Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.800
Filtrar
1.
Front Mol Neurosci ; 17: 1427054, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114641

RESUMEN

Spinal cord injury (SCI) denotes damage to both the structure and function of the spinal cord, primarily manifesting as sensory and motor deficits caused by disruptions in neural transmission pathways, potentially culminating in irreversible paralysis. Its pathophysiological processes are complex, with numerous molecules and signaling pathways intricately involved. Notably, the pronounced upregulation of the Wnt signaling pathway post-SCI holds promise for neural regeneration and repair. Activation of the Wnt pathway plays a crucial role in neuronal differentiation, axonal regeneration, local neuroinflammatory responses, and cell apoptosis, highlighting its potential as a therapeutic target for treating SCI. However, excessive activation of the Wnt pathway can also lead to negative effects, highlighting the need for further investigation into its applicability and significance in SCI. This paper provides an overview of the latest research advancements in the Wnt signaling pathway in SCI, summarizing the recent progress in treatment strategies associated with the Wnt pathway and analyzing their advantages and disadvantages. Additionally, we offer insights into the clinical application of the Wnt signaling pathway in SCI, along with prospective avenues for future research direction.

2.
Front Pharmacol ; 15: 1411285, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104397

RESUMEN

Introduction: Romosozumab is a monoclonal antibody approved for osteoporosis which targets sclerostin, an endogenous inhibitor of Wnt/ß-catenin pathway. Given the essential roles of the Wnt/ß-catenin pathway in various tissues, we hypothesized romosozumab treatment may influence other conditions. Methods: This cohort study included patients prescribed romosozumab or parathyroid receptor (PTHR) agonists after 1 January 2019, using a Japanese electronic medical record database. The outcomes of interest included autoimmune disease, interstitial pneumonia, cardiovascular outcome, Alzheimer's disease, Parkinson's disease (PD), serious infections, and malignancies. A stabilized inverse probability-weighted Cox proportional hazard model was used to estimate the hazard ratios. Age- and gender-based subgroup analyses were conducted. Exploratory outcomes based on three-digit International Classification of Diseases 10th Revision-based were also examined. Results: In total, 2,673 patients treated with romosozumab and 5,980 treated with PTHR agonists were identified, respectively. While most outcomes of interest showed no association with romosozumab, the risk of PD decreased with romosozumab (hazard ratio [95% confidence interval], 0.37 [0.14-0.94]) compared with PTHR agonist. Regarding the cardiovascular outcome, no notable association was identified overall; however, gender-based subgroup analysis suggested that male sex may be a potential risk factor with romosozumab treatment. Only 16 of 903 exploratory outcomes were potentially influenced by romosozumab. Conclusion: Romosozumab lowered the risk of PD development compared with PTHR agonist. The study also highlights the utility of routinely collected health data for drug repositioning. While further validation is warranted, the findings suggest that the Wnt-ß-catenin pathway holds promise as a therapeutic target for PD.

3.
Biomed Mater ; 19(5)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39114907

RESUMEN

(+)4-cholesten-3-one has been proved to have potential wound healing effect in the process of wound regeneration. This study aimed to evaluate the effect of (+)4-cholesten-3-one/sodium alginate/gelatin on skin injury and reveal its potential molecular mechanism. First, we prepared sodium alginate/gelatin hydrogel (SA/Gel hydrogel) with different ratios and tested their characteristics. Based on these results, different concentrations of (+)4-cholesten-3-one were added into SA/Gel hydrogel. A full-thickness skin injury model was successfully established to evaluate wound healing activityin vivo. HE staining and Masson staining were used to evaluate the thickness of granulation tissue and collagen deposition level. Immunohistochemical staining and immunofluorescence staining were applied to detect the level of revascularization and proliferation in each group of wounds. Western blot, quantitative-PCR and immunofluorescence staining were used to detect the expression of proteins related to Wnt/ß-catenin signaling pathway in each group of wounds.In vitroresults showed that the hydrogel not only created a 3D structure for cell adhesion and growth, but also exhibited good swelling ability, excellent degradability and favorable bio-compatibility. Most importantly,in vivoexperiments further indicated that (+)4-cholesten-3-one/SA/Gel hydrogel effectively enhanced wound healing. The effectiveness is due to its superior abilities in accelerating healing process, granulation tissue regeneration, collagen deposition, promoting angiogenesis, tissue proliferation, as well as fibroblast activation and differentiation. The underlying mechanism was related to the Wnt/ß-catenin signaling pathway. This study highlighted that (+)4-cholesten-3-one/SA/Gel hydrogel holds promise as a wound healing dressing in future clinical applications.


Asunto(s)
Alginatos , Gelatina , Hidrogeles , Regeneración , Piel , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Alginatos/química , Animales , Gelatina/química , Hidrogeles/química , Hidrogeles/farmacología , Piel/lesiones , Piel/efectos de los fármacos , Piel/metabolismo , Regeneración/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Masculino , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratas , Colágeno/química , Vía de Señalización Wnt/efectos de los fármacos , Humanos
4.
Am J Chin Med ; : 1-28, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164214

RESUMEN

Astragaloside IV (AS-IV), a natural triterpenoid isolated from Astragalus membranaceus, has been used traditionally in Chinese medicine. Previous studies have highlighted its benefits against carcinoma, but its interaction with the gut microbiota and effects on adenomatous polyps are not well understood. This present study investigates the effects of AS-IV on colonic adenomatous polyp (CAP) development in high-fat-diet (HFD) fed [Formula: see text] mice. [Formula: see text] mice were fed an HFD with or without AS-IV or Naringin for 8 weeks. The study assessed CAP proliferation and employed 16S DNA-sequencing and untargeted metabolomics to explore correlations between microbiome and metabolome in CAP development. AS-IV was more effective than Naringin in reducing CAP development, inhibiting colonic proinflammatory cytokines (IL-1[Formula: see text], IL-6, and TNF-[Formula: see text]), tumor associated biomarkers (c-Myc, Cyclin D1), and Wnt/[Formula: see text]-catenin pathway proteins (Wnt3a, [Formula: see text]-catenin). AS-IV also inhibited the proliferative capabilities of human colon cancer cells (HT29, HCT116, and SW620). Multiomics analysis revealed AS-IV increased the abundance of beneficial genera such as Bifidobacterium pseudolongum and significantly modulated serum levels of certain metabolites including linoleate and 2-trans,6-trans-farnesal, which were significantly correlated with the number of CAP. Finally, the anti-adenoma efficacy of AS-IV alone was significantly suppressed post pseudoaseptic intervention in HFD-fed [Formula: see text] mice but could be reinstated following a combined with Bifidobacterium pseudolongum transplant. AS-IV attenuates CAP development in HFD-fed [Formula: see text] mice by regulating gut microbiota and metabolomics, impacting the Wnt3a/[Formula: see text]-catenin signaling pathway. This suggests a potential new strategy for the prevention of colorectal cancer, emphasizing the role of gut microbiota in AS-IV's antitumor effects.

5.
Dev Cell ; 59(16): 2118-2133.e8, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39106861

RESUMEN

Pluripotent embryonic stem cells (ESCs) can develop into any cell type in the body. Yet, the regulatory mechanisms that govern cell fate decisions during embryogenesis remain largely unknown. We now demonstrate that mouse ESCs (mESCs) display large natural variations in mitochondrial reactive oxygen species (mitoROS) levels that individualize their nuclear redox state, H3K4me3 landscape, and cell fate. While mESCs with high mitoROS levels (mitoROSHIGH) differentiate toward mesendoderm and form the primitive streak during gastrulation, mESCs, which generate less ROS, choose the alternative neuroectodermal fate. Temporal studies demonstrated that mesendodermal (ME) specification of mitoROSHIGH mESCs is mediated by a Nrf2-controlled switch in the nuclear redox state, triggered by the accumulation of redox-sensitive H3K4me3 marks, and executed by a hitherto unknown ROS-dependent activation process of the Wnt signaling pathway. In summary, our study explains how ESC heterogeneity is generated and used by individual cells to decide between distinct cellular fates.


Asunto(s)
Diferenciación Celular , Mitocondrias , Células Madre Embrionarias de Ratones , Oxidación-Reducción , Especies Reactivas de Oxígeno , Vía de Señalización Wnt , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Diferenciación Celular/fisiología , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Histonas/metabolismo , Linaje de la Célula , Mesodermo/citología , Mesodermo/metabolismo
6.
J Orthop Surg Res ; 19(1): 480, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39152444

RESUMEN

BACKGROUND: Increasing evidence shows the pivotal significance of miRNAs in the pathogenesis of osteoporosis. miR-381-3p has been identified as an inhibitor of osteogenesis. This study explored the role and mechanism of miR-381-3p in postmenopausal osteoporosis (PMOP), the most common type of osteoporosis. METHODS: Bilateral ovariectomy (OVX) rat model was established and miR-381-3p antagomir was administrated through the tail vein in vivo. The pathological changes in rats were assessed through the evaluation of serum bone turnover markers (BALP, PINP, and CTX-1), hematoxylin and eosin (H&E) staining, as well as the expression of osteoblast differentiation biomarkers. Moreover, isolated bone marrow mesenchymal stem cells from OVX-induced rats (OVX-BMMSCs) were utilized to explore the impact of miR-381-3p on osteoblast differentiation. In addition, the target gene and downstream pathway of miR-381-3p were further investigated both in vivo and in vitro. RESULTS: miR-381-3p expression was elevated, whereas KLF5 was suppressed in OVX rats. miR-381-3p antagomir decreased serum levels of bone turnover markers, improved trabecular separation, promoted osteoblast differentiation biomarker expression in OVX rats. ALP activity and mineralization were suppressed, and levels of osteoblast differentiation biomarkers were impeded after miR-381-3p overexpression during osteoblast differentiation of OVX-BMMSCs. While contrasting results were found after inhibition of miR-381-3p. miR-381-3p targets KLF5, negatively affecting its expression as well as its downstream Wnt/ß-catenin pathway, both in vivo and in vitro. Silencing of KLF5 restored Wnt/ß-catenin activation induced by miR-381-3p antagomir. CONCLUSION: miR-381-3p aggravates PMOP by inhibiting osteogenic differentiation through targeting KLF5/Wnt/ß-catenin pathway. miR-381-3p appears to be a promising candidate for therapeutic intervention in PMOP.


Asunto(s)
Diferenciación Celular , Factores de Transcripción de Tipo Kruppel , MicroARNs , Osteogénesis , Osteoporosis Posmenopáusica , Ovariectomía , Vía de Señalización Wnt , Animales , Femenino , Humanos , Ratas , Células Cultivadas , Modelos Animales de Enfermedad , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Osteoblastos/metabolismo , Osteogénesis/genética , Osteogénesis/fisiología , Osteoporosis/genética , Osteoporosis/etiología , Osteoporosis/metabolismo , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Ovariectomía/efectos adversos , Ratas Sprague-Dawley , Vía de Señalización Wnt/fisiología , Vía de Señalización Wnt/genética
7.
Ecotoxicol Environ Saf ; 284: 116869, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178759

RESUMEN

BACKGROUND: Diesel exhaust particles (DEPs), a predominant component of ambient particulate matter (PM), are classified as ultrafine particles with the capacity to penetrate the cerebral blood-brain barrier (BBB). This penetration is implicated in the pathogenesis of central nervous system (CNS) disorders. The integrity of the BBB is inextricably linked to cerebrovascular homeostasis and the development of neurodegenerative disease, highlighting the importance of studying the effects and mechanisms of DEPs on BBB function damage. METHODS AND RESULTS: Utilizing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we explored the detrimental effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an upregulation in the secretion of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, , and diminished tight junction (TJ) protein expression. Microarray analysis revealed that 23 miRNAs were upregulated and 11 were downregulated in response to a 50 µg/mL DEPs treatment, with miR-466d-3p being notably differentially expressed. Wnt3 was identified as a target of miR-466d-3p, with the Wnt signaling pathway being significantly enriched. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/ß-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and ß-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. CONCLUSIONS: Our study further confirmed that DEPs can induce the disruption of BBB integrity through inflammatory processes. We identified alterations in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a key regulator of tight junction (TJ) proteins, essential for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ ß-catenin and Wnt/PCP signaling pathway can be activated by DEPs and are regulated by miR-466d-3p. Under the combined effects of Wnt/PCP and inflammation, there is an ultimate increase in BBB hyperpermeability. METHODS AND RESULTS: Employing mouse cerebral microvascular endothelial cells (bEnd.3 cells) as an in vitro model of the BBB, we investigated the adverse effects of DEPs exposure on BBB permeability and integrity, with particular focus on inflammation, cell apoptosis, and miRNA expression profiles. Our findings revealed that exposure to DEPs at varying concentrations for 48 h resulted in the inhibition of bEND.3 cell proliferation, induction of cell apoptosis, and an increase in the release of inflammatory cytokines/chemokines and adhesion molecules. The BBB integrity was further compromised, as evidenced by a decrease in trans-epithelial electrical resistance(TEER), a reduction in cytoskeletal F-actin, loss of intercellular junctional organization, and diminished tight junction (TJ) protein expression. Microarray analysis disclosed that 23 miRNAs were upregulated and 11 were downregulated in bEND.3 cells treated with 50 µg/mL DEPs compared to the controls. In particular, miR-466d-3p was identified as a significantly differentially expressed miRNA. Wnt3 was predicted to be a target of miR-466d-3p, and the Wnt signaling pathway was identified as one of the most significantly enriched pathways. We validated that miR-466d-3p expression was downregulated, and the protein expression levels of Wnt/ß-catenin and Wnt/PCP signaling components were elevated. The modulation of the Wnt signaling pathway by miR-466d-3p was demonstrated by the transfection of miR-466d-3p mimic, which resulted in a downregulation of Wnt3 and ß-catenin protein expression, and the mRNA level of Daam1, as well as an enhancement of TJ proteins ZO-1 and Claudin-5 expression. CONCLUSIONS: Our study further confirmed that DEPs can induce the disruption of BBB integrity by inflammation. We identified changes in the expression profile of microRNAs (miRNAs) in endothelial cells, with miR-466d-3p emerging as a regulator of tight junction (TJ) proteins, which are critical for maintaining BBB integrity. Additionally, our findings primarily demonstrated that the Wnt/ ß-catenin and Wnt/PCP signaling pathway can be activated by DEPs and is regulated by miR-466d-3p, and under the combined effects of Wnt/PCP and inflammation ultimately led to hyperpermeability BBB.

8.
Toxicology ; 508: 153932, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179171

RESUMEN

Hydroquinone (HQ), a metabolite of benzene, is frequently utilized as a surrogate for benzene in in vitro studies and is associated with the development of acute myeloid leukemia (AML). In the hemotoxicity caused by benzene and HQ, cell apoptosis plays a key role. However, the molecular mechanisms underlying HQ are unknown. Studies have indicated that Suv39h1 is involved in regulating cell division and proliferation by regulating histone H3K9me3. Meanwhile, the Wnt/ß-catenin signaling pathway also plays a significant role in cell proliferation and apoptosis. Therefore, this study was aimed at exploring the regulatory role of Suv39h1 and the Wnt/ß-catenin signaling pathway in the effects of HQ on bone marrow mesenchymal stem cells (BMSCs), as well as its influence on cell proliferation and apoptosis. The results demonstrated that HQ elevated the levels of Suv39h1 and H3K9me3 and activated the Wnt/ß-catenin signaling pathway by upregulating ß-catenin, Wnt2b, C-myc, and Cyclin D1 and downregulating Wnt5a, resulting in an increase in cell growth and a decrease in apoptosis. Suv39h1 knockdown inhibited the Wnt/ß-catenin signaling pathway. Meanwhile, inhibition of the Wnt/ß-catenin signaling pathway resulted in the down-regulation of Suv39h1 and H3K9me3 in BMSCs. They both promoted cell proliferation and inhibited apoptosis in the effects of HQ on BMSCs by downregulating the expression of Cyt-C, Bax, Caspase 3, and Caspase 9 and upregulating the expression of Bcl-xl. Therefore, we concluded that Suv39h1 and the Wnt/ß-catenin signaling pathway may mutually regulate each other in the effects of HQ on BMSCs in order to ameliorate the altered function of BMSCs.

9.
J Inflamm Res ; 17: 5375-5388, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161677

RESUMEN

Background: Dilated cardiomyopathy (DCM) is the second leading cause of heart failure, with intricate pathophysiological underpinnings. In order to shed fresh light on the mechanistic research of DCM, we combined bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data to examine significant cells and genes implicated in the disease. Methods: This analysis employed publicly accessible bulk RNA-seq and scRNA-seq DCM datasets. The scRNA-seq data underwent normalization, principal component, and t-distribution stochastic neighbor embedding analysis. Cell-to-cell communication networks and activity analysis were conducted using CellChat. Utilizing enrichment analysis, the marker genes' role in the active cells was evaluated. After screening by limma software and weighted gene co-expression network analysis, the differentially expressed genes (DEGs) served as hub genes. Furthermore, these hub genes were subjected to immunological studies, transcription factor expression, and gene set enrichment. Lastly, the expression of the four hub genes and their connection to DCM were verified using the rat models. Results: Fibroblasts and monocytes were chosen as hub cells from among the eight identified cell clusters; their marker genes intersected with DEGs to yield six hub genes. In addition, the six hub genes and the essential module genes intersected to yield four essential genes (ASPN, SFRP4, LUM, and FRZB) that were connected to the Wnt signaling pathway and highly expressed in fibroblast. The four hub DEGs had an expression pattern in the DCM rat model experiment results that was in line with the findings of the bioinformatics study. Additionally, there was a strong correlation between decreased cardiac function and the up-regulation of ASPN, SFRP4, LUM, and FRZB. Conclusion: Ultimately, bulk RNA-seq and scRNA-seq data identified fibroblasts and monocytes as the main cell types implicated in DCM. The highly expressed genes ASPN, FRZB, LUM, and SFRP4 in fibroblasts may aid in the mechanistic investigation of DCM.

10.
ACS Biomater Sci Eng ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155687

RESUMEN

Cartilage defects caused by joint diseases are difficult to treat clinically. Tissue engineering materials provide a new means to promote the repair of cartilage defects. The purpose of this study is to design a novel scaffold of porous magnesium alloy loaded with icariin and sustained release in order to explore the effect and possible mechanism of this scaffold in repairing SD rat knee articular cartilage defect. We constructed a novel type of icariin/porous magnesium alloy scaffold, observed the structure of the scaffold by electron microscope, detected the drug release of icariin in the scaffold and the biological safety, and established an animal model of cartilage defect in the femoral intercondylar fossa of the knee joint in rats; the scaffold was placed in the defect. After 12 weeks of repair, the rat knee articular cartilage repair was evaluated by gross specimens and micro-CT, HE, safranin O-fast green, and toluidine blue staining combined with the modified Mankin's score. The protein expressions of the Wnt/ß-catenin signaling pathway-related factors (ß-catenin, Wnt5a, Wnt1, sFRP1) and chondrogenic differentiation-related factors (Sox9, Aggrecan, Col2α1) were detected by immunohistochemical staining. We found that the novel scaffold of icariin/porous magnesium alloy can release icariin slowly and has biosafety in rats. Compared with other groups, icariin/porous magnesium alloy can significantly promote the repair of cartilage defects and the expressions of ß-catenin, Wnt5a, Wnt1, Sox9, Aggrecan, and Col2α1 (P < 0.05). This novel scaffold can promote the repair of rat knee cartilage defects, and this process may be achieved by activating the Wnt/ß-catenin signaling pathway.

11.
Biomed Pharmacother ; 179: 117292, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151314

RESUMEN

A type of colorectal cancer (CRC),Colitis-associated colorectal cancer (CAC), is closely associated with chronic inflammation and gut microbiota dysbiosis. Berberine (BBR) has a long history in the treatment of intestinal diseases, which has been reported to inhibit colitis and CRC. However, the mechanism of its action is still unclear. Here, this study aimed to explore the potential protective effects of BBR on azoxymethane (AOM)/dextransulfate sodium (DSS)-induced colitis and tumor mice, and to elucidate its potential molecular mechanisms by microbiota, genes and metabolic alterations. The results showed that BBR inhibited the gut inflammation and improved the function of mucosal barrier to ameliorate AOM/DSS-induced colitis. And BBR treatment significantly reduced intestinal tumor development and ki-67 expression of intestinal tissue along with promoted apoptosis. Through microbiota analysis based on the 16 S rRNA gene, we found that BBR treatment improved intestinal microbiota imbalance in AOM/DSS-induced colitis and tumor mice, which were characterized by an increase of beneficial bacteria, for instance Akkermanisa, Lactobacillus, Bacteroides uniformis and Bacteroides acidifaciens. In addition, transcriptome analysis showed that BBR regulated colonic epithelial signaling pathway in CAC mice particularly by tryptophan metabolism and Wnt signaling pathway. Notably, BBR treatment resulted in the enrichment of amino acids metabolism and microbiota-derived SCFA metabolites. In summary, our research findings suggest that the gut microbiota-amino acid metabolism-Wnt signaling pathway axis plays critical role in maintaining intestinal homeostasis, which may provide new insights into the inhibitory effects of BBR on colitis and colon cancer.

12.
Zool Res ; 45(5): 1048-1060, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39147719

RESUMEN

Extracellular membrane proteins are crucial for mediating cell attachment, recognition, and signal transduction in the testicular microenvironment, particularly germline stem cells. Cadherin 18 (CDH18), a type II classical cadherin, is primarily expressed in the nervous and reproductive systems. Here, we investigated the expression of CDH18 in neonatal porcine prospermatogonia (ProSGs) and murine spermatogonial stem cells (SSCs). Disruption of CDH18 expression did not adversely affect cell morphology, proliferation, self-renewal, or differentiation in cultured porcine ProSGs, but enhanced cell adhesion and prolonged cell maintenance. Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion. To further elucidate the function of CDH18 in germ cells, Cdh18 knockout mice were generated, which exhibited normal testicular morphology, histology, and spermatogenesis. Transcriptomic analysis showed increased expression of genes associated with adhesion, consistent with the observations in porcine ProSGs. The interaction of CDH18 with ß-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency. Collectively, these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs. Understanding this regulatory mechanism provides significant insights into the testicular niche.


Asunto(s)
Cadherinas , Adhesión Celular , Animales , Masculino , Porcinos , Adhesión Celular/fisiología , Ratones , Cadherinas/metabolismo , Cadherinas/genética , Ratones Noqueados , Espermatogonias/metabolismo , Espermatogonias/fisiología , Testículo/metabolismo , Testículo/fisiología , Células Madre Germinales Adultas/metabolismo , Células Madre Germinales Adultas/fisiología , Regulación de la Expresión Génica , Células Madre/fisiología , Células Madre/metabolismo
13.
J Integr Neurosci ; 23(7): 131, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39082287

RESUMEN

Stroke is a prominent contributor to mortality and impairment on a global scale. Ischemic stroke accounts for approximately 80% of stroke cases and is caused by occlusion of cerebral blood vessels. Enhancing neurogenesis through the modulation of the neural stem cell niche in the adult brain is a promising therapeutic strategy for individuals afflicted with ischemic stroke. Neurogenesis results in the generation of newborn neurons that serve as replacements for deceased neural cells within the ischemic core, thereby playing a significant role in the process of neural restoration subsequent to cerebral ischemia. Research has shown that activation of the Wnt/ß-catenin pathway can augment neurogenesis following cerebral ischemia, suggesting that this pathway is a potentially beneficial therapeutic target for managing ischemic stroke. This review provides an extensive analysis of the current knowledge regarding the involvement of the Wnt/ß-catenin pathway in promoting neurogenesis, thereby offering a promising avenue for therapeutic intervention in the context of ischemic stroke or other neurological impairments.


Asunto(s)
Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Neurogénesis , Vía de Señalización Wnt , Humanos , Vía de Señalización Wnt/fisiología , Animales , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/terapia , Neurogénesis/fisiología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Nicho de Células Madre/fisiología , Células Madre Adultas/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia
14.
Int J Biol Macromol ; 277(Pt 2): 134052, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038577

RESUMEN

After winemaking, tannins with high polymerization remain in the pomace. Utilizing these tannin fractions is a concern for the wine industry. While tannins show potential in treating hyperpigmentation, their mechanisms in vivo and at the cellular level are unclear. Herein, pomace tannin fractions (PTFs) were isolated post-winemaking. Nuclear magnetic resonance spectroscopy and mass spectrometry analysis showed PTFs were composed of (epi)catechin gallate and (epi)catechin as terminal and extensional units, with polymerization degrees of 10, 16, and 35. In vivo studies demonstrated that PTFs removed ∼76 % of skin melanin, comparable to hydroquinone. The inhibition by PTFs is due to: (1) Inhibition of the Wnt and melanogenesis pathways, downregulating key melanin synthesis proteins (TYR, TYRP1, TYRP2); (2) Inducing cell cycle arrest at the G1/S checkpoint, disrupting DNA, decreasing mitochondrial membrane potential and integrity, and slowing melanocyte proliferation; (3) Superior tyrosinase inhibitory activity by binding to tyrosinase, chelating copper ions, and demonstrating antioxidant properties. These findings suggest that PTFs inhibit melanin synthesis by the combination of the above mentioned ways, supporting the medical use of winemaking tannins.


Asunto(s)
Proliferación Celular , Melaninas , Monofenol Monooxigenasa , Transducción de Señal , Taninos , Vino , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Proliferación Celular/efectos de los fármacos , Hiperpigmentación/tratamiento farmacológico , Hiperpigmentación/metabolismo , Melaninas/biosíntesis , Melaninas/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Transducción de Señal/efectos de los fármacos , Taninos/farmacología , Taninos/química , Vino/análisis , Cobayas
15.
J Biochem Mol Toxicol ; 38(8): e23774, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39041324

RESUMEN

Colorectal cancer (CRC) is a common gastrointestinal malignancy. Long noncoding RNAs (lncRNAs) are associated with the progression of various cancers, including CRC. Herein, we explored the function of lncRNA LINC01550 in CRC. LINC01550 expression in CRC was analyzed using The Cancer Genome Atlas (TCGA). The diagnostic value of LINC01550 was evaluated using ROC curves. The relationship between clinicopathological variables and LINC01550 expression was explored, and its prognostic value was assessed using Kaplan-Meier and Cox regression analyses. The relationship between LINC01550 expression and immune cell infiltration was analyzed using CIBERSORT. Tumor-associated mutations and drug sensitivity were compared between high and low LINC01550 expression groups. The effects of LINC01550 overexpression on CRC cells were investigated using CCK-8, flow cytometry, wound healing, Transwell, qRT-PCR, and western blot assays. LINC01550 was downregulated in CRC tissues, and the low expression of LINC01550 was correlated with advanced stage and metastasis. CRC patients with low LINC01550 expression had poorer overall survival. LINC01550 expression was an independent risk factor for CRC prognosis. APC and TP53 mutations were more frequent in the low LINC01550 expression group, while the high LINC01550 expression group was significantly more sensitive to 5-fluorouracil, irinotecan, trametinib, gemcitabine, rapamycin, and XAV939. LINC01550 overexpression suppressed the proliferation, migration, invasion, and epithelial-mesenchymal transition of HCT-116 and HT-29 cells and promoted apoptosis. LINC01550 exerted these effects by inhibiting Wnt/ß-catenin signaling. Our results suggest LINC01550 as a diagnostic and prognostic predictor in CRC that acts as a tumor suppressor and a potential therapeutic target.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Vía de Señalización Wnt , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Pronóstico , Proliferación Celular/efectos de los fármacos , beta Catenina/metabolismo , beta Catenina/genética , Transición Epitelial-Mesenquimal , Movimiento Celular
16.
Int J Dev Neurosci ; 84(5): 454-468, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38961588

RESUMEN

In this study, we delved into the intricate world of autism spectrum disorder (ASD) and its connection to the disturbance in the Wnt signaling pathway and immunological abnormalities. Our aim was to evaluate the impact of silibinin, a remarkable modulator of both the Wnt signaling pathway and the immune system, on the neurobehavioral and molecular patterns observed in a zebrafish model of ASD induced by valproic acid (VPA). Because silibinin is a hydrophobic molecule and highly insoluble in water, it was used in the form of silibinin nanoparticles (nanosilibinin, NS). After assessing survival, hatching rate, and morphology of zebrafish larvae exposed to different concentrations of NS, the appropriate concentrations were chosen. Then, zebrafish embryos were exposed to VPA (1 µM) and NS (100 and 200 µM) at the same time for 120 h. Next, anxiety and inattentive behaviors and the expression of CHD8, CTNNB, GSK3beta, LRP6, TNFalpha, IL1beta, and BDNF genes were assessed 7 days post fertilization. The results indicated that higher concentrations of NS had adverse effects on survival, hatching, and morphological development. The concentrations of 100 and 200 µM of NS could ameliorate the anxiety-like behavior and learning deficit and decrease ASD-related cytokines (IL1beta and TNFalpha) in VPA-treated larvae. In addition, only 100 µM of NS prevented raising the gene expression of Wnt signaling-related factors (CHD8, CTNNB, GSK3beta, and LRP6). In conclusion, NS treatment for the first 120 h showed therapeutic effect on an autism-like phenotype probably via reducing the expression of pro-inflammatory cytokines genes and changing the expression of Wnt signaling components genes.


Asunto(s)
Trastorno del Espectro Autista , Citocinas , Modelos Animales de Enfermedad , Ácido Valproico , Vía de Señalización Wnt , Pez Cebra , Animales , Ácido Valproico/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Trastorno del Espectro Autista/tratamiento farmacológico , Citocinas/metabolismo , Embrión no Mamífero/efectos de los fármacos , Relación Dosis-Respuesta a Droga
17.
Drug Des Devel Ther ; 18: 2745-2760, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974120

RESUMEN

Purpose: Bee pollen possesses favorable anticancer activities. As a medicinal plant source, Schisandra chinensis bee pollen (SCBP) possesses potential pharmacological properties, such as reducing cisplatin-induced liver injury, but its anti-liver cancer effect is still rarely reported. This paper aims to investigate the effect and mechanism of SCBP extract (SCBPE) on hepatocellular carcinoma HepG2 cells. Methods: The effect of SCBPE on cell proliferation and migration of HepG2 cells was evaluated based on MTT assay, morphology observation, or scratching assay. Furthermore, tandem mass tag-based quantitative proteomics was used to study the effect mechanisms. The mRNA expression levels of identified proteins were verified by RT-qPCR. Results: Tandem mass tag-based quantitative proteomics showed that 61 differentially expressed proteins were obtained in the SCBPE group compared with the negative-control group: 18 significantly downregulated and 43 significantly upregulated proteins. Bioinformatic analysis showed the significantly enriched KEGG pathways were predominantly ferroptosis-, Wnt-, and hepatocellular carcinoma-signaling ones. Protein-protein interaction network analysis and RT-qPCR validation revealed SCBPE also downregulated the focal adhesion-signaling pathway, which is abrogated by PF-562271, a well-known inhibitor of FAK. Conclusion: This study confirmed SCBPE suppressed the cell proliferation and migration of hepatocellular carcinoma HepG2 cells, mainly through modulation of ferroptosis-, Wnt-, hepatocellular carcinoma-, and focal adhesion-signaling pathways, providing scientific data supporting adjuvant treatment of hepatocellular carcinoma using SCBP.


Asunto(s)
Carcinoma Hepatocelular , Movimiento Celular , Proliferación Celular , Ferroptosis , Neoplasias Hepáticas , Polen , Schisandra , Humanos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Células Hep G2 , Animales , Schisandra/química , Polen/química , Ferroptosis/efectos de los fármacos , Abejas/química , Adhesiones Focales/efectos de los fármacos , Adhesiones Focales/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Antineoplásicos/farmacología , Antineoplásicos/química , Transducción de Señal/efectos de los fármacos , Productos Biológicos , Polifenoles
18.
BMC Cancer ; 24(1): 904, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068410

RESUMEN

The lncRNA NEAT1 has been shown to promote the progression of several cancers, containing laryngeal squamous cell carcinoma (LSCC). However, the precise mechanism by which it promotes LSCC progression remains unclear. In this study, we verified the high expression of lncRNA NEAT1 in LSCC tissues and cells using RT-qPCR. Analysis of clinical data exhibited that high expression of lncRNA NEAT1 was associated with a history of smoking, worse T stage, lymph node metastasis, and later TNM stage in patients with LSCC. The promotion effect of lncRNA NEAT1 on LSCC cell proliferation, migration, invasion, and tumor growth in vivo was verified by CCK-8, plate clone formation, Transwell, and nude mouse tumorigenicity assays. Bioinformatics prediction and double luciferase reporter gene assay verified the binding of miR-411-3p to lncRNA NEAT1 and FZD3 mRNA, and inhibition of miR-411-3p reversed the inhibitory effect of lncRNA NEAT1 on FZD3 expression in LSCC cells. We also verified that lncRNA NEAT1-mediated FZD3 activation in the Wnt pathway affects LSCC development. In conclusion, we demonstrate that lncRNA NEAT1 promotes the progression of LSCC, and propose that the lncRNA NEAT1/miR-411-3p/FZD3 axis may be an effective target for LSCC therapy.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias Laríngeas , MicroARNs , ARN Largo no Codificante , Vía de Señalización Wnt , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/metabolismo , Vía de Señalización Wnt/genética , Proliferación Celular/genética , Movimiento Celular/genética , Animales , Ratones , Masculino , Femenino , Línea Celular Tumoral , Invasividad Neoplásica/genética , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Ratones Desnudos , Persona de Mediana Edad , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
19.
J Cell Physiol ; : e31385, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030845

RESUMEN

This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/ß-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/ß-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/ß-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.

20.
Arch Dermatol Res ; 316(7): 474, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007937

RESUMEN

Psoriasis, a chronic and easily recurring inflammatory skin disease, causes a great economic burden to the patient's family because the etiology and mechanism are still unclear and the treatment cycle is long. In this study, the function and related mechanisms of Momordin Ic in psoriasis were investigated. The IMQ-induced mouse psoriasis model was constructed. The protective effects of different doses of Momordin Ic on psoriasis skin damage in mice were detected by PASI score, HE staining and Ki-67 staining. A psoriasis-like keratinocyte model was established at the cellular level using M5 (IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α) triggered HaCaT. The effects of Momordin Ic upon HaCaT cell biological behavior were examined using MTT and CCK-8 assays. In terms of mechanism, the expression level of each inflammatory factor was assessed using IHC staining and/or ELISA, qRT-PCR, the expression of oxidative stress-related indicators was detected biochemically, and western blot was performed to detect the levels of key proteins of the Wnt signaling and VEGF. As the results shown,  at the in vivo level, Momordin Ic significantly alleviated skin damage, reduced PASI score and inhibited hyperproliferation of keratinized cells in psoriasis mice. At the cellular level, Momordin Ic also significantly reversed M5-induced hyperproliferation of HaCaT keratinocytes. In terms of mechanism, Momordin Ic significantly inhibited the IL-23/IL-17 axis, dramatically elevated the levels of intracellular antioxidants including SOD, GSH-Px, and CAT, and significantly down-regulated the levels of the indicator of oxidative damage, malondialdehyde (MDA). In addition, Momordin Ic also significantly inhibited the level of ß-catenin, a pivotal protein of the Wnt signaling, C-Myc, a target gene of the Wnt signaling, and VEGF, a critical protein of angiogenesis. In conclusion, Momordin Ic can be involved in the skin-protective effects of psoriasis by multiple mechanisms, including inhibition of the Wnt signaling pathway and the IL-23/IL-17 axis, and suppression of oxidative damageand VEGF expression. Momordin Ic has been proven to be an underlying therapeutic drug for the treatment of psoriasis.


Asunto(s)
Modelos Animales de Enfermedad , Interleucina-17 , Interleucina-23 , Queratinocitos , Psoriasis , Piel , Vía de Señalización Wnt , Animales , Humanos , Ratones , Proliferación Celular/efectos de los fármacos , Células HaCaT , Imiquimod , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Psoriasis/tratamiento farmacológico , Psoriasis/patología , Psoriasis/inducido químicamente , Psoriasis/inmunología , Piel/patología , Piel/efectos de los fármacos , Piel/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...