Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.174
Filtrar
1.
Ecol Evol ; 14(8): e70123, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135725

RESUMEN

The equilibrium of sex ratios in sexually reproducing species is often disrupted by various environmental and genetic factors, including endosymbionts like Wolbachia. In this study, we explore the highly female-biased sex ratio observed in the flea beetle, Altica lythri, and its underlying mechanisms. Ancient hybridization events between Altica species have led to mitochondrial DNA introgression, resulting in distinct mitochondrial haplotypes that go along with different Wolbachia infections (HT1-wLytA1, HT1*- uninfected, HT2-wLytA2, and HT3-wLytB). Notably, beetles with some haplotypes exclusively produce female offspring, suggesting potential Wolbachia-induced phenomena such as feminization of genetic males. However, the observed female bias could also be a consequence of the ancient hybridization resulting in nuclear-cytoplasmic conflicts between introgressed mtDNA and nuclear genes. Through transcriptomic analysis and the program SEX-DETector, we established markers for genotypic sex differentiation for A. lythri, enabling genetic sexing via qPCR. Our findings suggest that feminization of genetic males is contributing to the skewed sex ratios, highlighting the intricate dynamics of sex determination and reproductive strategies in this flea beetle. This study provides valuable insights into the dynamics of genetic conflicts, endosymbionts, and sex ratios, revealing the novel phenomenon of genetic male feminization in the flea beetle A. lythri.

2.
G3 (Bethesda) ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129654

RESUMEN

Transposable elements make up substantial proportions of eukaryotic genomes and many are thought to be remnants of ancient viral infections. Current research has begun to highlight the role transposable elements can play in the immune system response to infections. However, most of our knowledge about transposable element expression during infection is limited by the specific host and pathogen factors from each study, making it difficult to compare studies and develop broader patterns regarding the role of transposable elements during infection. Here, we use the tools and resources available in the model, Drosophila melanogaster, to analyze multiple gene expression datasets of flies subject to bacterial, fungal, and viral infections. We analyzed differences in pathogen species, host genotype, host tissue, and sex to understand how these factors impact transposable element expression during infection. Our results highlight both shared and unique transposable element expression patterns between pathogens and suggest a larger effect of pathogen factors over host factors for influencing transposable element expression.

3.
Front Immunol ; 15: 1434003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39176079

RESUMEN

The Dengue virus (DENV), primarily spread by Aedes aegypti and also by Aedes albopictus in some regions, poses significant global health risks. Alternative techniques are urgently needed because the current control mechanisms are insufficient to reduce the transmission of DENV. Introducing Wolbachia pipientis into Ae. aegypti inhibits DENV transmission, however, the underlying mechanisms are still poorly understood. Innate immune effector upregulation, the regulation of autophagy, and intracellular competition between Wolbachia and DENV for lipids are among the theories for the mechanism of inhibition. Furthermore, mainly three immune pathways Toll, IMD, and JAK/STAT are involved in the host for the suppression of the virus. These pathways are activated by Wolbachia and DENV in the host and are responsible for the upregulation and downregulation of many genes in mosquitoes, which ultimately reduces the titer of the DENV in the host. The functioning of these immune pathways depends upon the Wolbachia, host, and virus interaction. Here, we summarize the current understanding of DENV recognition by the Ae. aegypti's immune system, aiming to create a comprehensive picture of our knowledge. Additionally, we investigated how Wolbachia regulates the activation of multiple genes associated with immune priming for the reduction of DENV.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Inmunidad Innata , Mosquitos Vectores , Wolbachia , Aedes/inmunología , Aedes/virología , Aedes/microbiología , Wolbachia/fisiología , Wolbachia/inmunología , Animales , Virus del Dengue/inmunología , Virus del Dengue/fisiología , Dengue/inmunología , Dengue/transmisión , Dengue/virología , Mosquitos Vectores/inmunología , Mosquitos Vectores/virología , Mosquitos Vectores/microbiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Transducción de Señal/inmunología
4.
Acta Trop ; 258: 107344, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097253

RESUMEN

Vector-borne parasite infections affect both domestic and wild animals. They are often asymptomatic but can result in fatal outcomes under natural and human-induced stressors. Given the limited availability of molecular data on vector-borne parasites in Rhinoceros unicornis (greater one-horned rhinoceros), this study employed molecular tools to detect and characterize the vector-borne parasites in rescued rhinoceros in Chitwan National Park, Nepal. Whole blood samples were collected from thirty-six R. unicornis during rescue and treatment operations. Piroplasmida infections were first screened using nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA gene. Wolbachia was detected by amplifying 16S rRNA gene, while filarial nematodes were detected through amplification of 28S rRNA, COI, myoHC and hsp70 genes. Our results confirmed the presence of Theileria bicornis with a prevalence of 75% (27/36) having two previously unreported haplotypes (H8 and H9). Wolbachia endosymbionts were detected in 25% (9/36) of tested samples and belonged to either supergroup C or F. Filarial nematodes of the genera Mansonella and Onchocerca were also detected. There were no significant association between T. bicornis infections and the age, sex, or location from which the animals were rescued. The high prevalence of Theileria with novel haplotypes along with filarial parasites has important ecological and conservational implications and highlights the need to implement parasite surveillance programs for wildlife in Nepal. Further studies monitoring vector-borne pathogens and interspecies transmission among wild animals, livestock and human are required.


Asunto(s)
Perisodáctilos , Simbiosis , Wolbachia , Animales , Wolbachia/aislamiento & purificación , Wolbachia/genética , Nepal , Perisodáctilos/microbiología , Perisodáctilos/parasitología , Masculino , Theileria/aislamiento & purificación , Theileria/genética , Femenino , Enfermedades Transmitidas por Vectores , Filarioidea/aislamiento & purificación , Filarioidea/genética , Filarioidea/microbiología , Filariasis/veterinaria , Filariasis/parasitología , Filariasis/transmisión , Filariasis/epidemiología , ARN Ribosómico 16S/genética , Filogenia , Prevalencia , Vectores de Enfermedades
5.
mBio ; : e0147324, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39194189

RESUMEN

Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.

6.
Genome Biol Evol ; 16(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106433

RESUMEN

Cytoplasmic incompatibility (CI), a non-Mendelian genetic phenomenon, involves the manipulation of host reproduction by Wolbachia, a maternally transmitted alphaproteobacterium. The underlying mechanism is centered around the CI Factor (CIF) system governed by two genes, cifA and cifB, where cifB induces embryonic lethality, and cifA counteracts it. Recent investigations have unveiled intriguing facets of this system, including diverse cifB variants, prophage association in specific strains, copy number variation, and rapid component divergence, hinting at a complex evolutionary history. We utilized comparative genomics to systematically classify CIF systems, analyze their locus structure and domain architectures, and reconstruct their diversification and evolutionary trajectories. Our new classification identifies ten distinct CIF types, featuring not just versions present in Wolbachia, but also other intracellular bacteria, and eukaryotic hosts. Significantly, our analysis of CIF loci reveals remarkable variability in gene composition and organization, encompassing an array of diverse endonucleases, variable toxin domains, deubiquitinating peptidases (DUBs), prophages, and transposons. We present compelling evidence that the components within the loci have been diversifying their sequences and domain architectures through extensive, independent lateral transfers and interlocus recombination involving gene conversion. The association with diverse transposons and prophages, coupled with selective pressures from host immunity, likely underpins the emergence of CIF loci as recombination hotspots. Our investigation also posits the origin of CifB-REase domains from mobile elements akin to CR (Crinkler-RHS-type) effectors and Tribolium Medea1 factor, which is linked to another non-Mendelian genetic phenomenon. This comprehensive genomic analysis offers novel insights into the molecular evolution and genomic foundations of Wolbachia-mediated host reproductive control.


Asunto(s)
Transferencia de Gen Horizontal , Recombinación Genética , Wolbachia , Wolbachia/genética , Evolución Molecular , Filogenia , Genoma Bacteriano , Citoplasma/genética , Animales , Proteínas Bacterianas/genética
7.
Mol Ecol ; 33(17): e17488, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39119885

RESUMEN

Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.


Asunto(s)
Mariposas Diurnas , Flujo Génico , Especiación Genética , Genética de Población , Hibridación Genética , Aislamiento Reproductivo , Wolbachia , Animales , Mariposas Diurnas/genética , Wolbachia/genética
8.
Viruses ; 16(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39205310

RESUMEN

Wolbachia symbionts introduced into Aedes mosquitoes provide a highly effective dengue virus transmission control strategy, increasingly utilised in many countries in an attempt to reduce disease burden. Whilst highly effective against dengue and other positive-sense RNA viruses, it remains unclear how effective Wolbachia is against negative-sense RNA viruses. Therefore, the effect of Wolbachia on Bunyamwera virus (BUNV) infection in Aedes aegypti was investigated using wMel and wAlbB, two strains currently used in Wolbachia releases for dengue control, as well as wAu, a strain that typically persists at a high density and is an extremely efficient blocker of positive-sense viruses. Wolbachia was found to reduce BUNV infection in vitro but not in vivo. Instead, BUNV caused significant impacts on density of all three Wolbachia strains following infection of Ae. aegypti mosquitoes. The ability of Wolbachia to successfully persist within the mosquito and block virus transmission is partially dependent on its intracellular density. However, reduction in Wolbachia density was not observed in offspring of infected mothers. This could be due in part to a lack of transovarial transmission of BUNV observed. The results highlight the importance of understanding the complex interactions between multiple arboviruses, mosquitoes and Wolbachia in natural environments, the impact this can have on maintaining protection against diseases, and the necessity for monitoring Wolbachia prevalence at release sites.


Asunto(s)
Aedes , Virus Bunyamwera , Mosquitos Vectores , Wolbachia , Wolbachia/fisiología , Animales , Aedes/microbiología , Aedes/virología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología , Femenino , Simbiosis
9.
J Travel Med ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105274

RESUMEN

BACKGROUND: Matings between male Aedes aegypti mosquitoes infected with wAlbB strain of Wolbachia and wildtype females yield non-viable eggs. We evaluated the efficacy of releasing wAlbB-infected Ae. aegypti male mosquitoes to suppress dengue. METHODS: We specified the protocol of a two-arm cluster-randomized test-negative controlled trial (cRCT) and emulated it using a nationally representative test-negative/positive database of individuals reporting for febrile illness to any public hospital, general practitioner or polyclinic. We retrospectively built a cohort of individuals who reside in Wolbachia locations versus a comparator control group who do not reside in Wolbachia locations, using a nationally representative database of all individuals whom report for febrile illness and were tested for dengue at the Environmental Health Institute/hospital laboratories/commercial diagnostic laboratories, through general practitioner clinic, polyclinic or public/private hospital from EW1 2019-EW 262022. We emulated a constrained randomization protocol used in cRCTs to balance dengue risk between intervention and control arms in the pre-intervention period. We used the inverse-probability weighting approach to further balance the intervention and control groups using a battery of algorithmically selected sociodemographic, environmental and anthropogenic variables. Intention-to-treat analyses was conducted to estimate the risk reduction of dengue given Wolbachia exposure. RESULTS: Intention-to-treat analyses revealed that, compared with controls, Wolbachia releases for 3, 6, 12 or more months was associated to 47%(95%CI:25-69%), 44%(33-77%) and 61%(38-78%) protective efficacy against dengue, respectively. When exposed to 12 or more months of Wolbachia releases, protective efficacies ranged from 49%(13-72%) to 77%(60-94%) across years. The proportion of virologically confirmed dengue cases was lower overall in the intervention arm. Protective efficacies were found across all years, age and sex subgroups, with higher durations of Wolbachia exposure associated to greater risk reductions of dengue. CONCLUSION: Results demonstrated that Wolbachia-mediated sterility can strengthen dengue control in tropical cities, where dengue burden is the greatest.

10.
J Econ Entomol ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109809

RESUMEN

Wolbachia, a prevalent intracellular symbiotic bacterium in insects, plays a significant role in insect biology. Ectropis grisescens (Warren; Lepidoptera: Geometridae) is a devastating chewing pest distributed in tea plantations throughout China. However, it is unclear how Wolbachia titers affect the fitness and reproduction of E. grisescens. In this study, the impacts of 3 different infection lines, naturally Wolbachia-infected, Wolbachia-uninfected, and Wolbachia transinfected, regarding the life history traits of E. grisescens, were evaluated using the age-stage, 2-sex life table. Wolbachia infection significantly shortened preadult duration and preoviposition periods and notably increased the fecundity, net reproductive rate, and finite rate of increase. Meanwhile, population projection indicated that E. grisescens population size with Wolbachia infection can increase faster than without. These results indicate that Wolbachia plays a regulatory role in the fitness of E. grisescens. It is also noted that the life history parameters of E. grisescens may positively correlate with Wolbachia titers. These findings could aid in pest management in tea gardens.

11.
BMC Med Res Methodol ; 24(1): 170, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107710

RESUMEN

BACKGROUND: Wolbachia symbiosis in Aedes aegypti is an emerging biocontrol measure against dengue. However, assessing its real-world efficacy is challenging due to the non-randomised, field-based nature of most intervention studies. This research re-evaluates the spatial-temporal impact of Wolbachia interventions on dengue incidence using a large battery of quasi-experimental methods and assesses each method's validity. METHODS: A systematic search for Wolbachia intervention data was conducted via PUBMED. Efficacy was reassessed using commonly-used quasi-experimental approaches with extensive robustness checks, including geospatial placebo tests and a simulation study. Intervention efficacies across multiple study sites were computed using high-resolution aggregations to examine heterogeneities across sites and study periods. We further designed a stochastic simulation framework to assess the methods' ability to estimate intervention efficacies (IE). RESULTS: Wolbachia interventions in Singapore, Malaysia, and Brazil significantly decreased dengue incidence, with reductions ranging from 48.17% to 69.19%. IEs varied with location and duration. Malaysia showed increasing efficacy over time, while Brazil exhibited initial success with subsequent decline, hinting at operational challenges. Singapore's strategy was highly effective despite partial saturation. Simulations identified Synthetic Control Methods (SCM) and its variant, count Synthetic Control Method (cSCM), as superior in precision, with the smallest percentage errors in efficacy estimation. These methods also demonstrated robustness in placebo tests. CONCLUSIONS: Wolbachia interventions exhibit consistent protective effects against dengue. SCM and cSCM provided the most precise and robust estimates of IEs, validated across simulated and real-world settings.


Asunto(s)
Aedes , Dengue , Wolbachia , Wolbachia/fisiología , Dengue/prevención & control , Dengue/epidemiología , Animales , Aedes/microbiología , Aedes/virología , Humanos , Brasil/epidemiología , Singapur/epidemiología , Malasia/epidemiología , Incidencia , Control de Mosquitos/métodos , Mosquitos Vectores/microbiología , Simbiosis , Control Biológico de Vectores/métodos , Control Biológico de Vectores/estadística & datos numéricos
12.
Sci Rep ; 14(1): 17770, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090271

RESUMEN

Wolbachia is an obligate intracellular α-proteobacterium, which commonly infects arthropods and filarial nematodes. Different strains of Wolbachia are capable of a wide range of regulatory manipulations in their diverse hosts, including the modulation of host cellular differentiation to influence host reproduction. The genetic basis for the majority of these phenotypes is unknown. The wWil strain from the neotropical fruit fly, Drosophila willistoni, exhibits a remarkably high affinity for host germline-derived cells relative to the somatic cells. This trait could be leveraged for understanding how Wolbachia influences the host germline and for controlling host populations in the field. To further the use of this strain in biological and biomedical research, we sequenced the genome of the wWil strain isolated from host cell culture cells. Here, we present the first high quality Nanopore assembly of wWil, the Wolbachia endosymbiont of D. willistoni. Our assembly resulted in a circular genome of 1.27 Mb with a BUSCO completeness score of 99.7%. Consistent with other insect-associated Wolbachia strains, comparative genomic analysis revealed that wWil has a highly mosaic genome relative to the closely related wMel and wAu strains from Drosophila melanogaster and Drosophila simulans, respectively.


Asunto(s)
Drosophila , Genoma Bacteriano , Simbiosis , Wolbachia , Wolbachia/genética , Animales , Drosophila/microbiología , Drosophila/genética , Simbiosis/genética , Filogenia , Secuenciación Completa del Genoma/métodos , Genómica/métodos
13.
Front Microbiol ; 15: 1405287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091298

RESUMEN

Obligate intracellular endobacteria of the genus Wolbachia are widespread in arthropods and several filarial nematodes. Control programs for vector-borne diseases (dengue, Zika, malaria) and anti-filarial therapy with antibiotics are based on this important endosymbiont. Investigating Wolbachia, however, is impeded by the need for host cells. In this study, the requirements for Wolbachia wAlbB growth in a host cell-free in vitro culture system were characterized via qPCRs. A cell lysate fraction from Aedes albopictus C6/36 insect cells containing cell membranes and medium with fetal bovine serum were identified as requisite for cell-free replication of Wolbachia. Supplementation with the membrane fraction of insect cell lysate increased extracellular Wolbachia replication by 4.2-fold. Replication rates in the insect cell-free culture were lower compared to Wolbachia grown inside insect cells. However, the endobacteria were able to replicate for up to 12 days and to infect uninfected C6/36 cells. Cell-free Wolbachia treated with the lipid II biosynthesis inhibitor fosfomycin had an enlarged phenotype, seen previously for intracellular Wolbachia in C6/36 cells, indicating that the bacteria were unable to divide. In conclusion, we have developed a cell-free culture system in which Wolbachia replicate for up to 12 days, providing an in vitro tool to elucidate the biology of these endobacteria, e.g., cell division by using compounds that may not enter the C6/36 cells. A better understanding of Wolbachia biology, and in particular host-symbiont interactions, is key to the use of Wolbachia in vector control programs and to future drug development against filarial diseases.

14.
Front Cell Infect Microbiol ; 14: 1439476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119296

RESUMEN

Objective: Sclerodermus wasps are important biocontrol agents of a class of wood borers. Bacterial symbionts influence the ecology and biology of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. However, only a few studies have explored the species and content of the symbionts in the Sclerodermus species. Methods: Here, a high-throughput sequencing study of the V3-V4 region of the 16S ribosomal RNA gene revealed a high level of microbial variety in four Sclerodermus waps, and their diversities and functions were also predicted. Results: The three most prevalent phyla of microorganisms in the sample were Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results indicated that the three pathways with the highest relative abundances in the S. sichuanensis species were translation, membrane transport, and nucleotide metabolism. These pathways differed from those observed in S. guani, S. pupariae, and S. alternatusi, which exhibited carbohydrate metabolism, membrane transport, and amino acid metabolism, respectively. Bacteroides were found to be abundant in several species, whereas Wolbachia was the most abundant among S. sichuanensis, with a significant negative correlation between temperature and carriage rate. Conclusions: These results offer insights into the microbial communities associated with the bethylid wasps, which is crucial for understanding how to increase the reproductive capacity of wasps, enhance their parasitic effects, and lower cost in biocontrol.


Asunto(s)
ARN Ribosómico 16S , Simbiosis , Avispas , Animales , Avispas/microbiología , Avispas/fisiología , China , ARN Ribosómico 16S/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Agentes de Control Biológico , Escarabajos/microbiología , Filogenia , Microbiota , Bacteroides/genética , Bacteroides/aislamiento & purificación , Bacteroides/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Firmicutes/clasificación , Wolbachia/genética , Wolbachia/aislamiento & purificación , Wolbachia/clasificación , Wolbachia/fisiología , Biodiversidad
15.
Infect Genet Evol ; 123: 105641, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004260

RESUMEN

Endosymbiotic Alphaproteobacteria of the genus Wolbachia are exclusively transferred maternally from mother to offspring, but horizontal transfer across species boundaries seems to be frequent as well. However, the (ecological) mechanisms of how these bacteria are transferred between distantly related arthropod hosts remain unclear. Based on the observation that species that are part of the same ecological community often also share similar Wolbachia strains, host ecology has been hypothesized as an important factor enabling transmission and a key factor in explaining the global distribution of Wolbachia lineages. In this study, we focus on the diversity and abundance of Wolbachia strains in soil arthropods, a so far rather neglected community. We screened 82 arthropod morphotypes collected in the beech forest (dominated by Fagus sp.) soil in the area of Göttingen in central Germany for the presence of Wolbachia. By performing a PCR screen with Wolbachia-MLST markers (coxA, dnaA, fbpA, ftsZ, gatB, and hcpA), we found a rather low infection frequency of 12,2%. Additionally, we performed metagenomic screening of pooled individuals from the same sampling site and could not find evidence that this low infection frequency is an artefact due to PCR-primer bias. Phylogenetic analyses of the recovered Wolbachia strains grouped them in three known supergroups (A, B, and E), with the first report of Wolbachia in Protura (Hexapoda). Moreover, Wolbachia sequences from the pseudoscorpion Neobisium carcinoides cluster outside the currently known supergroup diversity. Our screening supports results from previous studies that the prevalence of Wolbachia infections seems to be lower in soil habitats than in above-ground terrestrial habitats. The reasons for this pattern are not completely understood but might stem from the low opportunity of physical contact and the prevalence of supergroups that are less suited for horizontal transfer.


Asunto(s)
Artrópodos , Filogenia , Microbiología del Suelo , Wolbachia , Wolbachia/genética , Wolbachia/clasificación , Animales , Artrópodos/microbiología , Alemania/epidemiología , Tipificación de Secuencias Multilocus
16.
Exp Parasitol ; 263-264: 108806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39009178

RESUMEN

Dirofilaria immitis is a filarial parasitic nematode of veterinary significance. With the emergence of drug-resistant isolates in the USA, it is imperative to determine the likelihood of resistance occurring in other regions of the world. One approach is to conduct population genetic studies across an extensive geographical range, and to sequence the genomes of individual worms to understand genome-wide genetic variation associated with resistance. The immature life stages of D. immitis found in the host blood are more accessible and less invasive to sample compared to extracting adult stages from the host heart. To assess the use of immature life stages for population genetic analyses, we have performed whole genome amplification and whole-genome sequencing on nine (n = 9) individual D. immitis microfilaria samples isolated from dog blood. On average, less than 1% of mapped reads aligned to each D. immitis genome (nuclear, mitochondrial, and Wolbachia endosymbiont). For the dog genome, an average of over 99% of mapped reads aligned to the nuclear genome and less than 1% aligned to the mitochondrial genome. The average coverage for all D. immitis genomes and the dog nuclear genome was less than 1, while the dog mitochondrial genome had an average coverage of 2.87. The overwhelming proportion of sequencing reads mapping to the dog host genome can be attributed to residual dog blood cells in the microfilariae samples. These results demonstrate the challenges of conducting genome-wide studies on individual immature parasite life stages, particularly in the presence of extraneous host DNA.


Asunto(s)
ADN de Helmintos , Dirofilaria immitis , Dirofilariasis , Enfermedades de los Perros , Genoma de los Helmintos , Microfilarias , Secuenciación Completa del Genoma , Animales , Dirofilaria immitis/genética , Dirofilaria immitis/aislamiento & purificación , Perros , Enfermedades de los Perros/parasitología , Dirofilariasis/parasitología , Microfilarias/genética , Microfilarias/aislamiento & purificación , ADN de Helmintos/aislamiento & purificación , ADN de Helmintos/química , Femenino , Masculino
17.
J Insect Physiol ; 157: 104674, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38997103

RESUMEN

Wolbachia, an endosymbiotic bacterium, relies on nutrients from its host to complete its life cycle. The presence of Wolbachia strain wAlbB in the mosquito Aedes aegypti during egg or larval stages affects the host's development, leading to the absence of developed and visible ovaries in adult mosquito females. In this study, we investigated the impacts of egg quiescence and Wolbachia infection on lipid profiles of adult Ae. aegypti females, and discerned the role of ovaries in lipid synthesis in the reproductive process. The lipidomes of Wolbachia infected and uninfected female individuals at various developmental stages were quantitatively analyzed by LC-MS/MS. Lipidomic change patterns were systematically further investigated in wAlbB-infected fertile females and infertile females following blood feeding. Prolonged egg quiescence induced a shortage of acyl-carnitine (CAR) and potentially impacted some molecules of diacyl-phospholipid (diacyl-PL) and sphingolipid (SL) in young adult mosquitoes. After the first gonotrophic cycle, infertile females accumulated more CAR and lyso-phospholipid (lyso-PL) than fertile females. Then in the second gonotrophic cycle, the patterns of different lipid groups remained similar between fertile and infertile females. Only a small proportion of molecules of triglyceride (TG), phospholipid (lyso-PL and diacyl-PL) and ceramide (Cer) increased exclusively in fertile females from 0 h to 16 h post blood meal, suggesting that the generation or prescence of these lipids rely on ovaries. In addition, we found cardiolipins (CL) might be impacted by Wolbachia infection at the egg stage, and infected mosquitoes also showed distinct patterns between fertile and infertile females at their second gonotrophic cycle. Our study provides new insights into the long-term influence of Wolbachia on lipid profiles throughout various life stages of mosquitoes. Additionally, it suggests a role played by ovaries in lipid synthesis during mosquito reproduction.


Asunto(s)
Aedes , Ovario , Wolbachia , Animales , Aedes/microbiología , Aedes/metabolismo , Aedes/fisiología , Wolbachia/fisiología , Femenino , Ovario/microbiología , Ovario/metabolismo , Óvulo/microbiología , Óvulo/metabolismo , Reproducción , Lípidos/biosíntesis , Metabolismo de los Lípidos , Lipidómica
18.
Ecol Evol ; 14(7): e11670, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957696

RESUMEN

Wolbachia continue to be reported in species previously thought to lack them, particularly Aedes aegypti mosquitoes. The presence of Wolbachia in this arbovirus vector is considered important because releases of mosquitoes with transinfected Wolbachia are being used around the world to suppress pathogen transmission and these efforts depend on a lack of Wolbachia in natural populations of this species. We previously assessed papers reporting Wolbachia in natural populations of Ae. aegypti and found little evidence that seemed convincing. However, since our review, more and more papers are emerging on Wolbachia detections in this species. Our purpose here is to evaluate these papers within the context of criteria we previously established but also new criteria that include the absence of releases of transinfections within the local areas being sampled which has contaminated natural populations in at least one case where novel detections have been reported. We also address the broader issue of Wolbachia detection in other insects where similar issues may arise which can affect overall estimates of this endosymbiont more generally. We note continuing shortcomings in papers purporting to find natural Wolbachia in Ae. aegypti which are applicable to other insects as well.

19.
BMC Genomics ; 25(1): 673, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969975

RESUMEN

BACKGROUND: Culex tritaeniorhynchus is widely distributed in China, from Hainan Island in the south to Heilongjiang in the north, covering tropical, subtropical, and temperate climate zones. Culex tritaeniorhynchus carries 19 types of arboviruses. It is the main vector of the Japanese encephalitis virus (JEV), posing a serious threat to human health. Understanding the effects of environmental factors on Culex tritaeniorhynchus can provide important insights into its population structure or isolation patterns, which is currently unclear. RESULTS: In total, 138 COI haplotypes were detected in the 552 amplified sequences, and the haplotype diversity (Hd) value increased from temperate (0.534) to tropical (0.979) regions. The haplotype phylogeny analysis revealed that the haplotypes were divided into two high-support evolutionary branches. Temperate populations were predominantly distributed in evolutionary branch II, showing some genetic isolation from tropical/subtropical populations and less gene flow between groups. The neutral test results of HNQH (Qionghai) and HNHK(Haikou) populations were negative (P < 0.05), indicating many low-frequency mutations in the populations and that the populations might be in the process of expansion. Moreover, Wolbachia infection was detected only in SDJN (Jining) (2.24%), and all Wolbachia genotypes belonged to supergroup B. To understand the influence of environmental factors on mosquito-borne viruses, we examined the prevalence of Culex tritaeniorhynchus infection in three ecological environments in Shandong Province. We discovered that the incidence of JEV infection was notably greater in Culex tritaeniorhynchus from lotus ponds compared to those from irrigation canal regions. In this study, the overall JEV infection rate was 15.27 per 1000, suggesting the current risk of Japanese encephalitis outbreaks in Shandong Province. CONCLUSIONS: Tropical and subtropical populations of Culex tritaeniorhynchus showed higher genetic diversity and those climatic conditions provide great advantages for the establishment and expansion of Culex tritaeniorhynchus. There are differences in JEV infection rates in wild populations of Culex tritaeniorhynchus under different ecological conditions. Our results suggest a complex interplay of genetic differentiation, population structure, and environmental factors in shaping the dynamics of Culex tritaeniorhynchus. The low prevalence of Wolbachia in wild populations may reflect the recent presence of Wolbachia invasion in Culex tritaeniorhynchus.


Asunto(s)
Culex , Haplotipos , Filogenia , Culex/genética , Culex/virología , Culex/microbiología , Animales , China , Clima , Variación Genética , Genética de Población , Wolbachia/genética , Mosquitos Vectores/genética , Mosquitos Vectores/virología , Mosquitos Vectores/microbiología , Complejo IV de Transporte de Electrones/genética
20.
Ecol Evol ; 14(7): e70004, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39041013

RESUMEN

The microbiome contributes to many different host traits, but its role in host adaptation remains enigmatic. The fitness benefits of the microbiome often depend on ecological conditions, but theory suggests that fluctuations in both the microbiome and environment modulate these fitness benefits. Moreover, vertically transmitted bacteria might constrain the ability of both the microbiome and host to respond to changing environments. Drosophila melanogaster provides an excellent system to investigate the impacts of interactions between the microbiome and the environment. To address this question, we created field mesocosms of D. melanogaster undergoing seasonal environmental change with and without the vertically transmitted bacteria, Wolbachia pipientis. Sampling temporal patterns in the microbiome revealed that Wolbachia constrained microbial diversity. Furthermore, Wolbachia and a dominant member of the microbiome, Commensalibacter, were associated with differences in two higher-order fitness traits, starvation resistance and lifespan. Our work here suggests that the interplay between the abiotic context and microbe-microbe interactions may shape key host phenotypes that underlie adaptation to changing environments. We conclude by exploring the consequences of complex interactions between Wolbachia and the microbiome for our understanding of eco-evolutionary processes that shape host-microbiome interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA