Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Intervalo de año de publicación
1.
Res Sq ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38826349

RESUMEN

The reversal of ubiquitination induced by members of the SidE effector family of Legionella pneumophila produces phosphoribosyl ubiquitin (PR-Ub) that is potentially detrimental to host cells. Here we show that the effector LnaB functions to transfer the AMP moiety from ATP to the phosphoryl moiety of PR-Ub to convert it into ADP-ribosylated ubiquitin (ADPR-Ub), which is further processed to ADP-ribose and functional ubiquitin by the (ADP-ribosyl)hydrolase MavL, thus maintaining ubiquitin homeostasis in infected cells. Upon being activated by Actin, LnaB also undergoes self-AMPylation on tyrosine residues. The activity of LnaB requires a motif consisting of Ser, His and Glu (S-HxxxE) present in a large family of toxins from diverse bacterial pathogens. Our study not only reveals intricate mechanisms for a pathogen to maintain ubiquitin homeostasis but also identifies a new family of enzymes capable of protein AMPylation, suggesting that this posttranslational modification is widely used in signaling during host-pathogen interactions.

2.
Cell Stress Chaperones ; 29(3): 404-424, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599565

RESUMEN

Adenosyl monophosphate (AMP)ylation (the covalent transfer of an AMP from Adenosine Triphosphate (ATP) onto a target protein) is catalyzed by the human enzyme Huntingtin Yeast Interacting Partner E (HYPE)/FicD to regulate its substrate, the heat shock chaperone binding immunoglobulin protein (BiP). HYPE-mediated AMPylation of BiP is critical for maintaining proteostasis in the endoplasmic reticulum and mounting a unfolded protein response in times of proteostatic imbalance. Thus, manipulating HYPE's enzymatic activity is a key therapeutic strategy toward the treatment of various protein misfolding diseases, including neuropathy and early-onset diabetes associated with two recently identified clinical mutations of HYPE. Herein, we present an optimized, fluorescence polarization-based, high-throughput screening (HTS) assay to discover activators and inhibitors of HYPE-mediated AMPylation. After challenging our HTS assay with over 30,000 compounds, we discovered a novel AMPylase inhibitor, I2.10. We also determined a low micromolar IC50 for I2.10 and employed biorthogonal counter-screens to validate its efficacy against HYPE's AMPylation of BiP. Further, we report low cytotoxicity of I2.10 on human cell lines. We thus established an optimized, high-quality HTS assay amenable to tracking HYPE's enzymatic activity at scale, and provided the first novel small-molecule inhibitor capable of perturbing HYPE-directed AMPylation of BiP in vitro. Our HTS assay and I2.10 compound serve as a platform for further development of HYPE-specific small-molecule therapeutics.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Humanos , Adenosina Monofosfato/metabolismo , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/análogos & derivados , Chaperón BiP del Retículo Endoplásmico/metabolismo , Células HEK293 , Proteínas de la Membrana , Nucleotidiltransferasas
3.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36834532

RESUMEN

Flavin adenine dinucleotide synthetases (FADSs) catalyze FAD biosynthesis through two consecutive catalytic reactions, riboflavin (RF) phosphorylation and flavin mononucleotide (FMN) adenylylation. Bacterial FADSs have RF kinase (RFK) and FMN adenylyltransferase (FMNAT) domains, whereas the two domains are separated into two independent enzymes in human FADSs. Bacterial FADSs have attracted considerable attention as drug targets due to the fact that they differ from human FADSs in structure and domain combinations. In this study, we analyzed the putative FADS structure from the human pathogen Streptococcus pneumoniae (SpFADS) determined by Kim et al., including conformational changes of key loops in the RFK domain upon substrate binding. Structural analysis and comparisons with a homologous FADS structure revealed that SpFADS corresponds to a hybrid between open and closed conformations of the key loops. Surface analysis of SpFADS further revealed its unique biophysical properties for substrate attraction. In addition, our molecular docking simulations predicted possible substrate-binding modes at the active sites of the RFK and FMNAT domains. Our results provide a structural basis to understand the catalytic mechanism of SpFADS and develop novel SpFADS inhibitors.


Asunto(s)
Mononucleótido de Flavina , Streptococcus pneumoniae , Humanos , Simulación del Acoplamiento Molecular , Mononucleótido de Flavina/química , Nucleotidiltransferasas/metabolismo , Dominio Catalítico , Flavina-Adenina Dinucleótido/metabolismo
4.
IUBMB Life ; 75(4): 370-376, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36602414

RESUMEN

Catalytically inactive kinases, known as pseudokinases, are conserved in all three domains of life. Due to the lack of catalytic residues, pseudokinases are considered to act as allosteric regulators and scaffolding proteins with no enzymatic function. However, since these "dead" kinases are conserved along with their active counterparts, a role for pseudokinases may have been overlooked. In this review, we will discuss the recently characterized pseudokinases Selenoprotein O, Legionella effector SidJ, and the SARS-CoV2 protein nsp12 which catalyze AMPylation, glutamylation, and RNAylation, respectively. These studies provide structural and mechanistic insight into the versatility and diversity of the kinase fold.


Asunto(s)
COVID-19 , ARN Viral , Humanos , SARS-CoV-2 , Fosfotransferasas , Catálisis
5.
RNA ; 29(2): 188-199, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36400447

RESUMEN

Parasitic protozoans of the Trypanosoma and Leishmania species have a uniquely organized mitochondrial genome, the kinetoplast. Most kinetoplast-transcribed mRNAs are cryptic and encode multiple subunits for the electron transport chain following maturation through a uridine insertion/deletion process called RNA editing. This process is achieved through an enzyme cascade by an RNA editing catalytic complex (RECC), where the final ligation step is catalyzed by the kinetoplastid RNA editing ligases, KREL1 and KREL2. While the amino-terminal domain (NTD) of these proteins is highly conserved with other DNA ligases and mRNA capping enzymes, with five recognizable motifs, the functional role of their diverged carboxy-terminal domain (CTD) has remained elusive. In this manuscript, we assayed recombinant KREL1 in vitro to unveil critical residues from its CTD to be involved in protein-protein interaction and dsRNA ligation activity. Our data show that the α-helix (H)3 of KREL1 CTD interacts with the αH1 of its editosome protein partner KREPA2. Intriguingly, the OB-fold domain and the zinc fingers on KREPA2 do not appear to influence the RNA ligation activity of KREL1. Moreover, a specific KWKE motif on the αH4 of KREL1 CTD is found to be implicated in ligase auto-adenylylation analogous to motif VI in DNA ligases. In summary, we present in the KREL1 CTD a motif VI for auto-adenylylation and a KREPA2 binding motif for RECC integration.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Ligasas , Edición de ARN , Trypanosoma brucei brucei/metabolismo , Trypanosoma/metabolismo , Proteínas/genética , ARN Polimerasa Dependiente del ARN/genética , ADN Ligasas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
6.
Front Mol Neurosci ; 15: 912734, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504677

RESUMEN

Post-translational protein modifications are essential for the spatio-temporal regulation of protein function. In this study, we examine how the activity of the Caenorhabditis elegans AMPylase FIC-1 modulates physiological processes in vivo. We find that over-expression (OE) of the constitutive AMPylase FIC-1(E274G) impairs C. elegans development, fertility, and stress resilience. We also show that FIC-1(E274G) OE inhibits pathogen avoidance behavior by selectively suppressing production of the Transforming Growth Factor-ß (TGF-ß) ligands DAF-7 and DBL-1 in ASI sensory neurons. Finally, we demonstrate that FIC-1 contributes to the regulation of adult body growth, cholinergic neuron function, and larval entry into dauer stage; all processes controlled by TGF-ß signaling. Together, our results suggest a role for FIC-1 in regulating TGF-ß signaling in C. elegans.

7.
Methods Enzymol ; 662: 275-296, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35101215

RESUMEN

Selenoprotein O is one of 25 human selenoproteins that incorporate the 21st amino acid selenocysteine. Recent studies have revealed a previously undocumented mechanism of redox regulation by which SelO protects cells from oxidative damage. SelO catalyzes the covalent addition of AMP from ATP to the hydroxyl side chain of protein substrates in a post translational modification known as AMPylation. Although AMPylation was discovered over 50 years ago, methods to detect and enrich substrates are limited. Here, we describe protocols to clone, purify, and identify the substrates of bacterial SelO using a biotinylated ATP analog. Identification of SelO substrates and the functional consequences of AMPylation will illuminate the significance of this evolutionarily conserved selenoprotein.


Asunto(s)
Procesamiento Proteico-Postraduccional , Selenoproteínas , Adenosina Trifosfato/metabolismo , Humanos , Oxidación-Reducción , Estrés Oxidativo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
8.
Braz. j. biol ; 82: 1-8, 2022. tab, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468474

RESUMEN

Glutamine synthetase (GS), encoded by glnA, catalyzes the conversion of L-glutamate and ammonium to L-glutamine. This ATP hydrolysis driven process is the main nitrogen assimilation pathway in the nitrogen-fixing bacterium Azospirillum brasilense. The A. brasilense strain HM053 has poor GS activity and leaks ammonium into the medium under nitrogen fixing conditions. In this work, the glnA genes of the wild type and HM053 strains were cloned into pET28a, sequenced and overexpressed in E. coli. The GS enzyme was purified by affinity chromatography and characterized. The GS of HM053 strain carries a P347L substitution, which results in low enzyme activity and rendered the enzyme insensitive to adenylylation by the adenilyltransferase GlnE.


A glutamina sintetase (GS), codificada por glnA, catalisa a conversão de L-glutamato e amônio em L-glutamina. Este processo dependente da hidrólise de ATP é a principal via de assimilação de nitrogênio na bactéria fixadora de nitrogênio Azospirillum brasilense. A estirpe HM053 de A. brasilense possui baixa atividade GS e excreta amônio no meio sob condições de fixação de nitrogênio. Neste trabalho, os genes glnA das estirpes do tipo selvagem e HM053 foram clonados em pET28a, sequenciados e superexpressos em E. coli. A enzima GS foi purificada por cromatografia de afinidade e caracterizada. A GS da estirpe HM053 possui uma substituição P347L que resulta em baixa atividade enzimática e torna a enzima insensível à adenililação pela adenililtransferase GlnE.


Asunto(s)
Azospirillum brasilense/enzimología , Azospirillum brasilense/genética , Escherichia coli , Fijación del Nitrógeno , Glutamato-Amoníaco Ligasa/biosíntesis
9.
Braz. j. biol ; 822022.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1468661

RESUMEN

Abstract Glutamine synthetase (GS), encoded by glnA, catalyzes the conversion of L-glutamate and ammonium to L-glutamine. This ATP hydrolysis driven process is the main nitrogen assimilation pathway in the nitrogen-fixing bacterium Azospirillum brasilense. The A. brasilense strain HM053 has poor GS activity and leaks ammonium into the medium under nitrogen fixing conditions. In this work, the glnA genes of the wild type and HM053 strains were cloned into pET28a, sequenced and overexpressed in E. coli. The GS enzyme was purified by affinity chromatography and characterized. The GS of HM053 strain carries a P347L substitution, which results in low enzyme activity and rendered the enzyme insensitive to adenylylation by the adenilyltransferase GlnE.


Resumo A glutamina sintetase (GS), codificada por glnA, catalisa a conversão de L-glutamato e amônio em L-glutamina. Este processo dependente da hidrólise de ATP é a principal via de assimilação de nitrogênio na bactéria fixadora de nitrogênio Azospirillum brasilense. A estirpe HM053 de A. brasilense possui baixa atividade GS e excreta amônio no meio sob condições de fixação de nitrogênio. Neste trabalho, os genes glnA das estirpes do tipo selvagem e HM053 foram clonados em pET28a, sequenciados e superexpressos em E. coli. A enzima GS foi purificada por cromatografia de afinidade e caracterizada. A GS da estirpe HM053 possui uma substituição P347L que resulta em baixa atividade enzimática e torna a enzima insensível à adenililação pela adenililtransferase GlnE.

10.
Braz. j. biol ; 82: e235927, 2022. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1249226

RESUMEN

Glutamine synthetase (GS), encoded by glnA, catalyzes the conversion of L-glutamate and ammonium to L-glutamine. This ATP hydrolysis driven process is the main nitrogen assimilation pathway in the nitrogen-fixing bacterium Azospirillum brasilense. The A. brasilense strain HM053 has poor GS activity and leaks ammonium into the medium under nitrogen fixing conditions. In this work, the glnA genes of the wild type and HM053 strains were cloned into pET28a, sequenced and overexpressed in E. coli. The GS enzyme was purified by affinity chromatography and characterized. The GS of HM053 strain carries a P347L substitution, which results in low enzyme activity and rendered the enzyme insensitive to adenylylation by the adenilyltransferase GlnE.


A glutamina sintetase (GS), codificada por glnA, catalisa a conversão de L-glutamato e amônio em L-glutamina. Este processo dependente da hidrólise de ATP é a principal via de assimilação de nitrogênio na bactéria fixadora de nitrogênio Azospirillum brasilense. A estirpe HM053 de A. brasilense possui baixa atividade GS e excreta amônio no meio sob condições de fixação de nitrogênio. Neste trabalho, os genes glnA das estirpes do tipo selvagem e HM053 foram clonados em pET28a, sequenciados e superexpressos em E. coli. A enzima GS foi purificada por cromatografia de afinidade e caracterizada. A GS da estirpe HM053 possui uma substituição P347L que resulta em baixa atividade enzimática e torna a enzima insensível à adenililação pela adenililtransferase GlnE.


Asunto(s)
Proteínas Bacterianas/genética , Azospirillum brasilense/enzimología , Azospirillum brasilense/genética , Compuestos de Amonio , Glutamato-Amoníaco Ligasa/genética , Escherichia coli/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA