on 23 family members to confirm the WES. RESULTS: In the present study, WES results analysis detected 6 heterozygous non-synonymous Single Nucleotide Variants (SNVs) in 5 genes, including CRLF3, DNAH17, DOCK1, SEPT9, and VWDE. A heterozygous variant, c.2012T > A (p.F671Y), in Exon 20 of the DOCK1 (NM_001290223.2) gene was identified. Then, this variant was investigated in 19 other members of the same family. PCR-Sequencing results showed that 7/19 had heterozygous TA genotype, all of whom were accompanied by malocclusion and TMD symptoms and 12/19 individuals had homozygous TT genotype, 9 of whom had no temporomandibular joint problems or malocclusion. The remaining 3 showed mild TMD clinical symptoms. The 5 other non-synonymous SNVs of CRLF3, DNAH17, SEPT9, and VWDE were not considered plausible candidates for TMD. CONCLUSIONS: The present study identified a heterozygous nonsynonymous c.2012T > A (p.F671Y) variant of the DOCK1 gene is significantly associated with skeletal class III malocclusion, TMD, and its severity in affected individuals in the Iranian pedigree. CLINICAL RELEVANCE: The role of genetic factors in the development of TMD has been described. The present study identified a nonsynonymous variant of the DOCK1 gene as a candidate for TMD and skeletal class III malocclusion in affected individuals in the Iranian pedigree.


Asunto(s)
Secuenciación del Exoma , Linaje , Trastornos de la Articulación Temporomandibular , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Proteínas Activadoras de GTPasa/genética , Irán , Maloclusión de Angle Clase III/genética , Reacción en Cadena de la Polimerasa , Trastornos de la Articulación Temporomandibular/genética
18.
EBioMedicine ; 106: 105229, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38970919

RESUMEN

Cerebral palsy (CP) has historically been attributed to acquired insults, but emerging research suggests that genetic variations are also important causes of CP. While microarray and whole-exome sequencing based studies have been the primary methods for establishing new CP-gene relationships and providing a genetic etiology for individual patients, the cause of their condition remains unknown for many patients with CP. Recent advancements in genomic technologies offer additional opportunities to uncover variations in human genomes, transcriptomes, and epigenomes that have previously escaped detection. In this review, we outline the use of these state-of-the-art technologies to address the molecular diagnostic challenges experienced by individuals with CP. We also explore the importance of identifying a molecular etiology whenever possible, given the potential for genomic medicine to provide opportunities to treat patients with CP in new and more precise ways.


Asunto(s)
Parálisis Cerebral , Genómica , Humanos , Parálisis Cerebral/genética , Genómica/métodos , Predisposición Genética a la Enfermedad , Genoma Humano , Variación Genética , Secuenciación del Exoma , Transcriptoma
19.
HGG Adv ; 5(4): 100334, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033325

RESUMEN

The effective implementation of whole-exome sequencing- and whole-genome sequencing-based diagnostics in the management of children affected with genetic diseases and the rapid decrease in the cost of next-generation sequencing (NGS) enables the expansion of this method to newborn genetic screening programs. Such NGS-based screening greatly increases the number of diseases that can be detected compared to conventional newborn screening, as the latter is aimed at early detection of a limited number of inborn diseases. Moreover, genetic testing provides new possibilities for family members of the proband, as many variants responsible for adult-onset conditions are inherited from the parents. However, the idea of NGS-based screening in healthy children raises issues of medical and ethical integrity as well as technical questions, including interpretation of the observed variants. Pilot studies have shown that both parents and medical professionals have moved forward and are enthused about these new possibilities. However, either the number of participants or the number of genes studied in previous investigations thus far has been limited to a few hundred, restricting the scope of potential findings. Our current study (NCT05325749) includes 7,000 apparently healthy infants born at our center between February 2021 and May 2023, who were screened for pathogenic variants in 2,350 genes. Clinically significant variants associated with early-onset diseases that can be treated, prevented, or where symptoms can be alleviated with timely introduced symptomatic therapy, were observed in 0.9% of phenotypically normal infants, 2.1% of the screened newborns were found to carry variants associated with reduced penetrance or monogenic diseases of adult-onset and/or variable expressivity, and 0.3% had chromosomal abnormalities. Here, we report our results and address questions regarding the interpretation of variants in newborns who were presumed to be healthy.

20.
Front Genet ; 15: 1429336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015774

RESUMEN

Background: To investigate whether the novel mutation of PKHD1 could cause polycystic kidney disease by affecting splicing with a recessive inheritance pattern. Methods: A nonconsanguineous Chinese couple with two recurrent pregnancies showed fetal enlarged echogenic polycystic kidney and oligoamnios were recruited. Pedigree WES, minigene splicing assay experiment and following bioinformatics analysis were performed to verify the effects, and inheritance pattern of diseasing-causing mutations. Results: WES revealed that both fetuses were identified as carrying the same novel mutation c.3592_3628 + 45del, p.? and c.11207 T>C, p.(Ile3736Thr) in the PKHD1 gene (NM_138694.4), which inherited from the father and mother respectively. Both bioinformatic method prediction and minigene splicing assay experience results supported the mutation c.3592_3628 + 45del, p.? affects the splicing of the PKHD1 transcript, resulting in exon 31 skipping. Another missense mutation c.11207 T>C, p.(Ile3736Thr) has a low frequency in populations and is predicted to be deleterious by bioinformatic methods. Conclusion: These findings provide a direct clinical and functional evidence that the truncating mutations of the PKHD1 gene could lead to more severe phenotypes, and cause ARPKD as a homozygous or compound heterozygous pattern. Our study broadens the variant spectrum of the PKHD1 gene and provides a basis for genetic counseling and diagnosis of ARPKD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA