Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.609
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; 1879(6): 189182, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293549

RESUMEN

Glioblastoma (GBM) is the most common malignant primary adult brain tumor. Despite standard-of-care treatment, which consists of surgical resection, temozolomide (TMZ) treatment, and radiotherapy, the prognosis for GBM patients remains poor with a five-year survival rate of 5 %. With treatment, the median survival time is 14 months, suggesting the dire need for new, more effective therapies. Glutaminolysis, the metabolic pathway by which cells can convert glutamine to ATP, is essential for the survival of GBM cells and represents a putative target for treatment. Glutamine replenishes tricarboxylic acid (TCA) cycle intermediates through glutaminolysis. The first step of glutaminolysis, the deamination of glutamine, can be carried out by either glutaminase 1 (GLS) or glutaminase 2 (GLS2). However, it is becoming increasingly clear that these enzymes have opposing functions in GBM; GLS induces deamination of glutamine, thereby acting in an oncogenic fashion, while GLS2 has non-enzymatic, tumor-suppressive functions that are repressed in GBM. In this review, we explore the important role of glutaminolysis and the opposing roles of GLS and GLS2 in GBM. Further, we provide a detailed discussion of GLS2's newly discovered non-enzymatic functions that can be targeted in GBM. We conclude by considering therapeutic approaches that have emerged from the understanding of GLS and GLS2's opposing roles in GBM.

2.
Cell Oncol (Dordr) ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298082

RESUMEN

BACKGROUND: Liver is one of the most preferred destinations for distant metastasis of gastric cancer (GC) and liver metastasis usually predicts poor prognosis. The achievement of liver metastasis requires continued cross-talk of complex members in tumor microenvironment (TME) including tumor associated macrophages (TAMs). METHODS: Results from 35 cases of ex vivo cultured living tissues of GC liver metastasis have elucidated that circadian rhythm disorder (CRD) of key molecules involved in circadian timing system (CTS) facilitates niche outgrowth. We next analyzed 69 cases of liver metastasis from patients bearing GC and designed co-culture or 3D cell culture, discovering that TAMs expressing EFNB2 could interact with tumor cell expressing EPHB2 for forward downstream signaling and lead to CRD of tumor cells. Moreover, we performed intrasplenic injection models assessed by CT combined 3D organ reconstruction bioluminescence imaging to study liver metastasis and utilized the clodronate treatment, bone marrow transplantation or EPH inhibitor for in vivo study followed by exploring the clinical therapeutic value of which in patient derived xenograft (PDX) mouse model. RESULTS: Ex vivo studies demonstrated that CRD of key CTS molecules facilitates niche outgrowth in liver metastases. In vitro studies revealed that TAMs expressing EFNB2 interact with tumor cells expressing EPHB2, leading to CRD and downstream signaling activation. The underlying mechanism is the enhancement of the Warburg effect in metastatic niches. CONCLUSION: Overall, we aim to uncover the mechanism in TAMs induced CRD which promotes liver metastasis of GC and provide novel ideas for therapeutic strategies.

3.
Cells ; 13(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39329757

RESUMEN

Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glutamina/metabolismo , Reprogramación Celular , Redes y Vías Metabólicas , Microambiente Tumoral , Animales , Reprogramación Metabólica
4.
Cancer Cell Int ; 24(1): 316, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272133

RESUMEN

Glioma is a primary brain tumor that grows quickly, has an unfavorable prognosis, and can spread intracerebrally. Glioma cells rely on glucose as the major energy source, and glycolysis plays a critical role in tumorigenesis and progression. Substrate utilization shifts throughout glioma progression to facilitate energy generation and biomass accumulation. This metabolic reprogramming promotes glioma cell proliferation and metastasis and ultimately decreases the efficacy of conventional treatments. Non-coding RNAs (ncRNAs) are involved in several glucose metabolism pathways during tumor initiation and progression. These RNAs influence cell viability and glucose metabolism by modulating the expression of key genes of the glycolytic pathway. They can directly or indirectly affect glycolysis in glioma cells by influencing the transcription and post-transcriptional regulation of oncogenes and suppressor genes. In this review, we discussed the role of ncRNAs in the metabolic reprogramming of glioma cells and tumor microenvironments and their abnormal expression in the glucometabolic pathway in glioma. In addition, we consolidated the existing theoretical knowledge to facilitate the use of this emerging class of biomarkers as biological indicators and potential therapeutic targets for glioma.

5.
Cells ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273044

RESUMEN

Cancer research has advanced tremendously with the identification of causative genes, proteins, and signaling pathways. Numerous antitumor drugs have been designed and screened for cancer therapeutics; however, designing target-specific drugs for malignant cells with minimal side effects is challenging. Recently, energy-sensing- and homeostasis-associated molecules and signaling pathways playing a role in proliferation, apoptosis, autophagy, and angiogenesis have received increasing attention. Energy-metabolism-based studies have shown the contribution of energetics to cancer development, where tumor cells show increased glycolytic activity and decreased oxidative phosphorylation (the Warburg effect) in order to obtain the required additional energy for rapid division. The role of energy homeostasis in the survival of normal as well as malignant cells is critical; therefore, fuel intake and expenditure must be balanced within acceptable limits. Thus, energy-sensing enzymes detecting the disruption of glycolysis, AMP, ATP, or GTP levels are promising anticancer therapeutic targets. Here, we review the common energy mediators and energy sensors and their metabolic properties, mechanisms, and associated signaling pathways involved in carcinogenesis, and explore the possibility of identifying drugs for inhibiting the energy metabolism of tumor cells. Furthermore, to corroborate our hypothesis, we performed meta-analysis based on transcriptomic profiling to search for energy-associated biomarkers and canonical pathways.


Asunto(s)
Carcinogénesis , Metabolismo Energético , Neoplasias , Transducción de Señal , Humanos , Transducción de Señal/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Metabolismo Energético/efectos de los fármacos , Carcinogénesis/patología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/genética , Animales
6.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273403

RESUMEN

Oxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming. ROS from neutrophil extracellular traps (NETs) are an essential element for neutrophils to defend against invading pathogens or to kill cancer cells. A chronic inflammation typically includes consecutive NET activation and tissue damage, as well as tissue repair, and together with NETs, ROS would participate in both the destruction and progression of cancers. This review discusses human mitochondrial plasticity and the glucose metabolic reprogramming of cancer cells confronting oxidative stress by the means of chronic inflammation and neutrophil extracellular traps (NETs).


Asunto(s)
Trampas Extracelulares , Glucosa , Inflamación , Mitocondrias , Neoplasias , Neutrófilos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Trampas Extracelulares/metabolismo , Inflamación/metabolismo , Inflamación/patología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/inmunología , Mitocondrias/metabolismo , Glucosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neutrófilos/metabolismo
7.
Int J Mol Sci ; 25(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39273552

RESUMEN

Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.


Asunto(s)
Productos Biológicos , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales , Metabolismo Energético/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Terapia Molecular Dirigida
8.
Front Biosci (Landmark Ed) ; 29(9): 321, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39344326

RESUMEN

Hepatic fibrosis is a major public health problem that endangers human wellbeing. In recent years, a number of studies have revealed the important impact of metabolic reprogramming on the occurrence and development of hepatic fibrosis. Among them, the Warburg effect, as an intracellular glucose metabolism reprogramming, can promote the occurrence and development of hepatic fibrosis by promoting the activation of hepatic stellate cells (HSCs) and inducing the polarization of liver macrophages (KC). Understanding the Warburg effect and its important role in the progression of hepatic fibrosis will assist in developing new strategies for the prevention and treatment of hepatic fibrosis. This review focuses on the Warburg effect and the specific mechanism by which it affects the progression of hepatic fibrosis by regulating HSCs activation and KC polarization. In addition, we also summarize and discuss the related experimental drugs and their mechanisms that inhibit the Warburg effect by targeting key proteins of glycolysis in order to improve hepatic fibrosis in the hope of providing more effective strategies for the clinical treatment of hepatic fibrosis.


Asunto(s)
Glucólisis , Células Estrelladas Hepáticas , Cirrosis Hepática , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Células Estrelladas Hepáticas/metabolismo , Glucólisis/efectos de los fármacos , Animales , Macrófagos/metabolismo , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Glucosa/metabolismo
9.
Phytother Res ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300823

RESUMEN

Cancer incidence has increased globally and has become the leading cause of death in the majority of countries. Many cancers have altered energy metabolism pathways, such as increased glucose uptake and glycolysis, as well as decreased oxidative phosphorylation. This is known as the Warburg effect, where cancer cells become more reliant on glucose to generate energy and produce lactate as an end product, even when oxygen is present. These are attributed to the overexpression of key glycolytic enzymes, glucose transporters, and related signaling pathways that occur in cancer cells. Therefore, overcoming metabolic alterations in cancer cells has recently become a target for therapeutic approaches. Natural products have played a key role in drug discovery, especially for cancer and infectious diseases. In this review, we are going to focus on terpenoids, which are gradually gaining popularity among drug researchers due to their reported anti-cancer effects via cell cycle arrest, induction of apoptosis, reduction of proliferation, and metastasis. This review summarizes the potential of 13 terpenoid compounds as anti-glycolytic inhibitors in different cancer models, primarily by inhibiting the glucose uptake and the generation of lactate, as well as by downregulating enzymes associated to glycolysis. As a conclusion, disruption of cancer cell glycolysis may be responsible for the anti-cancer activity of terpenoids.

10.
Respir Res ; 25(1): 328, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223619

RESUMEN

BACKGROUND: The interplay between intrauterine and early postnatal environments has been associated with an increased risk of cardiovascular diseases in adulthood, including pulmonary arterial hypertension (PAH). While emerging evidence highlights the crucial role of mitochondrial pathology in PAH, the specific mechanisms driving fetal-originated PAH remain elusive. METHODS AND RESULTS: To elucidate the role of mitochondrial dynamics in the pathogenesis of fetal-originated PAH, we established a rat model of postnatal catch-up growth following intrauterine growth restriction (IUGR) to induce pulmonary arterial hypertension (PAH). RNA-seq analysis of pulmonary artery samples from the rats revealed dysregulated mitochondrial metabolic genes and pathways associated with increased pulmonary arterial pressure and pulmonary arterial remodeling in the RC group (postnatal catch-up growth following IUGR). In vitro experiments using pulmonary arterial smooth muscle cells (PASMCs) from the RC group demonstrated elevated proliferation, migration, and impaired mitochondrial functions. Notably, reduced expression of Mitofusion 2 (Mfn2), a mitochondrial outer membrane protein involved in mitochondrial fusion, was observed in the RC group. Reconstitution of Mfn2 resulted in enhanced mitochondrial fusion and improved mitochondrial functions in PASMCs of RC group, effectively reversing the Warburg effect. Importantly, Mfn2 reconstitution alleviated the PAH phenotype in the RC group rats. CONCLUSIONS: Imbalanced mitochondrial dynamics, characterized by reduced Mfn2 expression, plays a critical role in the development of fetal-originated PAH following postnatal catch-up growth after IUGR. Mfn2 emerges as a promising therapeutic strategy for managing IUGR-catch-up growth induced PAH.


Asunto(s)
Retardo del Crecimiento Fetal , GTP Fosfohidrolasas , Ratas Sprague-Dawley , Animales , Retardo del Crecimiento Fetal/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Ratas , Femenino , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Hipertensión Arterial Pulmonar/fisiopatología , Dinámicas Mitocondriales/fisiología , Masculino , Células Cultivadas , Embarazo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Mitocondrias/patología , Animales Recién Nacidos , Proteínas Mitocondriales
11.
J Cell Mol Med ; 28(17): e70053, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39224032

RESUMEN

MitoAMPK was proved to inhibit the Warburg effect, but the specific mechanisms on non-small-cell lung cancer remain unclear. Here, we selected SIRT6 and MZF1 to clarify the mechanism. By western blotting, quantitative polymerase chain reaction, the CCK-8 assay, and immunohistochemistry assays, we found SIRT6 expression was lower in NSCLC tissues and cell lines than normal tissues and cells. Moreover, SIRT6 could inhibit the Warburg effect by regulating glycolysis-related genes of SLC2A2, SLC2A4 and PKM2. Finally, we demonstrated the interaction between SIRT6 and MZF1 using ChIP-qPCR. In conclusion, mitoAMPK inhibits the Warburg effect by regulating the expression of the MZF1-SIRT6 complex.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel , Neoplasias Pulmonares , Sirtuinas , Efecto Warburg en Oncología , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Sirtuinas/metabolismo , Sirtuinas/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Línea Celular Tumoral , Glucólisis/genética , Femenino , Masculino
12.
Artículo en Inglés | MEDLINE | ID: mdl-39279117

RESUMEN

INTRODUCTION: Colorectal cancer (CRC) is experiencing a significant increase in both incidence and mortality rates globally. The expression of Selenium-binding protein 1 (SELENBP1) has been reported to be notably downregulated in various malignancies, yet its biological functions and cellular mechanisms in CRC remain incompletely understood. METHOD: In our investigation, we observed the downregulation of SELENBP1 in CRC tissues through quantitative real-time PCR and western blotting and identified a positive correlation between higher SELENBP1 expression and improved survival prognosis using Kaplan-Meier survival analysis. Through loss-of-function and gain-of-function studies, we demonstrated the tumor-suppressive roles of SELENBP1 in CRC, supported by results from both in vitro and in vivo experiments. Furthermore, we uncovered the pivotal functions of SELENBP1 in suppressing aerobic glycolysis in CRC cells by regulating glucose uptake, lactate generation, and extracellular acidification rate. RESULT: At a mechanistic level, we found that SELENBP1 inhibits the expression of the key glycolytic modulator hypoxia-inducible factor 1 subunit alpha (HIF1α), and the inhibition of glycolysis by SELENBP1 can be reversed by ectopic expression of HIF1α. Therefore, our study highlights the potential of SELENBP1 as a promising target for CRC therapy, given its significant impact on tumor suppression and reprogrammed glucose metabolism. CONCLUSION: These findings contribute to a deeper understanding of the molecular mechanisms underlying CRC progression and may pave the way for the development of targeted therapies for this challenging disease.

13.
Front Genet ; 15: 1376123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233736

RESUMEN

Inflammatory Bowel Disease (IBD) is believed to be a risk factor for Small Intestinal Neuroendocrine Tumors (SI-NET) development; however, the molecular relationship between IBD and SI-NET has yet to be elucidated. In this study, we use a systems biology approach to uncover such relationships. We identified a more similar transcriptomic-wide expression pattern between Crohn's Disease (CD) and SI-NET whereas a higher proportion of overlapping dysregulated genes between Ulcerative Colitis (UC) and SI-NET. Enrichment analysis indicates that extracellular matrix remodeling, particularly in epithelial-mesenchymal transition and intestinal fibrosis mediated by TIMP1, is the most significantly dysregulated pathway among upregulated genes shared between both IBD subtypes and SI-NET. However, this remodeling occurs through distinct regulatory molecular mechanisms unique to each IBD subtype. Specifically, myofibroblast activation in CD and SI-NET is mediated through IL-6 and ciliary-dependent signaling pathways. Contrarily, in UC and SI-NET, this phenomenon is mainly regulated through immune cells like macrophages and the NCAM signaling pathway, a potential gut-brain axis in the context of these two diseases. In both IBD and SI-NET, intestinal fibrosis resulted in significant metabolic reprogramming of fatty acid and glucose to an inflammatory- and cancer-inducing state. This altered metabolic state, revealed through enrichment analysis of downregulated genes, showed dysfunctions in oxidative phosphorylation, gluconeogenesis, and glycogenesis, indicating a shift towards glycolysis. Also known as the Warburg effect, this glycolytic switch, in return, exacerbates fibrosis. Corresponding to enrichment analysis results, network construction and subsequent topological analysis pinpointed 7 protein complexes, 17 hub genes, 11 microRNA, and 1 transcription factor related to extracellular matrix accumulation and metabolic reprogramming that are candidate biomarkers in both IBD and SI-NET. Together, these biological pathways and candidate biomarkers may serve as potential therapeutic targets for these diseases.

14.
Front Oncol ; 14: 1411983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239276

RESUMEN

Many cancer cells share with yeast a preference for fermentation over respiration, which is associated with overactive glucose uptake and breakdown, a phenomenon called the Warburg effect in cancer cells. The yeast tps1Δ mutant shows even more pronounced hyperactive glucose uptake and phosphorylation causing glycolysis to stall at GAPDH, initiation of apoptosis through overactivation of Ras and absence of growth on glucose. The goal of the present work was to use the yeast tps1Δ strain to screen for novel compounds that would preferentially inhibit overactive glucose influx into glycolysis, while maintaining basal glucose catabolism. This is based on the assumption that the overactive glucose catabolism of the tps1Δ strain might have a similar molecular cause as the Warburg effect in cancer cells. We have isolated Warbicin ® A as a compound restoring growth on glucose of the yeast tps1Δ mutant, showed that it inhibits the proliferation of cancer cells and isolated structural analogs by screening directly for cancer cell inhibition. The Warbicin ® compounds are the first drugs that inhibit glucose uptake by both yeast Hxt and mammalian GLUT carriers. Specific concentrations did not evoke any major toxicity in mice but increase the amount of adipose tissue likely due to reduced systemic glucose uptake. Surprisingly, Warbicin ® A inhibition of yeast sugar uptake depends on sugar phosphorylation, suggesting transport-associated phosphorylation as a target. In vivo and in vitro evidence confirms physical interaction between yeast Hxt7 and hexokinase. We suggest that reversible transport-associated phosphorylation by hexokinase controls the rate of glucose uptake through hydrolysis of the inhibitory ATP molecule in the cytosolic domain of glucose carriers and that in yeast tps1Δ cells and cancer cells reversibility is compromised, causing constitutively hyperactive glucose uptake and phosphorylation. Based on their chemical structure and properties, we suggest that Warbicin ® compounds replace the inhibitory ATP molecule in the cytosolic domain of the glucose carriers, preventing hexokinase to cause hyperactive glucose uptake and catabolism.

15.
Mol Med Rep ; 30(5)2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39219283

RESUMEN

Pulmonary arterial hypertension (PAH) is a chronic and fatal disease characterized by pulmonary vascular remodeling, similar to the 'Warburg effect' observed in cancer, which is caused by reprogramming of glucose metabolism. Oroxylin A (OA), an active compound derived from Scutellaria baicalensis, which can inhibit glycolytic enzymes [hexokinase 2 (HK2), Lactate dehydrogenase (LDH), and pyruvate dehydrogenase kinase 1 (PDK1) by downregulating aerobic glycolysis to achieve the treatment of liver cancer. To the best of our knowledge, however, the impact of OA on PAH has not been addressed. Consequently, the present study aimed to evaluate the potential protective role and mechanism of OA against PAH induced by monocrotaline (MCT; 55 mg/kg). The mean pulmonary artery pressure (mPAP) was measured using the central venous catheter method; HE and Masson staining were used to observe pulmonary artery remodeling. Non­targeted metabolomics was used to analyze the metabolic pathways and pathway metabolites in MCT­PAH rats. Western Blot analysis was employed to assess the levels of glucose transporter 1 (Glut1), HK2), pyruvate kinase (PK), isocitrate dehydrogenase 2 (IDH2), pyruvate dehydrogenase kinase 1(PDK1), and lactate dehydrogenase (LDH) protein expression in both lung tissue samples from MCT­PAH rats. The results demonstrated that intragastric administration of OA (40 and 80 mg/kg) significantly decreased mPAP from 43.61±1.88 mmHg in PAH model rats to 26.51±1.53 mmHg and relieve pulmonary artery remodeling. Untargeted metabolomic analysis and multivariate analysis indicated abnormal glucose metabolic pattern in PAH model rats, consistent with the Warburg effect. OA administration decreased this effect on the abnormal glucose metabolism. The protein levels of key enzymes involved in glucose metabolism were evaluated by western blotting, which demonstrated that OA could improve aerobic glycolysis and inhibit PAH by decreasing the protein levels of Glut1, HK2, LDH, PDK1 and increasing the protein levels of PK and IDH2. In conclusion, OA decreased MCT­induced PAH in rats by reducing the Warburg effect.


Asunto(s)
Flavonoides , Glucólisis , Monocrotalina , Hipertensión Arterial Pulmonar , Animales , Ratas , Masculino , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Glucólisis/efectos de los fármacos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ratas Sprague-Dawley , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Scutellaria baicalensis/química , Modelos Animales de Enfermedad , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Efecto Warburg en Oncología/efectos de los fármacos
16.
Am J Physiol Lung Cell Mol Physiol ; 327(4): L439-L451, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39104320

RESUMEN

In pulmonary hypertension (PHTN), a metabolic shift to aerobic glycolysis promotes a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells (PASMCs). Enhanced glycolysis induces extracellular acidosis, which can activate proton-sensing membrane receptors and ion channels. We previously reported that activation of the proton-gated cation channel acid-sensing ion channel 1a (ASIC1a) contributes to the development of hypoxic PHTN. Therefore, we hypothesize that enhanced glycolysis and subsequent acidification of the PASMC extracellular microenvironment activate ASIC1a in hypoxic PHTN. We observed decreased oxygen consumption rate and increased extracellular acidification rate in PASMCs from chronic hypoxia (CH)-induced PHTN rats, indicating a shift to aerobic glycolysis. In addition, we found that intracellular alkalization and extracellular acidification occur in PASMCs following CH and in vitro hypoxia, which were prevented by the inhibition of glycolysis with 2-deoxy-d-glucose (2-DG). Inhibiting H+ transport/secretion through carbonic anhydrases, Na+/H+ exchanger 1, or vacuolar-type H+-ATPase did not prevent this pH shift following hypoxia. Although the putative monocarboxylate transporter 1 (MCT1) and -4 (MCT4) inhibitor syrosingopine prevented the pH shift, the specific MCT1 inhibitor AZD3965 and/or the MCT4 inhibitor VB124 were without effect, suggesting that syrosingopine targets the glycolytic pathway independent of H+ export. Furthermore, 2-DG and syrosingopine prevented enhanced ASIC1a-mediated store-operated Ca2+ entry in PASMCs from CH rats. These data suggest that multiple H+ transport mechanisms contribute to extracellular acidosis and that inhibiting glycolysis-rather than specific H+ transporters-more effectively prevents extracellular acidification and ASIC1a activation. Together, these data reveal a novel pathological relationship between glycolysis and ASIC1a activation in hypoxic PHTN.NEW & NOTEWORTHY In pulmonary hypertension, a metabolic shift to aerobic glycolysis drives a hyperproliferative, apoptosis-resistant phenotype in pulmonary arterial smooth muscle cells. We demonstrate that this enhanced glycolysis induces extracellular acidosis and activates the proton-gated ion channel, acid-sensing ion channel 1a (ASIC1a). Although multiple H+ transport/secretion mechanisms are upregulated in PHTN and likely contribute to extracellular acidosis, inhibiting glycolysis with 2-deoxy-d-glucose or syrosingopine effectively prevents extracellular acidification and ASIC1a activation, revealing a promising therapeutic avenue.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Glucólisis , Hipertensión Pulmonar , Hipoxia , Miocitos del Músculo Liso , Arteria Pulmonar , Animales , Canales Iónicos Sensibles al Ácido/metabolismo , Glucólisis/efectos de los fármacos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Hipoxia/metabolismo , Ratas , Masculino , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Ratas Sprague-Dawley , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Acidosis/metabolismo , Acidosis/patología , Simportadores
17.
J Biol Chem ; 300(9): 107648, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121998

RESUMEN

Most cancer cells exhibit high glycolysis rates under conditions of abundant oxygen. Maintaining a stable glycolytic rate is critical for cancer cell growth as it ensures sufficient conversion of glucose carbons to energy, biosynthesis, and redox balance. Here we deciphered the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway. Knocking down or knocking out PKM2 induced a thermodynamic equilibration in the glycolytic pathway, characterized by the reciprocal changes of the Gibbs free energy (ΔG) of the reactions catalyzed by PFK1 and PK, leading to a less exergonic PFK1-catalyzed reaction and a more exergonic PK-catalyzed reaction. The changes in the ΔGs of the two reactions cause the accumulation of intermediates, including the substrate PEP (the substrate of PK), in the segment between PFK1 and PK. The increased concentration of PEP in turn increased PK activity in the glycolytic pathway. Thus, the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway maintains the reciprocal relationship between PK concentration and its substrate PEP concentration, by which, PK activity in the glycolytic pathway can be stabilized and effectively counteracts the effect of PKM2 KD or KO on glycolytic rate. In line with our previous reports, this study further validates the roles of the thermodynamics of the glycolytic pathway in stabilizing glycolysis in cancer cells. Deciphering the interaction between glycolytic enzymes and the thermodynamics of the glycolytic pathway will promote a better understanding of the flux control of glycolysis in cancer cells.

18.
Int Immunopharmacol ; 141: 112957, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39197292

RESUMEN

The Warburg effect occurs both in cancer cells and in inflammatory macrophages. The aim of our work was to demonstrate the role of PI3K-Akt-mTOR axis in the Warburg effect in HL-60 derived, rat peritoneal and human blood macrophages and to investigate the potential of selected inhibitors of this pathway to antagonize it. M1 polarization in HL-60-derived and human blood monocyte-derived macrophages was supported by the increased expression of NOS2 and inflammatory cytokines. All M1 polarized and inflammatory macrophages investigated expressed higher levels of HIF-1α and NOS2, which were reduced by selected kinase inhibitors, supporting the role of PI3K-Akt-mTOR axis. Using Seahorse XF plates, we found that in HL-60-derived and human blood-derived macrophages, glucose loading reduced oxygen consumption (OCR) and increased glycolysis (ECAR) in M1 polarization, which was antagonized by selected kinase inhibitors and by dichloroacetate. In rat peritoneal macrophages, the changes in oxidative and glycolytic metabolism were less marked and the NOS2 inhibitor decreased OCR and increased ECAR. Non-mitochondrial oxygen consumption and ROS production were likely due to NADPH oxidase, expressed in each macrophage type, independently of PI3K-Akt-mTOR axis. Our results suggest that inflammation changed the metabolism in each macrophage model, but a clear relationship between polarization and Warburg effect was confirmed only after glucose loading in HL-60 and human blood derived macrophages. The effect of kinase inhibitors on Warburg effect was variable in different cell types, whereas dichloroacetate caused a shift toward oxidative metabolism. Our findings suggest that these originally anti-cancer inhibitors may also be candidates for anti-inflammatory therapy.


Asunto(s)
Macrófagos , Fosfatidilinositol 3-Quinasas , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Fosfatidilinositol 3-Quinasas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Transducción de Señal/efectos de los fármacos , Células HL-60 , Masculino , Glucólisis/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Células Cultivadas , Ratas Wistar , Óxido Nítrico Sintasa de Tipo II/metabolismo , Citocinas/metabolismo , Efecto Warburg en Oncología/efectos de los fármacos , Glucosa/metabolismo
19.
Bull Math Biol ; 86(10): 124, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207627

RESUMEN

Cancer cells exhibit significant alterations in their metabolism, characterised by a reduction in oxidative phosphorylation (OXPHOS) and an increased reliance on glycolysis, even in the presence of oxygen. This metabolic shift, known as the Warburg effect, is pivotal in fuelling cancer's uncontrolled growth, invasion, and therapeutic resistance. While dysregulation of many genes contributes to this metabolic shift, the tumour suppressor gene p53 emerges as a master player. Yet, the molecular mechanisms remain elusive. This study introduces a comprehensive mathematical model, integrating essential p53 targets, offering insights into how p53 orchestrates its targets to redirect cancer metabolism towards an OXPHOS-dominant state. Simulation outcomes align closely with experimental data comparing glucose metabolism in colon cancer cells with wild-type and mutated p53. Additionally, our findings reveal the dynamic capability of elevated p53 activation to fully reverse the Warburg effect, highlighting the significance of its activity levels not just in triggering apoptosis (programmed cell death) post-chemotherapy but also in modifying the metabolic pathways implicated in treatment resistance. In scenarios of p53 mutations, our analysis suggests targeting glycolysis-instigating signalling pathways as an alternative strategy, whereas targeting solely synthesis of cytochrome c oxidase 2 (SCO2) does support mitochondrial respiration but may not effectively suppress the glycolysis pathway, potentially boosting the energy production and cancer cell viability.


Asunto(s)
Neoplasias del Colon , Simulación por Computador , Glucólisis , Conceptos Matemáticos , Modelos Biológicos , Mutación , Fosforilación Oxidativa , Proteína p53 Supresora de Tumor , Efecto Warburg en Oncología , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Glucosa/metabolismo , Apoptosis , Transducción de Señal , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Línea Celular Tumoral , Mitocondrias/metabolismo
20.
Life Sci ; 355: 122978, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147317

RESUMEN

The cancer cell metabolism, notably characterized by the Warburg effect, has been the focus of intense investigation regarding the mechanisms of the uptake of glucose analogs, opening up perspectives for diagnosis and treatment of cancer disease. In this review, we delve into the ever-evolving landscape of cancer research, centering on fluorescent probes based on glucose analogs. These analogs, resulting from modifications in the carbohydrate structure with functional groups, have stood out as versatile molecules in applications ranging from disease comprehension to therapeutic innovation, especially when combined with fluorescent compounds. Fluorescence-based assays have provided valuable contributions to the revelation of complex biological mechanisms in life sciences. This review presents selected studies from about the past six years up to 2024 related to the use of glucose-based fluorescent probes, for the investigation of their uptake profile as well as for therapeutic purposes. We believe that these investigations offer insights into the intricate interaction between glucose analogs and cancer cell metabolism, guiding future research and clinical applications in this field.


Asunto(s)
Colorantes Fluorescentes , Glucosa , Neoplasias , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Glucosa/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA