Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.789
Filtrar
1.
World J Microbiol Biotechnol ; 40(11): 335, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358571

RESUMEN

This study analysed basidiomycetous yeasts isolated from the phylloplane of crops and spontaneous plants in Italian agroecosystems. A total of 25 species belonging to 17 genera were recognized by analysing 83 isolates from vineyards and orchards, that are not treated with synthetic fungicides, and adjacent natural areas. Rhodotorula graminis and Filobasidium magnum were the most frequent species but 13 others were represented by a single isolate (e.g., Buckleyzyma salicina, Pseudozyma prolifica, and Moniliella megachiliensis). Preliminary analysis of (GTG)5-PCR fingerprinting revealed high genetic intraspecific heterogeneity. All isolates were characterized by their production of extracellular hydrolytic enzymes and their sensitivity to six commercial fungicides used in Italy. The isolates displayed great variability in these phenotypic traits, which play an important role in the survival of yeast populations in agroecosystems. Most of them exhibited lipolytic, proteolytic, ß-glucosidase and pectinolytic activities, but only three (F. magnum, Kwoniella mangroviensis and Ps. prolifica) also had cellulolytic and amylolytic activity. Most isolates were sensitive to four fungicides, and one R. graminis isolate was resistant to all six. This heterogeneity was not related to the geographical origin of the isolates. The lack of selective factors (i.e. pesticide treatments) in the sampling fields and the presence of adjacent natural areas may have favored the maintenance of an elevated level of strain diversity. This study provides new information on phylloplane basidiomycetous yeasts in agroecosystems and opens the way to further investigations into the impact of agricultural practices on the microbial diversity of these natural habitats.


Asunto(s)
Basidiomycota , Italia , Basidiomycota/genética , Basidiomycota/aislamiento & purificación , Basidiomycota/clasificación , Fungicidas Industriales/farmacología , Levaduras/aislamiento & purificación , Levaduras/clasificación , Levaduras/genética , Filogenia , Productos Agrícolas/microbiología , Variación Genética , ADN de Hongos/genética , Pruebas de Sensibilidad Microbiana , Biodiversidad
2.
FEMS Yeast Res ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39375837

RESUMEN

The use of non-Saccharomyces yeasts in winemaking is gaining traction due to their specific phenotypes of technological interest, including their unique profile of central carbon metabolites and volatile compounds. However, the lack of knowledge about their physiology hinders their industrial exploitation. The intracellular redox status, involving NAD/NADH and NADP/NADPH cofactors, is a key driver of yeast activity during fermentation, notably directing the formation of metabolites that contribute to the wine bouquet. The biosynthesis of these cofactors can be modulated by the availability of their precursors, nicotinic acid and tryptophan, and their ratio by that of thiamine. In this study, a multifactorial experiment was designed to assess the effects of these three nutrients and their interactions on the metabolic response of various wine yeast species. The data indicated that limiting concentrations of nicotinic acid led to a species-dependent decrease in intracellular NAD(H) concentrations, resulting in variations of fermentation performance and production of metabolic sinks. Thiamine limitation did not directly affect redox cofactor concentrations or balance, but influenced redox management and subsequently the production of metabolites. Overall, this study identified nicotinic acid and thiamine as key factors to consider for species-specific modulation of the metabolic footprint of wine yeasts.

3.
Chemosphere ; 365: 143285, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243903

RESUMEN

This work highlights the biosurfactant production potential of yeasts from mangroves in northeastern Brazil. The biosurfactants were evaluated by their emulsifying capacity (EI24), with 6 isolates showing values between 50% and 62%. Surfactant properties from crude extract were measured using drop collapse, oil displacement, Parafilm® M, surface tension and critical micellar concentration tests. The effects of temperature, salinity, pH, and the ability to emulsify different hydrocarbons were analyzed, showing a promising potential of the yeast species investigated to tolerance to high temperatures and acidic pH, in addition to emulsifying different sources of hydrocarbons with environmental impact. It is important to note that the Pichia pseudolambica isolates showed a remarkable ability to reduce the surface tension of water, from 70.82 mN/m to 36.47 mN/m. In addition, the critical micellar concentration (CMC) values ranged from 7 to 16 mg/mL, highlighting the promising surfactant activity of these isolates for future applications. It was identified that the biosurfactant adhered to the yeast cell wall, and FTIR and 1H NMR spectroscopy analysis was carried out on the yeast biomass and its post-sonication supernatant. The results indicate the presence of characteristic functional groups and peaks found in biosurfactants of a glycolipid nature. Taking together the results reveals the promising potential of biosurfactant biosynthesis of P. pseudolambica yeast, a trait not reported in the literature so far for this species. P. pseudolambica presents a relevant metabolic potential for alternative substrate use and resilience to adverse conditions that could enable it to produce biosurfactants for the biotechnological remediation of areas contaminated by oil derivatives. The metabolic properties herein investigated, together with their presence in Brazilian mangroves, make P. pseudolambica an emerging candidate for developing industrial processes and sustainable strategies for the recovery of ecosystems impacted by oil spills, being positioned as a sustainable alternative to conventional surfactants.

4.
Molecules ; 29(17)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39275100

RESUMEN

The objective of this research was to investigate natural products for their potential against pathogenic microorganisms. Sabinene hydrate (SH), a monoterpenoid, is synthesised by numerous different plants as a secondary metabolite. At present, there is a lack of definite investigations regarding the antimicrobial activity of SH itself and its different isomers. The antimicrobial effects of commercially available SH (composed mainly of trans-isomer) were evaluated within a range of concentrations in three types of contact tests: solid and vapor diffusion and the macro-broth dilution method. Moreover, the effects of SH on the rate of linear growth and spore germination were also examined. Ethanolic SH solutions were tested against an array of microorganisms, including blue-stain fungi (Ceratocystis polonica, Ophiostoma bicolor, O. penicillatum), frequently originating from bark beetle galleries; three fungal strains (Musicillium theobromae, Plectosphaerella cucumerina, and Trichoderma sp.) isolated from a sapwood underneath bark beetle galleries (Ips typographus) on spruce (Picea abies) stems; Verticillium fungicola, isolated from diseased I. typographus larvae; two Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa); five yeasts (Candida albicans, C. krusei, C. parapsilosis, Saccharomyces cerevisiae, and Rhodotorula muscilaginosa), and two saprophytic fungi (Aspergillus niger and Penicillium notatum). In solid agar disc diffusion tests, Gram-positive bacteria exhibited greater susceptibility to SH than Gram-negative bacteria, followed by yeasts and fungi. The most resistant to SH in both the disc diffusion and broth macro-dilution methods were P. aeruginosa, A. niger, and Trichoderma sp. strains. Blue-stain fungi and fungi isolated from the Picea sapwood were the most resistant among the fungal strains tested. The minimum inhibition concentrations (MICs) generated by SH and determined using a disc volatilization method were dependent on the fungal species and played an important role in the development of microorganism inhibition. The two Gram-positive bacteria, B. subtilis and S. aureus (whose MICs were 0.0312 and 0.0625 mg/mL, respectively), were the organisms most susceptible to SH, followed by the Gram-negative bacterium, E. coli (MIC = 0.125 mg/mL) and two yeasts, C. albicans and C. kruei (MIC was 0.125 mg/mL and 0.25 mg/mL, respectively). C. parapsilosis (MIC = 0.75 mg/mL) was the yeast most resistant to SH. The investigation of antimicrobial properties of plant secondary metabolites is important for the development of a new generation of fungicides.


Asunto(s)
Antiinfecciosos , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Hongos/efectos de los fármacos , Monoterpenos/farmacología , Monoterpenos/química , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo
5.
Artículo en Inglés | MEDLINE | ID: mdl-39235842

RESUMEN

Two yeast strains, NYNU 236122 and NYNU 236180, were isolated from plant leaves collected in Tianchi Mountain, Henan Province, central China. Molecular phylogenetic analyses revealed the closest relatives of the strains are three described Kondoa species, Kondoa chamaenerii, Kondoa miscanthi, and Kondoa subrosea. Genetically, the isolated strains differed from the type strains of their three related species by 2-11(0.2-1.8%) base substitutions in the D1/D2 domain, 16-40 (2.6-5.6%) base mismatches in the internal transcribed spacer region, and more than 10.1% base substitutions in the partial RPB2 gene. Furthermore, the two strains differ physiologically from their closest related species, K. chamaenerii, in their ability to assimilate dl-lactate, nitrite, and l-lysine and their inability to assimilate nitrate. Additionally, they differ from K. miscanthi and K. subrosea in their ability to assimilate inulin, d-gluconate, and l-lysine. The species name of Kondoa tianchiensis f.a., sp. nov. is proposed with holotype CICC 33616T (Mycobank MB 853544).


Asunto(s)
ADN de Hongos , Filogenia , Hojas de la Planta , Análisis de Secuencia de ADN , Hojas de la Planta/microbiología , China , ADN de Hongos/genética , Técnicas de Tipificación Micológica , Saccharomycetales/genética , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación , ADN Espaciador Ribosómico/genética
6.
Mycology ; 15(3): 400-423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247897

RESUMEN

The arthroconidial yeast-like species currently classified in the asexual genera Geotrichum and Saprochaete and the sexual genera Dipodascus, Galactomyces and Magnusiomyces are frequently associated with dairy and cosmetics production, fruit rot and human infection. However, the taxonomic system of these fungi has not been updated to accommodate the new nomenclature code adopting the "one fungus, one name" principle. Here, we performed phylogenetic analyses of these yeast-like species based on the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit of the rRNA gene. Two monophyletic groups were recognised from these species. One group contained Dipodascus, Galactomyces, and Geotrichum species and the other Magnusiomyces and Saprochaete species. We thus assigned the species in each group into one genus and selected the genus name Geotrichum for the first group and Magnusiomyces for the second one based on the principle of priority of publication. Five new Geotrichum species were identified from arthroconidial yeast strains recently isolated from various sources in China. The new species are described as Ge. dehoogii sp. nov., Ge. fujianense sp. nov., Ge. maricola sp. nov., Ge. smithiae sp. nov., and Ge. sinensis sp. nov.

7.
Curr Res Food Sci ; 9: 100833, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290653

RESUMEN

Excessive sugar consumption in young people, who are the major consumers of sugary drinks, combined with limited physical activity, is an important determinant of obesity. Despite their natural appeal, fruit juices have a similar sugar content to that of sugary drinks and once metabolized, they may induce the same biological response. This study aimed to verify whether fermentation processes can make juice consumption healthier and whether reduced-sugar juices have a specific impact on intestinal function. We designed a tailored fermentation of apple-pear juices with lactic acid bacteria and yeasts, which resulted in a reduction of sugar content (27-66%) and caloric intake, and an increase in mannitol content. The impact of newly developed apple-pear juices on gut microbiome composition and functionality was evaluated in vitro using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Promising changes were found in the gut microbiota and its metabolic responses and functionality, targeting pathways related to obesity and weight loss (lipopolysaccharide and secondary metabolite biosynthesis, polycyclic aromatic hydrocarbon degradation, and amino sugar and nucleotide sugar metabolism). Additionally, the fermented apple-pear juices positively modulated the intestinal epithelial features. While the simulation of the study simplifies the complex in vivo conditions, it suggests that low-sugar fermented apple-pear juices can elicit targeted responses in the gut ecosystem, contributing to healthier alternatives to traditional fruit juices.

8.
Int J Biol Macromol ; 280(Pt 1): 135664, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278450

RESUMEN

The hybrid material between the functional elements particularly with the polymer compounds as a nanocomposites are attractive in numerous fields. In the current work, chitosan/Fe2O3/CuO-nanocomposite has been successfully synthesized in situ via a coprecipitation method and characterized by several apparatuses. The X-ray diffraction cleared that chitosan/Fe2O3/CuO-nanocomposite was crystalline. Transmission Electron Microscopy (TEM) showed that the size of chitosan/Fe2O3/CuO-nanocomposite was of 17-85 nm. Candida albicans, Candida tropicalis, and Geotrichum candidum were inhibited employing the chitosan/Fe2O3/CuO-nanocomposite with inhibition areas of 25 ± 0.1 and 30 ± 0.1, and 23 ± 0.2 mm, respectively. Minimum inhibitory concentration (MIC) of chitosan/Fe2O3/CuO-nanocomposite was 15.62, 31.25, and 62.5 µg/mL for C. tropicalis, C. albicans, and G. candidum, respectively. Biofilm formation of C. albicans, C. tropicalis and G. candidum was inhibited at level of 95.31, 96.65, and 93.63 %, respectively at 75 % MIC of chitosan/Fe2O3/CuO-nanocomposite. The exposed C. tropicalis to chitosan/Fe2O3/CuO-nanocomposite showed severe damag of cytoplasm membrane with cell wall rupture. Chitosan/Fe2O3/CuO-nanocomposite reflected anticancer potential against human skin cancer (A-431) cells with IC50 of 77.79 ± 1.37 µg/mL. Moreover, wound heals was induced by chitosan/Fe2O3/CuO-nanocomposite with closure level 92.76 %. Molecular docking studies suggested strong binding of C. tropicalis (PDB ID: 8BH8) and A-431 (PDB ID: 5JJX) proteins with CuO nanoparticles and FeO nanoparticles.

9.
Life (Basel) ; 14(9)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39337871

RESUMEN

Epiphytic yeasts represent an important source for the development of novel strategies aiming to combat food microbial contamination. The present study deals with the characterization of nine yeast strains belonging to Starmerella, Candida, Metschinikowia, Lachancea, Kodamaea and Pichia genera, isolated from the surface of plants from the Botanical Garden "Dimitrie Brandza" (Bucharest, Romania) for use as antimicrobial and probiotic agents. The tests involved the determination of the safe status, cell growth under stress conditions, and activity against pathogenic Candida and bacteria strains, respectively, as well as phytopathogenic filamentous fungi and lipolytic activity. None of the nine strains showed all the characteristics for virulence and pathogenicity, with the rare positive results being explained rather by their adaptability to the habitats of origin. The strains Lachancea thermotolerans CMGB-ST12 and Kodamaea ohmeri CMGB-ST19 grew at 37 °C; Metschnikowia reukaufii CMGB-ST21.2, M. reukaufii CMGB-ST.8.1 and M. reukaufii CMGB ST10 grew in the presence of 10% NaCl, while L. thermotolerans CMGB-ST12 and K. ohmeri CMGB-ST19 tolerated both acidic and alkaline pH values well (3.0 to 12.0). The studied yeast strains showed good antimicrobial activity against Candida krusei, Candida albicans and Gram-negative bacterial strains, with K. ohmeri CMGB-ST19 and Pichia membranaefaciens CMGB-ST53 inhibiting up to 100% the development of filamentous fungi. All the strains produced lipases for tributyrin hydrolysis, the best producer being Starmerella bombi CMGB-ST1, and only Candida magnoliae CMGB-ST8.2 tested positive against other probiotic yeasts. Overall, our nine yeast strains show high potential for industrial applications, for obtaining probiotic products and for preventing the development of a wide range of microbial food contaminants.

10.
J Exp Biol ; 227(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39234635

RESUMEN

Insect guts house a complex community of microbes that affect host physiology, performance and behavior. Gut microbiome research has largely focused on bacteria-host symbioses and paid less attention to other taxa, such as yeasts. We found that axenic Drosophila melanogaster (reared free of microbes) develops from egg to adult more slowly (ca. 13 days) than those with a natural microbiota (ca. 11.5 days). Here, we showed that live yeasts are present and reproducing in the guts of flies and that the fast development time can be restored by inoculating larvae with a single yeast species (either Saccharomyces cerevisiae or Lachancea kluyveri). Nutritional supplements (either heat-killed yeasts, or a mix of essential vitamins and amino acids) slightly sped the development of axenic flies (to ca. 12.5 days), but not to the same extent as live yeasts. During the first two instars, this acceleration appears to result from additional macronutrient availability, but during the third instar, when most growth occurs, live yeasts increased feeding rate, implying an effect mediated by the gut-brain axis. Thus, the fly-yeast interaction extends beyond yeasts-as-food to yeasts as beneficial interactive symbionts.


Asunto(s)
Drosophila melanogaster , Larva , Saccharomyces cerevisiae , Animales , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/microbiología , Drosophila melanogaster/fisiología , Larva/crecimiento & desarrollo , Larva/microbiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Microbioma Gastrointestinal/fisiología , Simbiosis , Saccharomycetales/crecimiento & desarrollo , Saccharomycetales/fisiología
11.
J Microbiol Biotechnol ; 34(11): 1-10, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39317683

RESUMEN

Xiaoqu, a pivotal starter in baijiu fermentation, provides the most microflora and enzymes to initiate and maintain baijiu brewing. This study aims to explore the differences in microbiota and enzyme activities among Xiaoqu samples from seven provinces in southern China using high-throughput sequencing, plate isolation, and activity detection. The analyses revealed significant differences in bacterial and fungal communities across the samples. A total of 22 bacterial species and 17 target fungal species were isolated and identified. Predominant bacteria included Bacillus (Bacillus subtilis) and lactic acid bacteria (LABs), while the fungal communities were primarily composed of yeasts (Saccharomyces cerevisiae) and various molds. The activities of α-amylase and glucoamylase varied significantly among the samples, and samples from HN1 and GZ2 exhibited the highest activities. Correlation analyses highlighted the pivotal role of LABs in maintaining acidity and the importance of molds and yeasts in the saccharification and fermentation processes. These findings shed light on the microbial composition and diversity of Xiaoqu and the critical role of microbes in baijiu production. Moreover, they suggested potential microbial resources for developing artificial Xiaoqu via synthetic microbial community in the future, enhancing baijiu fermentation efficiency and overall product quality.

12.
Int J Food Sci ; 2024: 4188578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39314850

RESUMEN

Nepal harbors a rich diversity of cultures and traditions, including the unique practice of creating an indigenous grain called Marcha by various ethnic groups such as Newar, Tamang, Sherpa, Rai, Limbu, Gurung, Magar, and Tharu people. In the eastern region of Nepal, Marcha producers utilize over 42 different plants, including Vernonia cinerea, Clematis grewiae, Polygala arillata, Buddleja asiatica, Inula sp., Scoparia, and more, which shows regional diversity. The primary objective of the study was to explore the diversity of yeast present in Marcha samples. The studied Marcha samples were collected from 10 different geographic regions of Nepal, which included altogether 27 samples. The isolates were grouped into Groups A, B, and C based on morphological and physiological characteristics. Notably, Group B yeast displayed high amylase production, an enzyme responsible for starch breakdown, and exhibited the ability to produce ethanol. To further investigate the potential of these isolates, stress exclusion tests were conducted, with 30 isolates (70%) showing positive responses. The yeast isolates demonstrated resilience to high glucose concentrations of up to 36% (w/v) at a pH above 3 and a temperature of 37°C, which is the ideal growth condition. The study observed a direct correlation between the yeast isolates' ethanol production capabilities and their tolerance to different ethanol concentrations. Considering that all tested Marcha samples contained yeast capable of starch degradation and ethanol production, it was expected that these yeast isolates would actively participate in the fermentation of starch-based alcohol.

13.
J Adv Res ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322048

RESUMEN

INTRODUCTION: Antifungal peptides (AFPs) have the potential to treat antifungal-resistant infections; however, their structure-function relationship remains unknown, hindering their rapid development. Therefore, it is imperative to investigate and clarify the structure-function relationships of AFPs. OBJECTIVES: This study aimed to investigate the impact of end-tagging single hydrophobic amino acids and capping the N-terminus with glycine (Gly) on the antifungal activity of peptide W4. METHODS: The antifungal efficacy of the engineered peptides was initially assessed by determining the minimum inhibitory concentration (MIC) /minimal fungicidal concentration (MFC), killing kinetics, and drug resistance induction, in addition to evaluating the biocompatibility and stability. Subsequently, the antifungal mechanism was investigated using fluorescence labeling, electron microscopy, reactive oxygen species (ROS) detection, and measurement of mitochondrial membrane potential and apoptosis. The impact of the engineered peptides on Candida albicans (C. albicans) biofilm and their potential application in the scratch keratomycosis model were investigated. RESULTS: The antifungal activity of W4 was significantly enhanced by capping Gly at the N-terminus, resulting in a decrease in average activity from 11.86 µM to 6.25 µM (GW4) and an increase in TI values by 1.9-fold (TIGW4 = 40.99). Mechanistically, GW4 exerted its antifungal effect by disrupting the cellular membrane structure in C. albicans, forming pores and subsequent leakage of intracellular contents. Concurrently, it facilitated intracellular ROS accumulation while decreasing the mitochondrial membrane potential. Additionally, GW4 demonstrated an excellent ability to inhibit and eliminate biofilms of C. albicans. Notably, GW4 demonstrated significant therapeutic potential in a C. albicans-associated keratitis model. CONCLUSION: Capping Gly at the N-terminus increased residue length while significantly enhancing the helical propensity of W4, thereby augmenting its antifungal activity. Our exploratory study demonstrated the potential strategies and avenues for optimizing the structure-function relationships of AFPs and developing highly effective antifungal drugs.

14.
Int J Mol Sci ; 25(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273215

RESUMEN

Fungal colonization poses a significant risk for neonates, leading to invasive infections such as fungemia. While Candida species are the most commonly identified pathogens, other rare yeasts are increasingly reported, complicating diagnosis and treatment due to limited data on antifungal pharmacokinetics. These emerging yeasts, often opportunistic, underscore the critical need for early diagnosis and targeted therapy in neonates. This systematic review aims to comprehensively analyze all published cases of neonatal fungemia caused by rare opportunistic yeasts, examining geographical distribution, species involved, risk factors, treatment approaches, and outcomes. Searching two databases (PubMed and SCOPUS), 89 relevant studies with a total of 342 cases were identified in the 42-year period; 62% of the cases occurred in Asia. Pichia anomala (31%), Kodamaea ohmeri (16%) and Malassezia furfur (15%) dominated. Low birth weight, the use of central catheters, prematurity, and the use of antibiotics were the main risk factors (98%, 76%, 66%, and 65%, respectively). 22% of the cases had a fatal outcome (80% in Asia). The highest mortality rates were reported in Trichosporon beigelii and Trichosporon asahii cases, followed by Dirkmeia churashimamensis cases (80%, 71%, and 42% respectively). Low birth weight, the use of central catheters, the use of antibiotics, and prematurity were the main risk factors in fatal cases (84%, 74%, 70%, and 67%, respectively). 38% of the neonates received fluconazole for treatment but 46% of them, died. Moreover, the rare yeasts of this review showed high MICs to fluconazole and this should be taken into account when planning prophylactic or therapeutic strategies with this drug. In conclusion, neonatal fungemia by rare yeasts is a life-threatening and difficult-to-treat infection, often underestimated and misdiagnosed.


Asunto(s)
Fungemia , Infecciones Oportunistas , Humanos , Recién Nacido , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Fungemia/microbiología , Fungemia/epidemiología , Fungemia/tratamiento farmacológico , Infecciones Oportunistas/microbiología , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/epidemiología , Factores de Riesgo , Levaduras/aislamiento & purificación
15.
Heliyon ; 10(18): e37598, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309899

RESUMEN

The choice of the starchy ingredients as well as that of the yeasts strongly can represent a useful tool to differentiate the final beers. Our research investigated twelve white beers obtained applying a 2-factor mixed 3-level/4-level experimental design. The first factor was the cereal mixture, with 3 combinations of barley malt (65 %) and unmalted wheat (35 % of common, durum, or emmer). The second factor was the yeast used to carry out the fermentation trials, i.e.: a S. cerevisiae starter strain (WB06); an oenological S. cerevisiae strain (9502); two mixed starters made of an oenological Schizosaccharomyces pombe strain (6956) and, alternatively, one of the two S. cerevisiae strains. Most beer attributes were significantly (p < 0.05) influenced by the two considered factors with the following exceptions: the wheat species did not affect maltotriose, maltose, pH, total and volatile acidity, floral flavour, and sweetness; the yeast did not exert significant effects on foam colour, turbidity, overall olfactory intensity, yeast flavour, and body. The flavour of fruits and aromatic herbs were not influenced by the factors studied. Alcohol content was maximised using the unmalted durum wheat (∼7 %) and S. cerevisiae WB06 (∼6.8 %). The beer antioxidant content was increased by the use of emmer (566 mg/L) and by the application of the mixed inoculum (478-487 mg/L). The beers made with unmalted common wheat and fermented by the S. cerevisiae strains alone obtained the best overall sensory score (3.7). As shown by the Principal Component Analysis, the beers were better classified by the type of unmalted wheat than by the fermenting yeast. A multiple regression analysis was performed by fitting the analytical parameters that highlighted significant differences among the beers to a second-order polynomial model. Data concerning colour, glycerol concentration, FC-TPC, and antioxidant activity were satisfactorily predicted (R2 > 0.8) by the fitted models.

16.
Sci Rep ; 14(1): 22491, 2024 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341972

RESUMEN

Reptiles in the wild or as pets may act as spreaders of bacteria, viruses, fungi and parasites. However, studies on the mycobiota of these animals are scanty. This study investigates the occurrence of yeasts from the cloacal swabs of snakes of different origins and the antifungal profile of the isolated strains. A total of 180 cloacal samples of snakes were collected from Morocco (Group I: n = 68) and Italy (Group II: n = 112). Yeast species were biochemically and molecularly identified. A total of 72 yeast strains belonging to 13 genera, 8 from snakes in Group I and five from snakes in Group II were identified. The most frequently isolated species were Trichosporon asahii (22.2%) and Candida tropicalis (15.3%) from snakes in Group I and Debaryomyces spp. (16.7%) and Metahyphopichia silvanorum (11.1%) from snakes in Group II. Multiple azole and amphotericin B (AmB) resistance phenomena were detected among isolated yeasts. Azole multi drug resistance phenomena were detected among yeasts from Group I and Rhodotorula mucilaginosa from Group II, whereas AmB resistance phenomena among those from Group II. Data suggest that snakes may harbor pathogenetic yeasts, being potential reservoirs and spreaders of these organisms in the environment. Since the yeast species community from different groups of animals as well as their antifungal profile reflects the epidemiology of human yeast infections in the same geographical areas, the results indicate that snakes may be considered as sentinels for human/animal pathogenic microorganisms and bio-indicators of environmental quality.


Asunto(s)
Serpientes , Levaduras , Animales , Serpientes/microbiología , Levaduras/aislamiento & purificación , Levaduras/clasificación , Zoonosis/microbiología , Antifúngicos/farmacología , Italia , Marruecos , Humanos , Cloaca/microbiología , Farmacorresistencia Fúngica , Especies Centinela , Pruebas de Sensibilidad Microbiana
17.
Artículo en Inglés | MEDLINE | ID: mdl-39207228

RESUMEN

Two yeast strains were isolated from rotting wood samples collected on Qingyuan Mountain, Fujian Province, PR China. Phylogenetic analysis, based on the concatenated sequences of the internal transcribed spacer (ITS) region and the D1/D2 domain of the large subunit rRNA gene, revealed that these two strains represent a novel species of the genus Cyberlindnera. The proposed name for this new species is Cyberlindnera qingyuanensis f.a., sp. nov. (holotype: GDMCC 2.300; ex-type: PYCC 9925) although the formation of ascospores was not observed. The novel species differs from its close relative Cyberlindnera galapagoensis by 7.7% sequence divergence (37 substitutions and seven indels) in the D1/D2 domain and 9.7% sequence divergence (42 substitutions and 34 indels) in the ITS region, respectively. Additionally, Cyb. qingyuanensis differs from its close relative Cyb. galapagoensis by its ability to grow in cellobiose, l-rhamnose, ribitol, galactitol, and dl-lactate, its growth at 37 °C, and its inability to ferment raffinose. The Mycobank number is MB 854693.


Asunto(s)
ADN de Hongos , ADN Espaciador Ribosómico , Filogenia , Saccharomycetales , Análisis de Secuencia de ADN , Madera , Madera/microbiología , China , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Técnicas de Tipificación Micológica , Saccharomycetales/genética , Saccharomycetales/clasificación , Saccharomycetales/aislamiento & purificación
18.
Microorganisms ; 12(8)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39203477

RESUMEN

Fungal keratitis is a rare yet severe infection of the cornea. Fungal species distribution depends on the climate and socioeconomic status and can show regional variation. This retrospective single-center study was conducted at a tertiary eye care center and the collaborating Institute of Medical Microbiology in Switzerland. On investigating all fungal-positive corneal scrapings and contact lens assessments of patients with keratitis from January 2012 to December 2023, 206 patients were identified, of which 113 (54.9%) were female. The median age was 38 (IQR 29.8, [18-93]), and 154 (74.8%) applied contact lenses. The most commonly found pathogen was Candida spp., followed by Fusarium spp. Molds were 1.8 times more common than yeasts. Linear regression showed no significant increase or decrease in the infection rate over time (p = 0.5). In addition, 10 patients (4.9%) were found to have coinfections with Acanthamoeba, 11 (5.3%) with HSV-1, none with HSV-2, and 4 (1.9%) with VZV. This study provides a long-term overview of fungal-positive corneal scrapings and contact lens specimens of patients with fungal keratitis. Based on our results, coinfections with Acanthamoeba, HSV, and VZV are frequent, especially in patients wearing contact lenses. Thus, wearing contact lenses may facilitate coinfection in fungal keratitis.

19.
Microorganisms ; 12(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39203492

RESUMEN

The unresolved challenges in the development of highly efficient, stable and controlled synthetic microbial consortia, as well as the use of natural consortia, are very attractive for science and technology. However, the consortia management should be done with the knowledge of how not only to accelerate but also stop the action of such "little pots". Moreover, there are a lot of microbial consortia, the activity of which should be suppressively controlled. The processes, catalyzed by various microorganisms being in complex consortia which should be slowed down or completely cancelled, are typical for the environment (biocorrosion, landfill gas accumulation, biodegradation of building materials, water sources deterioration etc.), industry (food and biotechnological production), medical practice (vaginitis, cystitis, intestinal dysbiosis, etc.). The search for ways to suppress the functioning of heterogeneous consortia in each of these areas is relevant. The purpose of this review is to summarize the general trends in these studies regarding the targets and new means of influence used. The analysis of the features of the applied approaches to solving the main problem confirms the possibility of obtaining a combined effect, as well as selective influence on individual components of the consortia. Of particular interest is the role of viruses in suppressing the functioning of microbial consortia of different compositions.

20.
Antioxidants (Basel) ; 13(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39199162

RESUMEN

Melatonin is commonly found in various fruits, juices, and some fermented beverages. Its concentration in wine is influenced by soil properties, climatic factors, and yeast activity. Even if it is found in fermented beverages in relatively low proportions, melatonin still holds significant nutritional value, giving anti-aging properties, anti-inflammatory actions, and antidepressant effects. In this context, this article focuses on evaluating the impact of different Saccharomyces and non-Saccharomyces yeast species on the formation of melatonin and its contribution to wines' total antioxidant capacity. Considering that the antioxidant activity of wine is usually related to the content of phenolic compounds, ten such compounds were analyzed. The evaluation of bioactive compounds was performed using high-performance liquid chromatography (HPLC) coupled with mass spectrometry. The total antioxidant capacity of wine samples was evaluated by the ABTS+ method. The administration of bâtonnage products increased the efficiency of non-Saccharomyces yeasts. The mixtures of Saccharomyces and non-Saccharomyces yeasts generated higher values for melatonin. The results confirm a significant impact from the grape variety and the specific yeast strains on the melatonin concentration. Also, a strong dependence between antioxidant activity and melatonin levels was observed. Given the limited existing studies on the presence of melatonin in wines, new perspectives are needed for future exploration and understanding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA