Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.998
Filtrar
1.
Ther Adv Infect Dis ; 11: 20499361241263733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070702

RESUMEN

Invasive fungal infections (IFIs) are associated with high mortality rates and mostly affect patients with compromised immunity. The incidence of IFIs is increasing worldwide with the expanding population of susceptible patients. Candida and other yeast infections represent a major component of IFIs. Rare Candida/yeast infections have also increased in recent years and pose considerable diagnostic and management challenges as they are not easily recognized by routine phenotypic characteristic-based diagnostic methods and/or by the automated yeast identification systems. Rare Candida/yeasts also exhibit reduced susceptibility to antifungal drugs making proper management of invasive infections challenging. Here, we review the diagnosis and management of 60 cases of rare Candida/yeast IFIs described so far in Kuwait, an Arabian Gulf country in the Middle East. Interestingly, majority (34 of 60, 56.7%) of these rare Candida/yeast invasive infections occurred among neonates or premature, very-low-birth-weight neonates, usually following prior bacteremia episodes. The clinical details, treatment given, and outcome were available for 28 of 34 neonates. The crude mortality rate among these neonates was 32.2% as 19 of 28 (67.8%) survived the infection and were discharged in healthy condition, likely due to accurate diagnosis and frequent use of combination therapy. Physicians treating patients with extended stay under intensive care, on mechanical ventilation, receiving broad spectrum antibiotics and with gastrointestinal surgery/complications should proactively investigate IFIs. Timely diagnosis and early antifungal treatment are essential to decrease mortality. Understanding the epidemiology and spectrum of rare Candida/yeast invasive infections in different geographical regions, their susceptibility profiles and management will help to devise novel diagnostic and treatment approaches and formulate guidelines for improved patient outcome.

2.
Transl Anim Sci ; 8: txae097, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070985

RESUMEN

This study aimed to assess the effect of Saccharomyces cerevisiae boulardii CNCM I-1079 supplementation during the initial feeding period on the performance of Nellore bulls in a feedlot system. One hundred ninety-eight Nellore bulls were used in a completely randomized block design, with blocking based on weight within each treatment group: light (331.4 kg; 4 pens), medium (349.7 kg; 4 pens), and heavy (362.5 kg; 3 pens). The treatments included CON-a basal diet, and SCB-basal diet plus a probiotic (Saccharomyces cerevisiae boulardii CNCM I-1079; 1.0 × 1010 CFU/head/d). Experimental diets were administered for the first 42 d (21 d in the step-up phase and 21 d in the finishing diet -870 g concentrate/kg dry matter [DM]). Subsequently, both treatment groups were transitioned to the same basal diet for an additional 76 d, completing 118 d on feed. Linear regression analysis was conducted for dry matter intake (DMI) data. During the initial 42 d, DMI tended to be higher for SCB (P = 0.09); also bulls fed SCB reached the plateau of the curve at 9.17 kg DMI/d earlier (39 d, R2 = 0.97) than those fed CON (43 d; R2 = 0.96) diets. For the first 42 d, the SCB treatment exhibited higher final weight (393.0 vs. 401.4 kg, P = 0.02), total gain (49.3 vs. 53.5 kg, P = 0.02), daily weight gain (1.124 vs. 1.274 kg, P = 0.02), and G:F (0.174 vs. 0.188, P = 0.04). Over the entire 118-d period, SCB-fed bulls had greater final body weight (509.5 vs. 518.0 kg, P = 0.02), total body weight gain (163.7 vs. 170.3 kg, P = 0.01), and average daily gain (1.366 vs. 1.420 kg, P = 0.01). The feed efficiency of SCB-supplemented bulls was 8.05% higher than CON (P = 0.04), and the final carcass weight was 1.69% greater for animals fed SCB (283.8 vs. 288.6 kg, P = 0.04). Total carcass weight gain (110.9 vs. 114.7 kg) and daily carcass weight gain (0.924 vs. 0.956 kg) tended (P = 0.06) to increase by 3.46% in SCB-fed animals compared with those fed CON. Gain yield, carcass conversion, and carcass yield did not differ between treatments. There were no significant differences in the apparent digestibility of DM, crude protein, neutral detergent fiber, and ether extract between treatments. However, starch digestibility (92.7% vs. 88%) was greater for the control treatment (P < 0.001). Including live Saccharomyces cerevisiae boulardii yeast as a probiotic supplement during the initial 42 d in the feedlot enhanced early-stage growth performance in Nellore bulls. Notably, this supplementation carried over carcass gain over the entire feedlot period.

3.
Synth Syst Biotechnol ; 9(4): 820-827, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39072146

RESUMEN

In synthetic biology, microbial chassis including yeast Saccharomyces cerevisiae are iteratively engineered with increasing complexity and scale. Wet-lab genetic engineering tools are developed and optimised to facilitate strain construction but are often incompatible with each other due to shared regulatory elements, such as the galactose-inducible (GAL) promoter in S. cerevisiae. Here, we prototyped the cyanamide-induced I- SceI expression, which triggered double-strand DNA breaks (DSBs) for selectable marker removal. We further combined cyanamide-induced I- SceI-mediated DSB and maltose-induced MazF-mediated negative selection for plasmid-free in situ promoter substitution, which simplified the molecular cloning procedure for promoter characterisation. We then characterised three tetracycline-inducible promoters showing differential strength, a non-leaky ß-estradiol-inducible promoter, cyanamide-inducible DDI2 promoter, bidirectional MAL32/MAL31 promoters, and five pairs of bidirectional GAL1/GAL10 promoters. Overall, alternative regulatory controls for genome engineering tools can be developed to facilitate genomic engineering for synthetic biology and metabolic engineering applications.

4.
Adv Exp Med Biol ; 1449: 175-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39060738

RESUMEN

Clostridioides difficile is the most common causative agent of antibiotic-associated diarrhea. This spore forming, obligate anaerobic, gram-positive bacillus is becoming responsible for an increasing number of infections worldwide, both in community and in hospital settings, whose severity can vary widely from an asymptomatic infection to a lethal disease. While discontinuation of antimicrobial agents and antibiotic treatment of the infection remain the cornerstone of therapy, more recent fecal microbiota transplantation has also been valid as a therapy. The use of probiotics, especially Saccharomyces boulardii CNCM I-745 have become valid forms of prevention therapy. Although there are studies in adults with microbiota-targeted new generation therapies and Clostridium difficile vaccines, there are no data in the paediatric age group yet.


Asunto(s)
Antibacterianos , Clostridioides difficile , Infecciones por Clostridium , Trasplante de Microbiota Fecal , Probióticos , Humanos , Infecciones por Clostridium/prevención & control , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Clostridioides difficile/patogenicidad , Clostridioides difficile/fisiología , Probióticos/uso terapéutico , Antibacterianos/uso terapéutico , Microbioma Gastrointestinal , Diarrea/prevención & control , Diarrea/microbiología , Diarrea/terapia
5.
Antibiotics (Basel) ; 13(7)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-39061257

RESUMEN

Bovine mastitis, as a significant and prevalent health problem in dairy herds, is primarily attributed to bacterial infections. Yeasts, although considered relatively rare causative agents, have also been associated with mastitis in dairy cattle. Current mastitis treatment predominantly relies on antibiotics, with limited emphasis on antifungal treatment. However, mycotic mastitis is challenging to treat, since these fungi are often resistant to antibiotics and may even utilize them for energy. In the current research, the in vivo antimicrobial activity of the essential oil-based formulation (Phyto-Bomat), as a possible alternative mastitis treatment associated with yeasts, was studied. This study involved a total of 68 animals from two dairy farms with diagnosed mastitis, and three treatment groups were established: conventional antibiotic treatment, Phyto-Bomat treatment, and the combination of both. The findings suggest significant variations in the presence of Candida samples based on the treatment administered, and the most significant difference was noted in cows treated with the combination (Phyto-Bomat and antibiotics). Yet, it is important to note that the results reveal that, regardless of the treatment type, there are statistically significant differences in the presence of Candida samples across the examined time points. These results aim to provide valuable insights into the potential of EOs as an alternative therapy in bovine mastitis, specifically targeting yeasts. Such findings could offer new strategies in the mycotic mastitis control and reducing the occurrence of secondary infections following antibiotic treatment.

6.
Antioxidants (Basel) ; 13(7)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061848

RESUMEN

Yeast culture (YC) plays a significant role in enhancing the performance and health of poultry breeding. This study investigated the impact of different YC supplementation concentrations (basal diet with 1.0 g/kg and 2.0 g/kg of YC, YC1.0, and YC2.0) on egg production performance, egg quality, antioxidant properties, intestinal mucosal structure, and intestinal flora of laying hens. Both YC1.0 and YC2.0 groups significantly enhanced the egg protein height, Haugh unit, and crude protein content of egg yolks compared to the control group (p < 0.05). The supplementation with YC2.0 notably increased the egg production rate, reduced feed-to-egg ratio, and decreased the broken egg rate compared to the control group (p < 0.05). Additionally, YC supplementation enhanced serum total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-PX) activity while reducing malondialdehyde (MDA) content (p < 0.05). Moreover, YC supplementation promoted duodenal villus height and villus ratio in the duodenum and jejunum (p < 0.05). Analysis of cecal microorganisms indicated a decrease in Simpson and Shannon indices with YC supplementation (p < 0.05). YC1.0 reduced the abundance of Proteobacteria, while YC2.0 increased the abundance of Bacteroidales (p < 0.05). Overall, supplementation with YC improved egg production, quality, antioxidant capacity, intestinal morphology, and cecal microbial composition in laying hens, with significant benefits observed at the 2.0 g/kg supplementation level.

7.
Antioxidants (Basel) ; 13(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39061860

RESUMEN

A multi-strain yeast-based paraprobiotic (MsYbP) comprising inactive cells and polysaccharides (ß-glucan, mannan oligosaccharides, and oligosaccharides) derived from Saccharomyces cerevisiae and Cyberlindnera jadinii could ensure optimal growth and health in farmed fish. This study assessed the impact of an MsYbP on the growth, immune responses, antioxidant capacities, and liver health of largemouth bass (Micropterus salmoides) through lab-scale (65 days) and pilot-scale (15 weeks) experiments. Two groups of fish were monitored: one fed a control diet without the MsYbP and another fed 0.08% and 0.1% MsYbP in the lab-scale and pilot-scale studies, respectively (referred to as YANG). In the lab-scale study, four replicates were conducted, with 20 fish per replicate (average initial body weight = 31.0 ± 0.8 g), while the pilot-scale study involved three replicates with approximately 1500 fish per replicate (average initial body weight = 80.0 ± 2.2 g). The results indicate that the MsYbP-fed fish exhibited a significant increase in growth in both studies (p < 0.05). Additionally, the dietary MsYbP led to a noteworthy reduction in the liver function parameters (p < 0.05), such as alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (AKP), and hepatic nuclear density, indicating improved liver health. Furthermore, the dietary MsYbP elevated the antioxidative capacity of the fish by reducing their malondialdehyde levels and increasing their levels and gene expressions related to antioxidative markers, such as total antioxidant ca-pacity (T-AOC), total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px), catalase (CAT), nuclear factor erythroid 2-related factor 2 (nrf2) and kelch-1ike ech-associated protein (keap1) in both studies (p < 0.05). In terms of hepatic immune responses, the lab-scale study showed an increase in inflammation-related gene expressions, such as interleukin-1ß (il-1ß) and transforming growth factor ß1 (tgf-ß1), while the pilot-scale study significantly suppressed the expressions of genes related to inflammatory responses, such as tumor necrosis factor α (tnfα) and interleukin-10 (il-10) (p < 0.05). In summary, our findings underscore the role of dietary multi-strain yeast-based paraprobiotics in enhancing the growth and liver health of largemouth bass, potentially through increased antioxidative capacity and the modulation of immune responses, emphasizing the significance of employing yeast-based paraprobiotics in commercial conditions.

8.
Anal Chim Acta ; 1318: 342905, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39067909

RESUMEN

BACKGROUND: Fatty acids (FAs) are essential cellular components and play important roles in various biological processes. Importantly, FAs produced by microorganisms from renewable sugars are considered sustainable substrates for biodiesels and oleochemicals. Their complex structures and diverse functional roles in biochemical processes necessitate the development of efficient and accurate methods for their quantitative analysis. RESULTS: Here, we developed a novel method for relative quantification of FAs by combining 12-plex isobaric N,N-dimethyl leucine-derivatized ethylenediamine (DiLeuEN) labeling and microchip capillary electrophoresis-mass spectrometry (CE-MS). This method enables simultaneous quantification of 12 samples in a single MS analysis. DiLeuEN labeling introduced tertiary amine center structure into FAs, which makes them compatible with the positive mode separation of commercial microchip CE systems and further improves the sensitivity. The CE separation parameters were optimized, and the quantification accuracy was assessed using FA standards. Microchip CE-MS detection exhibited high sensitivity with a femtomole level detection limit and a total analysis time within 8 min. Finally, the applicability of our method to complex biological samples was demonstrated by analyzing FAs produced by four industrially relevant yeast strains (Saccharomyces cerevisiae, Yarrowia lipolytica YB-432, Yarrowia lipolytica Po1f and Rhodotorula glutinis). The analysis time for each sample is less than 1 min. SIGNIFICANCE: This work addresses the current challenges in the field by introducing a method that combines microchip-based capillary electrophoresis separation with multiplex isobaric labeling. Our method not only offers remarkable sensitivity and rapid analysis speed but also the capability to quantify fatty acids across multiple samples simultaneously, which holds significant potential for extensive application in FA quantitative studies in diverse research areas, promising an enhanced understanding of FA functions and mechanisms.


Asunto(s)
Electroforesis por Microchip , Ácidos Grasos , Espectrometría de Masas , Ácidos Grasos/análisis , Ácidos Grasos/química , Espectrometría de Masas/métodos , Electroforesis por Microchip/métodos , Ensayos Analíticos de Alto Rendimiento , Yarrowia/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Electroforesis Capilar/métodos
9.
Methods Mol Biol ; 2844: 261-275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068346

RESUMEN

Optogenetic tools provide a means for controlling cellular processes that is rapid, noninvasive, and spatially and temporally precise. With the increase in available optogenetic systems, quantitative comparisons of their performances become important to guide experiments. In this chapter, we first discuss how photoreceptors can be repurposed for light-mediated control of transcription. Then, we provide a detailed protocol for characterizing light-regulated transcriptional systems in budding yeast using fluorescence time-lapse microscopy and mathematical modeling, expanding on our recent publication (Gligorovski et al., Nat Commun 14:3810, 2023).


Asunto(s)
Luz , Optogenética , Transcripción Genética , Optogenética/métodos , Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Microscopía Fluorescente/métodos , Imagen de Lapso de Tiempo/métodos
10.
Mycotoxin Res ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073509

RESUMEN

Aflatoxin B1 (AFB1) is among the most potent genotoxic and carcinogenic mycotoxins and is a major source of distress for the growing poultry sector. On the other hand, distillery yeast sludge or distillery sludge (DS) is a byproduct of molasses-based industries. It is often treated as a waste despite containing abundant nutrients particularly protein, basic amino acids, and vitamins along with other macro and micronutrients. This study was designed to investigate the oxidative stress and immunological alterations induced by AFB1 and their amelioration by dietary supplementation with DS. For this purpose, 360 newly hatched broiler chicks were randomly divided into twelve groups (30 birds each) and fed different combinations of AFB1 (100, 200, or 600 µg/kg) and DS (5 or 10 g/kg) for 42 days. The parameters under consideration were body weight, feed conversion ratio (FCR), relative organ weights, histopathological examination of different visceral organs, total antioxidant capacity, antibody response to intravenous injection of sheep red blood cells, in situ lymphoproliferative response to phytohemagglutinin-P, and phagocytic potential through a carbon clearance assay system. The results of this study established that DS supplementation ameliorated AFB1-associated oxidative stress and ameliorated toxicopathological and immunological anomalies in groups given AFB1 at 100 µg/kg and 200 µg/kg; however, little to no relief was observed in birds fed AFB1 at 600 µg/kg. The determination of the actual ratio of the AFB1 to the DS for substantiating the ameliorating effects requires further investigation.

11.
Microorganisms ; 12(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065164

RESUMEN

Microorganisms have significant potential to control fungal contamination in various foods. However, the identification of strains that exhibit robust antifungal activity poses challenges due to highly context-dependent responses. Therefore, to fully exploit the potential of isolates as antifungal agents, it is crucial to systematically evaluate them in a variety of biotic and abiotic contexts. Here, we present an adaptable and scalable method using a robotic platform to study the properties of 1022 isolates obtained from maple sap. We tested the antifungal activity of isolates alone or in pairs on M17 + lactose (LM17), plate count agar (PCA), and sucrose-allantoin (SALN) culture media against Kluyveromyces lactis, Candida boidinii, and Saccharomyces cerevisiae. Microorganisms exhibited less often antifungal activity on SALN and PCA than LM17, suggesting that the latter is a better screening medium. We also analyzed the results of ecological interactions between pairs. Isolates that showed consistent competitive behaviors were more likely to show antifungal activity than expected by chance. However, co-culture rarely improved antifungal activity. In fact, an interaction-mediated suppression of activity was more prevalent in our dataset. These findings highlight the importance of incorporating both biotic and abiotic factors into systematic screening designs for the bioprospection of microorganisms with environmentally robust antifungal activity.

12.
Microorganisms ; 12(7)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065218

RESUMEN

Prior adaptation of Saccharomyces cerevisiae to the fermentation medium ensures its implantation and success in alcoholic fermentations. Fermentation kinetics can be characterized with mathematical models to objectively measure the success of adaptation and growth. The study aims at assessing and comparing two pre-culture procedures using, respectively, one or two adaptation steps, analyzing the impact of different initial glucose concentrations on the fermentation profiles of S. cerevisiae cultures, and assessing the performance of three predictive growth models (Buchanan's, modified Gompertz, and Baranyi and Roberts models) under varied initial glucose concentrations. We concluded that both protocols produced S. cerevisiae pre-cultures with similar viability and biomass increase, which suggests that short protocols may be more cost-effective. Furthermore, the study highlights the need of inoculating a high S. cerevisiae population to minimize the depletion of dissolved oxygen in the medium and to ensure that glucose is predominantly directed toward the ethanol formation at early fermentative steps. This study shows that the relationship between kinetic parameters is model-dependent, which hinders inter-study comparisons and stresses the need for standardized growth models. We advocate for the generalized use of confidence intervals of the kinetic parameters to facilitate objective inter-study comparisons.

13.
Microorganisms ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39065227

RESUMEN

The formation of autophagosomes mediating the sequestration of cytoplasmic materials is the central step of autophagy. Several phosphoinositides, which are signaling molecules on the membrane, are involved in autophagy. However, it is not always clear whether these phosphoinositides act directly at the site of autophagosome formation, or indirectly via the regulation of other steps or pathways. To address this question, we used a set of phosphoinositide probes to systematically examine their potential presence on autophagosomal membranes in yeast (Saccharomyces cerevisiae). We verified the specificity of these probes using mutant cells deficient in the production of the corresponding phosphoinositides. We then examined starved yeast cells co-expressing a phosphoinositide probe together with an autophagosomal membrane marker, 2Katushka2S-Atg8. Our data revealed that PtdIns(4,5)P2 and PtdIns(3,5)P2 were mainly present on the plasma membrane and vacuolar membrane, respectively. We observed only occasional co-localization between the PtdIns(4)P probe and Atg8, some of which may represent the transient passage of a PtdIns(4)P-containing structure near the autophagosomal membrane. In contrast, substantial colocalization of the PtdIns(3)P probe with Atg8 was observed. Taken together, our data indicate that only PtdIns(3)P is present in a substantial amount on the autophagosomal membrane. For other phosphoinositides involved in autophagy, either their presence on the autophagosomal membrane is very transient, or they act on other cellular membranes to regulate autophagy.

14.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065789

RESUMEN

Clozapine is an antipsychotic drug whose accumulation in white cells can sometimes prove toxic; understanding the transporters and alleles responsible is thus highly desirable. We used a strategy in which a yeast (Saccharomyces cerevisiae) CRISPR-Cas9 knock-out library was exposed to cytotoxic concentrations of clozapine to determine those transporters whose absence made it more resistant; we also recognised the structural similarity of the fluorescent dye safranin O (also known as safranin T) to clozapine, allowing it to be used as a surrogate marker. Strains lacking the mitochondrial ABC transporter MDL1 (encoded by YLR188W) showed substantial resistance to clozapine. MDL1 overexpression also conferred extra sensitivity to clozapine and admitted a massive increase in the cellular and mitochondrial uptake of safranin O, as determined using flow cytometry and microscopically. Yeast lacking mitochondria showed no such unusual accumulation. Mitochondrial MDL1 is thus the main means of accumulation of clozapine in S. cerevisiae. The closest human homologue of S. cerevisiae MDL1 is ABCB10.

15.
J Fungi (Basel) ; 10(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057340

RESUMEN

Cytokinesis, the last step in cell division, separates daughter cells through mechanical force. This is often through the force produced by an actomyosin contractile ring. In fission yeast cells, the ring helps recruit a mechanosensitive ion channel, Pkd2, to the cleavage furrow, whose activation by membrane tension promotes calcium influx and daughter cell separation. However, it is unclear how the activities of Pkd2 may affect the actomyosin ring. Here, through both microscopic and genetic analyses of a hypomorphic pkd2 mutant, we examined the potential role of this essential gene in assembling the contractile ring. The pkd2-81KD mutation significantly increased the counts of the type II myosin heavy chain Myo2 (+18%), its regulatory light chain Rlc1 (+37%) and actin (+100%) molecules in the ring, compared to the wild type. Consistent with a regulatory role of Pkd2 in the ring assembly, we identified a strong negative genetic interaction between pkd2-81KD and the temperature-sensitive mutant myo2-E1. The pkd2-81KD myo2-E1 cells often failed to assemble a complete contractile ring. We conclude that Pkd2 modulates the recruitment of type II myosin and actin to the contractile ring, suggesting a novel calcium-dependent mechanism regulating the actin cytoskeletal structures during cytokinesis.

16.
J Fungi (Basel) ; 10(7)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39057374

RESUMEN

Yeasts are gaining increasing attention for their potential health benefits as probiotics in recent years. Researchers are actively searching for new yeast strains with probiotic properties (i.e, Debaryomyces hansenii; Kluyveromyces marxianus; Yarrowia lipolytica; Pichia hudriavzevii; and Torulaspora delbrueckii) from various sources, including traditional fermented foods, the human gut, and the environment. This exploration is expanding the pool of potential probiotic yeasts beyond the well-studied Saccharomyces boulardii. Research suggests that specific yeast strains possess properties that could be beneficial for managing conditions like inflammatory bowel disease, irritable bowel syndrome, skin disorders, and allergies. Additionally, probiotic yeasts may compete with pathogenic bacteria for adhesion sites and nutrients, thereby inhibiting their growth and colonization. They might also produce antimicrobial compounds that directly eliminate harmful bacteria. To achieve these goals, the approach that uses probiotics for human health is changing. Next-generation yeast probiotics are emerging as a powerful new approach in the field of live biotherapeutics. By using genetic engineering, scientists are able to equip these tools with specialized capabilities. However, most research on these probiotic yeasts is still in its early stages, and more clinical trials are needed to confirm their efficacy and safety for various health conditions. This review could provide a brief overview of the situation in this field.

17.
Pathogens ; 13(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39057793

RESUMEN

Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.

18.
Peptides ; 179: 171269, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960286

RESUMEN

bZIP transcription factors can function as homodimers or heterodimers through interactions with their disordered coiled-coil domain. Such dimer assemblies are known to influence DNA-binding specificity and/or the recruitment of binding partners, which can cause a functional switch of a transcription factor from being an activator to a repressor. We recently identified the genomic targets of a bZIP transcription factor called CREB3L1 in rat hypothalamic supraoptic nucleus by ChIP-seq. The objective of this study was to investigate the CREB3L1 protein-to-protein interactome of which little is known. For this approach, we created and screened a rat supraoptic nucleus yeast two-hybrid prey library with the bZIP region of rat CREB3L1 as the bait. Our yeast two-hybrid approach captured five putative CREB3L1 interacting prey proteins in the supraoptic nucleus. One interactor was selected by bioinformatic analyses for more detailed investigation by co-immunoprecipitation, immunofluorescent cellular localisation, and reporter assays in vitro. Here we identify dimerisation hub protein Dynein Light Chain LC8-Type 1 as a CREB3L1 interacting protein that in vitro enhances CREB3L1 activation of target genes.


Asunto(s)
Activación Transcripcional , Animales , Ratas , Activación Transcripcional/genética , Arginina Vasopresina/metabolismo , Arginina Vasopresina/genética , Dineínas Citoplasmáticas/metabolismo , Dineínas Citoplasmáticas/genética , Multimerización de Proteína , Humanos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Núcleo Supraóptico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Técnicas del Sistema de Dos Híbridos
19.
Subcell Biochem ; 104: 101-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963485

RESUMEN

Yeast COMPASS (complex of proteins associated with Set1) and human MLL (mixed-lineage leukemia) complexes are histone H3 lysine 4 methyltransferases with critical roles in gene regulation and embryonic development. Both complexes share a conserved C-terminal SET domain, responsible for catalyzing histone H3 K4 methylation on nucleosomes. Notably, their catalytic activity toward nucleosomes is enhanced and optimized with assembly of auxiliary subunits. In this review, we aim to illustrate the recent X-ray and cryo-EM structures of yeast COMPASS and human MLL1 core complexes bound to either unmodified nucleosome core particle (NCP) or H2B mono-ubiquitinated NCP (H2Bub.NCP). We further delineate how each auxiliary component of the complex contributes to the NCP and ubiquitin recognition to maximize the methyltransferase activity.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Proteína de la Leucemia Mieloide-Linfoide , Nucleosomas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Nucleosomas/metabolismo , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/química , Proteína de la Leucemia Mieloide-Linfoide/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Histonas/metabolismo , Histonas/química , Histonas/genética , Microscopía por Crioelectrón/métodos
20.
Exp Gerontol ; 194: 112509, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964429

RESUMEN

Sake may potentially halt the progression of Parkinson's disease due to its properties, yet no studies have explored its effects. This preliminary study aimed to assess the impact of sake supplementation on Parkinson's disease using a zebrafish model. Sixty fish were divided into six groups: control, rotenone (ROT), and groups administered rotenone along with sake at concentrations of 25, 50, 75, and 100 mg/L (25S, 50S, 75S, and 100S). After 28 days of treatment, behavioral responses and the activities of catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), and glutathione-S-transferase (GST), as well as the expressions of TNF-α, IL-1ß, and COX-2, were evaluated. The results indicated that rotenone administration significantly reduced crossing number (P = 0.001), entries in the top area (P = 0.001), and time spent in the top area (P = 0.001). It also markedly increased levels of TBARS and SH compared to the control group (P = 0.001). Rotenone significantly decreased CAT, SOD, and GSH activities while increasing GST levels. Furthermore, it upregulated the expressions of TNF-α (P = 0.001), IL-1ß (P = 0.001), and COX-2 (P = 0.001). Supplementation with sake, particularly at higher doses, reversed the adverse effects of rotenone on behavioral, oxidative, and inflammatory responses. In conclusion, sake shows promise for preventing Parkinson's disease pending further clinical studies.


Asunto(s)
Antioxidantes , Suplementos Dietéticos , Modelos Animales de Enfermedad , Estrés Oxidativo , Rotenona , Pez Cebra , Animales , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Vino , Masculino , Interleucina-1beta/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...