Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 884
Filtrar
1.
Diabetes Metab Syndr Obes ; 17: 3197-3214, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220798

RESUMEN

Introduction: Yes-associated protein 1 (YAP1) is a crucial molecule in the Hippo pathway. The impact of hepatocyte-specific Yap1 knockout (Yap1 LKO) on hepatic lipid droplets (LD) and pePLIN2 in metabolic fatty liver has not been reported. This study aims to explore whether Yap1 LKO could offer a protective effect in a liver injury model. Methods: Three-week-old Yap1 LKO and Yap1 Flox mice were given aristolochic acid I (AAI) combined carbon tetrachloride (CCL4) establish liver injury model. Eight-week-old Yap1 LKO and Yap1 Flox mice were fed with a high-fat diet for 18 weeks to establish obesity-related liver injury model. Further biochemical, histomorphological, immunohistochemical, and lipidomic analyses were performed on serum and liver tissues of these mice to elucidate the effects of hepatocyte-specific Yap1 knockout on hepatic lipid metabolism. Results: Yap1 LKO reduced triglyceride (TG) content and PLIN2 expression level in the liver during the intervention of AAI combined CCl4. Moreover, Yap1 LKO improved lipid metabolism homeostasis in the liver by increasing the beneficial lipid molecules and reducing the harmful lipid molecules through lipidomics. Finally, Yap1 LKO reduced TG content in the serum and liver, hepatic vacuolar degeneration, and hepatic PLIN2 expression level in mice fed with a high-fat diet (HFD). Conclusion: Yap1 LKO is protective in regulating liver and blood TG when induced with toxic substances AAI combined CCl4 and a high-fat diet.

2.
Front Oncol ; 14: 1442911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224804

RESUMEN

Introduction: Prostate cancer (PCa), one of the most prevalent malignant tumors in the genitourinary system, is characterized by distant metastasis and the development of castration-resistant prostate cancer (CRPC), which are major determinants of poor prognosis. Current treatment approaches for PCa primarily involve surgery and endocrine therapy, but effective strategies for managing distant metastasis and CRPC remain limited. Methods: We utilized qPCR, WB, and other methods to measure the expression levels of respective proteins, concurrently assessing lipid metabolism to validate the role of FATP5 in lipid metabolism. Additionally, we employed bioinformatics analysis and WB techniques to explore the corresponding mechanisms. Results: In this study, we conducted an analysis of clinical samples and public databases to identify differential expression of FATP5 and further investigated its association with clinical outcomes. Through biochemical and functional experiments, we elucidated the potential underlying mechanisms by which FATP5 facilitates the progression of PCa. Our findings demonstrate that specific upregulation of FATP5 significantly enhances proliferation, migration, and invasion of PCa cell lines, while also modulating lipid metabolism in PCa. Mechanistically, the expression of FATP5 is closely associated with the Hippo signaling pathway, as it promotes the nuclear accumulation of YAP1 by inhibiting AMPK and facilitating the activation of ß-catenin and RHOA. Furthermore, the transcription of FATP5 is mediated by TEAD4, and this transcriptional activation requires the involvement of YAP1. Discussion: FATP5 is highly expressed in prostate cancer and can enhance the biological activity and lipid metabolism of prostate cancer. We have also elucidated that FATP5 is regulated by the Hippo signaling pathway. This provides a new potential target for the treatment of prostate cancer.

3.
Exp Hematol Oncol ; 13(1): 90, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198883

RESUMEN

BACKGROUND: Peritoneal metastases frequently occur in epithelial ovarian cancer (EOC), resulting in poor prognosis and survival rates. Tumor-associated-macrophages (TAMs) massively infiltrate into ascites spheroids and are multi-polarized as protumoral M2-like phenotype, orchestrating the immunosuppression and promoting tumor progression. However, the impact of omental conditioned medium/ascites (OCM/AS) on TAM polarization and its function in tumor progression remains elusive. METHODS: The distribution and polarization of TAMs in primary and omental metastatic EOC patients' tumors and ascites were examined by m-IHC, FACS analysis, and immunofluorescence. QPCR, immunofluorescence, FACS analysis, lipid staining assay, ROS assay, and Seahorse real-time cell metabolic assay characterized TAMs as being polarized in the ascites microenvironment. The oncogenic role of TAMs in tumor cells was demonstrated by co-cultured migration/invasion, proliferation, and spheroid formation assays. Mechanistic studies of the regulations of TAM polarization were performed by using RNA-Seq, GTPase pull-down, G-LISA activation assays, and other biochemical assays. A Yap1 macrophages (MФs) conditional knockout (cKO) mouse model demonstrated the roles of YAP1 in TAM polarization status and its pro-metastatic function. Finally, the anti-metastatic potential of targeting TAMs through restoring YAP1 by pharmacological agonist XMU MP1 was demonstrated in vitro and in vivo. RESULTS: Abundant polyunsaturated fatty acids (PUFAs) in OCM/AS suppressed RhoA-GTPase activities, which, in turn, downregulated nuclear YAP1 in MФs, leading to increased protumoral TAM polarization accompanied by elevated OXPHOS metabolism. Abolishment of YAP1 in MФs further confirmed that a higher M2/M1 ratio of TAM polarization could alleviate CD8+ T cell infiltration and cytotoxicity in vivo. Consistently, the loss of YAP1 has been observed in EOC metastatic tissues, suggesting its clinical relevance. On the contrary, restoration of YAP1 expression by pharmaceutical inhibition of MST1/2 induced conversion of M2-to-M1-like polarized MФs, elevating the infiltration of CD8+ T cells and attenuating tumor growth. CONCLUSION: This study revealed that PUFAs-enriched OCM/AS of EOC promotes M2-like TAM polarization through RhoA-YAP1 inhibition, where YAP1 downregulation is required for accelerating protumoral M2-like TAM polarization, thereby causing immunosuppression and enhancing tumor progression. Conversion of M2-to-M1-like polarized MФs through Yap1 activation inhibits tumor progression and contributes to developing potential TAMs-targeted immunotherapies in combating EOC peritoneal metastases.

4.
Drug Resist Updat ; 77: 101136, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39154499

RESUMEN

AIMS: As our comprehension of the intricate relationship between cellular senescence and tumor biology continues to evolve, the therapeutic potential of cellular senescence is gaining increasing recognition. Here, we identify chromobox 4 (CBX4), a Small Ubiquitin-related Modifier (SUMO) E3 ligase, as an antagonist of cellular senescence and elucidate a novel mechanism by which CBX4 promotes drug resistance and malignant progression of gastric cancer (GC). METHODS: In vitro and in vivo models were conducted to investigate the manifestation and impact of CBX4 on cellular senescence and chemoresistance. High-throughput sequencing, chromatin immunoprecipitation, and co-immunoprecipitation techniques were utilized to identify the upstream regulators and downstream effectors associated with CBX4, revealing its intricate regulatory network. RESULTS: CBX4 diminishes the sensitivity of GC cells to cellular senescence, facilitating chemoresistance and GC development by deactivating the senescence-related Hippo pathway. Mechanistically, low-dose cisplatin transcriptionally downregulates CBX4 through CEBPB. In addition, CBX4 preserves the stability and cytoplasm-nuclear transport of YAP1, the key player of Hippo pathway, by inducing SUMO1 modification at K97 and K280, which competitively inhibits YAP1-S127 phosphorylation. CONCLUSIONS: Our study highlights the anti-senescence role of CBX4 and suggests that CBX4 inhibition in combination with low-dose cisplatin has the potential to overcome chemoresistance and effectively restrict GC progression.

5.
Cancer Sci ; 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155534

RESUMEN

The activation of yes-associated protein 1 (YAP1) and transcriptional co-activator with PDZ-binding motif (TAZ) has been implicated in both regeneration and tumorigenesis, thus representing a double-edged sword in tissue homeostasis. However, how the activity of YAP1/TAZ is regulated or what leads to its dysregulation in these processes remains unknown. To explore the upstream stimuli modulating the cellular activity of YAP1/TAZ, we developed a highly sensitive YAP1/TAZ/TEAD-responsive DNA element (YRE) and incorporated it into a lentivirus-based reporter cell system to allow for sensitive and specific monitoring of the endogenous activity of YAP1/TAZ in terms of luciferase activity in vitro and Venus fluorescence in vivo. Furthermore, by replacing YRE with TCF- and NF-κB-binding DNA elements, we demonstrated the applicability of this reporter system to other pathways such as Wnt/ß-catenin/TCF- and IL-1ß/NF-κB-mediated signaling, respectively. The practicality of this system was evaluated by performing cell-based reporter screening of a chemical compound library consisting of 364 known inhibitors, using reporter-introduced cells capable of quantifying YAP1/TAZ- and ß-catenin-mediated transcription activities, which led to the identification of multiple inhibitors, including previously known as well as novel modulators of these signaling pathways. We further confirmed that novel YAP1/TAZ modulators, such as potassium ionophores, Janus kinase inhibitors, platelet-derived growth factor receptor inhibitors, and genotoxic stress inducers, alter the protein level or phosphorylation of endogenous YAP1/TAZ and the expression of their target genes. Thus, this reporter system provides a powerful tool to monitor endogenous signaling activities of interest (even in living cells) and search for modulators in various cellular contexts.

6.
J Biol Chem ; : 107669, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39128717

RESUMEN

Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock-out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous mice (HE) and matched wild-type (WT) littermates were administrated with Cr(VI) at 0, 5, 20, 80 mg/L for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. Integrated data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated TAZ protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified Urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.

7.
Hum Cell ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190266

RESUMEN

As periodontal progenitor cells, human dental follicle stem cells (hDFCs) play an important role in regenerative medicine research. Mechanical stimuli exert different regulatory effects on various functions of stem cells. Mechanosensitive ion channels can perceive and transmit mechanical signals. Piezo1 is a novel mechanosensitive cation channel dominated by Ca2+ permeation. The yes-associated protein 1 (YAP1) and mitogen-activated protein kinase (MAPK) pathways can respond to mechanical stimuli and play important roles in cell growth, differentiation, apoptosis, and cell cycle regulation. In this study, we demonstrated that Piezo1 was able to transduce cyclic tension stress (CTS) and promote the osteogenic differentiation of hDFCs by applying CTS of 2000 µstrain to hDFCs. Further investigation of this mechanism revealed that CTS activated Piezo1 in hDFCs and resulted in increased levels of intracellular Ca2+, YAP1 nuclear translocation, and phosphorylated protein expression levels of extracellular signalling-associated kinase 1/2 (ERK 1/2) and Jun amino-terminal kinase 1/2/3 (JNK 1/3) of the MAPK pathway family. However, when Piezo1 was knocked down in the hDFCs, all these increases disappeared. We conclude that CTS activates Piezo1 expression and promotes its osteogenesis via Ca2+/YAP1/MAPK in hDFCs. Appropriate mechanical stimulation promotes the osteogenic differentiation of hDFCs via Piezo1. Targeting Piezo1 may be an effective strategy to regulate the osteogenic differentiation of hDFCs, contributing to MSC-based therapies in the field of bone tissue engineering.

8.
Exp Cell Res ; 442(1): 114218, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39178981

RESUMEN

Bladder fibrosis is the final common pathway of neurogenic bladder (NB), and its underlying mechanisms are not fully understood. The current study aims to evaluate the involvement of Piezo1, a mechanosensitive channel, in bladder fibrosis. A full-thickness bladder specimen was taken during ileocystoplasty or ureteral reimplantation from the surgical cut's edge. By chopping off the bilateral lumbar 6 (L6) and sacral 1 (S1) spinal nerves, NB rat models were produced. Utilizing both pharmacological inhibition and Piezo1 deletion, the function of Piezo1 in the TGF-ß1-induced fibrosis model of SV-HUC-1 cells was delineated. RNA-seq, immunofluorescence, immunohistochemistry (IHC), and Western blotting were used to evaluate the degrees of fibrosis and biochemical signaling pathways. Piezo1 protein expression was noticeably elevated in the human NB bladder. The abundance of Piezo1 protein in bladder of NB rats was significantly increased. RNA-seq analysis revealed that the ECM-receptor interaction signaling pathway and collagen-containing ECM were increased in spinal cord injury (SCI)-induced bladder fibrosis. Moreover, the bladder of the NB rat model showed activation of YAP1 and TGF-ß1/Smad. In SV-HUC-1 cells, siRNA suppression of Piezo1 led to profibrotic responses and activation of the TGF-ß1/Smad pathway. However, Yoda1, a Piezo1-specific agonist, significantly reduced these effects. TGF-ß1 increased Piezo1 activation and profibrotic responses in SV-HUC-1 cells. In the TGF-ß1-induced fibrosis model of SV-HUC-1 cells, the TGF-ß1/Smad pathway was activated, whereas the Hippo/YAP1 signal pathway was blocked. Inhibition of Piezo1 further prevented this process. Piezo1 is involved in the progression of NB bladder fibrosis and profibrotic alterations in SV-HUC-1 cells, likely through regulating the TGF-ß1/Smad and Hippo/YAP1 pathways.

9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(4): 1071-1077, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39192400

RESUMEN

OBJECTIVE: To observe the inhibitory effect of dobutamine on proliferation of FLT3-ITD mutated acute myeloid leukemia (AML) cells and explore the feasibility of dobutamine as a monotherapy or in combination with quizartinib for the treatment of this type of AML. METHODS: FLT3-ITD mutant cell lines MOLM13 and MV4-11 were cultured in vitro and divided into control group, dobutamine treatment group, quizartinib treatment group, and dobutamine combined with quizartinib treatment group. Cell viability, ROS levels, and apoptosis rate were detected by CCK-8, Flow cytometry, respectively, as well as the expression of YAP1 protein by Western blot. RESULTS: Both dobutamine and quizartinib inhibited the proliferation of FLT3-ITD mutant AML cell lines. Compared with the control group, the dobutamine group exhibited a significant increase in ROS levels (P < 0.01), an increase in apoptosis rates (P < 0.05), and a decrease in YAP1 protein expression (P < 0.01), and decreased YAP1 expression (P < 0.05). CONCLUSION: Dobutamine as a monotherapy can inhibit theproliferation of FLT3-ITD mutated AML cells, inducing apoptosis. Additionally, the combination of quizartinib enhances the targeted inhibitory effect on FLT3-ITD mutated AML. The mechanism may involve the inhibition of YAP1 protein expression in AML cells of this type, leading to an increase in ROS levels and exerting its anti-tumor effects.


Asunto(s)
Apoptosis , Benzotiazoles , Proliferación Celular , Leucemia Mieloide Aguda , Compuestos de Fenilurea , Tirosina Quinasa 3 Similar a fms , Leucemia Mieloide Aguda/tratamiento farmacológico , Humanos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Compuestos de Fenilurea/farmacología , Línea Celular Tumoral , Benzotiazoles/farmacología , Mutación , Factores de Transcripción , Supervivencia Celular/efectos de los fármacos , Proteínas Señalizadoras YAP , Proteínas Adaptadoras Transductoras de Señales , Especies Reactivas de Oxígeno/metabolismo
10.
Cell Oncol (Dordr) ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115605

RESUMEN

PURPOSE: Osteosarcoma, a highly malignant primary bone tumor primarily affecting adolescents, frequently develops resistance to initial chemotherapy, leading to metastasis and limited treatment options. Our study aims to uncover novel therapeutic targets for metastatic and recurrent osteosarcoma. METHODS: In this study, we proved the potential of modulating the YAP1-regulated glutamine metabolic pathway to augment the response of OS to DFMO. We initially employed single-cell transcriptomic data to gauge the activation level of polyamine metabolism in MTAP-deleted OS patients. This was further substantiated by transcriptome sequencing data from recurrent and non-recurrent patient tissues, confirming the activation of polyamine metabolism in progressive OS. Through high-throughput drug screening, we pinpointed CIL56, a YAP1 inhibitor, as a promising candidate for a combined therapeutic strategy with DFMO. In vivo, we utilized PDX and CDX models to validate the therapeutic efficacy of this drug combination. In vitro, we conducted western blot analysis, qPCR analysis, immunofluorescence staining, and PuMA experiments to monitor alterations in molecular expression, distribution, and tumor metastasis capability. We employed CCK-8 and colony formation assays to assess the proliferative capacity of cells in the experimental group. We used flow cytometry and reactive oxygen probes to observe changes in ROS and glutamine metabolism within the cells. Finally, we applied RNA-seq in tandem with metabolomics to identify metabolic alterations in OS cells treated with a DFMO and CIL56 combination. This enabled us to intervene and validate the role of the YAP1-mediated glutamine metabolic pathway in DFMO resistance. RESULTS: Through single-cell RNA-seq data analysis, we pinpointed a subset of late-stage OS cells with significantly upregulated polyamine metabolism. This upregulation was further substantiated by transcriptomic profiling of recurrent and non-recurrent OS tissues. High-throughput drug screening revealed a promising combination strategy involving DFMO and CIL56. DFMO treatment curbs the phosphorylation of YAP1 protein in OS cells, promoting nuclear entry and initiating the YAP1-mediated glutamine metabolic pathway. This reduces intracellular ROS levels, countering DFMO's anticancer effect. The therapeutic efficacy of DFMO can be amplified both in vivo and in vitro by combining it with the YAP1 inhibitor CIL56 or the glutaminase inhibitor CB-839. This underscores the significant potential of targeting the YAP1-mediated glutamine metabolic pathway to enhance efficacy of DFMO. CONCLUSION: Our findings elucidate YAP1-mediated glutamine metabolism as a crucial bypass mechanism against DFMO, following the inhibition of polyamine metabolism. Our study provides valuable insights into the potential role of DFMO in an "One-two Punch" therapy of metastatic and recurrent osteosarcoma.

11.
Int J Oncol ; 65(3)2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39092548

RESUMEN

The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes­associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1­targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Carcinoma Hepatocelular , Vía de Señalización Hippo , Neoplasias Hepáticas , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Factores de Transcripción , Proteínas Señalizadoras YAP , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Factores de Transcripción/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Microambiente Tumoral/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Animales
12.
Oncol Lett ; 28(3): 443, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39091581

RESUMEN

Glycolytic enzyme enolase 2 (ENO2) is dysregulated in various cancer types. Nevertheless, the role and underlying mechanism of ENO2 in clear cell renal cell carcinoma (ccRCC) remain unclear. Therefore, the current study investigated the effect and mechanism of ENO2 in ccRCC. ENO2 expression in a ccRCC cell line was assessed using reverse transcription-quantitative PCR and western blotting. Analysis of glycolysis was performed by estimating the extracellular acidification rate, lactic acid concentration, glucose uptake and the expression of glucose transporter 1, pyruvate kinase muscle isozyme M2 and hexokinase 2. Moreover, ferroptosis was assessed by detecting the level of total iron, lipid peroxide, reactive oxygen species and the expression of ferroptosis-related protein. In addition, mitochondrial function was assessed using JC-1 staining and detection kits. The results indicated that ENO2 is expressed at high levels in ccRCC cell lines, and interference with ENO2 expression inhibits glycolysis, promotes ferroptosis and affects mitochondrial function in ccRCC cells. Further investigation demonstrated that interference with ENO2 expression affected ferroptosis levels in ccRCC cells by inhibiting the glycolysis process. Mechanistically, the present results indicated that ENO2 may affect ferroptosis, glycolysis and mitochondrial functions by regulating Hippo-yes-associated protein 1 (YAP1) signaling in ccRCC cells. In conclusion, the present study showed that ENO2 affects ferroptosis, glycolysis and mitochondrial functions in ccRCC cells by regulating Hippo-YAP1 signaling, hence demonstrating its potential as a therapeutic target in ccRCC.

13.
FASEB J ; 38(15): e23850, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39091212

RESUMEN

Atherosclerosis is a leading cause of cardiovascular diseases (CVDs), often resulting in major adverse cardiovascular events (MACEs), such as myocardial infarction and stroke due to the rupture or erosion of vulnerable plaques. Ferroptosis, an iron-dependent form of cell death, has been implicated in the development of atherosclerosis. Despite its involvement in CVDs, the specific role of ferroptosis in atherosclerotic plaque stability remains unclear. In this study, we confirmed the presence of ferroptosis in unstable atherosclerotic plaques and demonstrated that the ferroptosis inhibitor ferrostatin-1 (Fer-1) stabilizes atherosclerotic plaques in apolipoprotein E knockout (Apoe-/-) mice. Using bioinformatic analysis combining RNA sequencing (RNA-seq) with single-cell RNA sequencing (scRNA-seq), we identified Yes-associated protein 1 (YAP1) as a potential key regulator of ferroptosis in vascular smooth muscle cells (VSMCs) of unstable plaques. In vitro, we found that YAP1 protects against oxidized low-density lipoprotein (oxLDL)-induced ferroptosis in VSMCs. Mechanistically, YAP1 exerts its anti-ferroptosis effects by regulating the expression of glutaminase 1 (GLS1) to promote the synthesis of glutamate (Glu) and glutathione (GSH). These findings establish a novel mechanism where the inhibition of ferroptosis promotes the stabilization of atherosclerotic plaques through the YAP1/GLS1 axis, attenuating VSMC ferroptosis. Thus, targeting the YAP1/GLS1 axis to suppress VSMC ferroptosis may represent a novel strategy for preventing and treating unstable atherosclerotic plaques.


Asunto(s)
Ferroptosis , Músculo Liso Vascular , Placa Aterosclerótica , Proteínas Señalizadoras YAP , Animales , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Proteínas Señalizadoras YAP/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Ratones Noqueados , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Fenilendiaminas/farmacología , Ciclohexilaminas/farmacología , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética
14.
Virchows Arch ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096416

RESUMEN

Metaplastic thymoma (MT), a rare subtype of thymic epithelial tumors (TETs), harbors YAP1::MAML2 fusions. Poroma, a skin tumor, also carries these fusions and exhibits a unique staining pattern for YAP1 immunohistochemistry (IHC), namely, a YAP1 N-terminus (YAP1[N])-positive but YAP1 C-terminus (YAP1[C])-negative pattern. In this context, MT was recently reported to lack YAP1(C) expression exclusively among TET subtypes. However, a lack of information about YAP1(N) expression in that study and another report that wild-type YAP1 expression was diminished in type B3 thymoma and thymic carcinoma warrants further studies for YAP1 expression in TETs. Thus, we immunohistochemically examined YAP1(N) and YAP1(C) staining patterns in our TET samples, including 14 cases of MT. In addition, 11 of the 14 MT cases were genetically analyzed with the formalin-fixed paraffin-embedded tissues if they harbored YAP1::MAML2 fusions. MT consistently exhibited YAP1(N)-positive and YAP(C)-negative staining, whereas type B3 thymoma and thymic carcinoma showed relatively heterogeneous staining patterns for YAP1(N) and YAP1(C) and were sometimes negative for both antibodies. Furthermore, a lower expression of YAP1 was found in type B3 compared to B2 thymomas. Among genetically analyzed 11 MT cases, 6 cases showed YAP1::MAML2 fusions, whereas the analysis failed in 5 very old cases due to poor RNA quality. These results indicate that IHC of both YAP1(N) and YAP1(C) is recommended to obtain staining patterns almost unique to MT. The biological significance of YAP1 in high-grade TETs warrants further investigation.

15.
Bone ; 187: 117199, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38992453

RESUMEN

Cementum is a vital component of periodontium, yet its regeneration remains a challenge. Pentraxin 3 (PTX3) is a multifunctional glycoprotein involved in extracellular matrix remodeling and bone metabolism regulation. However, the role of PTX3 in cementum formation and cementoblast differentiation has not been elucidated. In this study, we initially observed an increase in PTX3 expression during cementum formation and cementoblast differentiation. Then, overexpression of PTX3 significantly enhanced the differentiation ability of cementoblasts. While conversely, PTX3 knockdown exerted an inhibitory effect. Moreover, in Ptx3-deficient mice, we found that cementum formation was hampered. Furthermore, we confirmed the presence of PTX3 within the hyaluronan (HA) matrix, thereby activating the ITGB1/FAK/YAP1 signaling pathway. Notably, inhibiting any component of this signaling pathway partially reduced the ability of PTX3 to promote cementoblast differentiation. In conclusion, our study indicated that PTX3 promotes cementum formation and cementoblast differentiation, which is partially dependent on the HA/ITGB1/FAK/YAP1 signaling pathway. This research will contribute to our understanding of cementum regeneration after destruction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Cemento Dental , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Cemento Dental/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ratones , Proteína C-Reactiva/metabolismo , Integrina beta1/metabolismo , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/genética , Ratones Endogámicos C57BL , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Cementogénesis
16.
J Biol Chem ; 300(8): 107512, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960037

RESUMEN

The Hippo-YAP signaling pathway plays a central role in many biological processes such as regulating cell fate, organ size, and tissue growth, and its key components are spatiotemporally expressed and posttranslationally modified during these processes. Neddylation is a posttranslational modification that involves the covalent attachment of NEDD8 to target proteins by NEDD8-specific E1-E2-E3 enzymes. Whether neddylation is involved in Hippo-YAP signaling remains poorly understood. Here, we provide evidence supporting the critical role of NEDD8 in facilitating the Hippo-YAP signaling pathway by mediating neddylation of the transcriptional coactivator yes-associated protein 1 (YAP1). Overexpression of NEDD8 induces YAP1 neddylation and enhances YAP1 transactivity, but inhibition of neddylation suppresses YAP1 transactivity and attenuates YAP1 nuclear accumulation. Furthermore, inhibition of YAP1 signaling promotes MLN4924-induced ovarian granulosa cells apoptosis and disruption of nedd8 in zebrafish results in downregulation of yap1-activated genes and upregulation of yap1-repressed genes. Further assays show that the xiap ligase promotes nedd8 conjugates to yap1 and that yap1 neddylation. In addition, we identify lysine 159 as a major neddylation site on YAP1. These findings reveal a novel mechanism for neddylation in the regulation of Hippo-YAP signaling.

17.
Biochim Biophys Acta Gen Subj ; 1868(9): 130666, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38955313

RESUMEN

BACKGROUND: Diabetic stress acts on the cardiac tissue to induce cardiac hypertrophy and fibrosis. Diabetes induced activated renin angiotensin system (RAS) has been reported to play a critical role in mediating cardiac hypertrophy and fibrosis. Angiotensin converting enzyme (ACE) in producing Angiotensin-II, promotes cardiomyocyte hypertrophy and fibrotic damage. ACE2, a recently discovered molecule structurally homologous to ACE, has been reported to be beneficial in reducing the effect of RAS driven pathologies. METHODS: In vivo diabetic mouse model was used and co-labelling immunostaining assay have been performed to analyse the fibrotic remodeling and involvement of associated target signaling molecules in mouse heart tissue. For in vitro analyses, qPCR and western blot experiments were performed in different groups for RNA and protein expression analyses. RESULTS: Fibrosis markers were observed to be upregulated in the diabetic mouse heart tissue as well as in high glucose treated fibroblast and cardiomyocyte cells. Hyperglycemia induced overexpression of YAP1 leads to increased expression of ß-catenin (CTNNB1) and ACE with downregulated ACE2 expression. The differential expression of ACE/ACE2 promotes TGFB1-SMAD2/3 pathway in the hyperglycemic cardiomyocyte and fibroblast resulting in increased cardiac fibrotic remodeling. CONCLUSION: In the following study, we have reported YAP1 modulates the RAS signaling pathway by inducing ACE and inhibiting ACE2 activity to augment cardiomyocyte hypertrophy and fibrosis in hyperglycemic condition. Furthermore, we have shown that hyperglycemia induced dysregulation of ACE-ACE2 activity by YAP1 promotes cardiac fibrosis through ß-catenin/TGFB1 dependent pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Enzima Convertidora de Angiotensina 2 , Fibrosis , Hiperglucemia , Miocitos Cardíacos , Peptidil-Dipeptidasa A , Proteínas Señalizadoras YAP , Animales , Fibrosis/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Ratones , Proteínas Señalizadoras YAP/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Hiperglucemia/metabolismo , Hiperglucemia/patología , Masculino , Factor de Crecimiento Transformador beta1/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Transducción de Señal , Miocardio/metabolismo , Miocardio/patología , Proteína Smad2/metabolismo , Ratones Endogámicos C57BL , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteína smad3/metabolismo , Sistema Renina-Angiotensina , beta Catenina/metabolismo
18.
Int Immunopharmacol ; 138: 112614, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38972212

RESUMEN

Intestinal stem cells (ISCs) play a crucial role in maintaining the equilibrium and regenerative potential of intestinal tissue, thereby ensuring tissue homeostasis and promoting effective tissue regeneration following injury. It has been proven that targeting Toll-like receptors (TLRs) can help prevent radiation-induced damage to the intestine. In this study, we established an intestinal injury model using IR and evaluated the effects of CL429 on ISC regeneration both in vivo and in vitro. Following radiation exposure, mice treated with CL429 showed a significant increase in survival rates (100% survival in the treated group compared to 54.54% in the control group). CL429 also showed remarkable efficacy in inhibiting radiation-induced intestinal damage and promoting ISC proliferation and regeneration. In addition, CL429 protected intestinal organoids against IR-induced injury. Mechanistically, RNA sequencing and Western blot analysis revealed the activation of the Wnt and Hippo signaling pathways by CL429. Specifically, we observed a significant upregulation of YAP1, a key transcription factor in the Hippo pathway, upon CL429 stimulation. Furthermore, knockdown of YAP1 significantly attenuated the radioprotective effect of CL429 on intestinal organoids, indicating that CL429-mediated intestinal radioprotection is dependent on YAP1. In addition, we investigated the relationship between TLR2 and YAP1 using TLR2 knockout mice, and our results showed that TLR2 knockout abolished the activation of CL429 on YAP1. Taken together, our study provides evidence supporting the role of CL429 in promoting ISC regeneration through activation of TLR2-YAP1. And further investigation of the interaction between TLRs and other signaling pathways may enhance our understanding of ISC regeneration after injury.


Asunto(s)
Intestinos , Células Madre , Receptor Toll-Like 2 , Proteínas Señalizadoras YAP , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proliferación Celular/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Intestinos/citología , Ratones Endogámicos C57BL , Organoides/metabolismo , Regeneración , Transducción de Señal , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Regulación hacia Arriba
19.
Heliyon ; 10(13): e33370, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027511

RESUMEN

Background: Dihydroartemisinin (DHA), a derivative of Artemisia annua, has been shown to possess anti-inflammatory properties. Besides, Yes-associated protein 1 (YAP1) plays a crucial role in maintaining liver homeostasis. Methods: This study used Yap1 Flox/Flox, Albumin-Cre mice with hepatocyte-specific Yap1 knockout (referred to as Yap1 LKO) and their control mice (Yap1 Flox/Flox, referred to as Yap1 Flox). The effect of Yap1 on lipid metabolism homeostasis was investigated through non-targeted metabolomic analysis of mouse liver. Subsequently, DHA was administered to Yap1 LKO mice to assess its potential as a treatment. Liver pathology was evaluated via H&E staining, and the levels of AST, ALT, and TG were quantified using biochemical assays. The contents of arachidonic acid (AA), prostaglandin E1 (PGE1), and leukotrienes (LT) in the liver were measured using ELISA, while the protein expressions of PLIN2, 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2) were analyzed through IHC staining. Results: Hepatocyte-specific Yap1 knockout activated the AA metabolic pathway, resulting in increased elevated levels of AA, PGE1, and LT levels, along with inflammatory cytokine infiltration. DHA mitigated the elevation of metabolites such as PGE1 and LT caused by the AA metabolic pathway activation by down-regulating the levels of COX-2 and 5-LOX in the liver of Yap1 LKO mice. Moreover, it alleviated the accumulation of lipid vacuoles and reduced triglyceride (TG) and perilipin-2 (PLIN2) levels in the liver of Yap1 LKO mice. Conclusions: Excessively low YAP1 expression induces liver inflammation and disturbances in lipid metabolism, whereas DHA modulated AA metabolism and mitigated liver inflammation by inhibiting the activation of 5-LOX and COX-2.

20.
Heliyon ; 10(13): e33454, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39027514

RESUMEN

Small cell lung cancer (SCLC) is a fatal tumor type that is prone to drug resistance. In our previous study, we showed that human rhomboid-5 homolog-1 (RHBDF1) was differentially expressed in 5 intrinsic cisplatin-resistant SCLC tissues compared with 5 intrinsic cisplatin-sensitive SCLC tissues by RNA sequencing, which intrigued us. We performed gain- and loss-of-function experiments to investigate RHBDF1 function, bioinformatics analysis, qRT-PCR, western blotting, and immunoprecipitation to elucidate the molecular mechanisms as well as detect RHBDF1 expression in SCLC by immunohistochemistry. We found that RHBDF1 knockdown promoted cell proliferation and cisplatin chemoresistance and inhibited apoptosis in vitro and in vivo. These effects could be reversed by overexpressing RHBDF1 in vitro. Mechanistically, RHBDF1 interacted with YAP1, which increased the phosphorylation of Smad2 and transported Smad2 to the nucleus. Among clinical specimens, the RHBDF1 was a low expression in SCLC and was associated with clinicopathological features and prognosis. We are the first to reveal that RHBDF1 inhibited cell proliferation and promoted cisplatin sensitivity in SCLC and elucidate a novel mechanism through RHBDF1/YAP1/Smad2 signaling pathway which played a crucial role in cisplatin chemosensitivity. Targeting this pathway can be a promising therapeutic strategy for chemotherapy resistance in SCLC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA