Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Res Ther ; 15(1): 338, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343956

RESUMEN

BACKGROUND: Human adipose-derived stromal/stem cells (hASCs) play important roles in regenerative medicine and numerous inflammatory diseases. However, their cellular heterogeneity limits the effectiveness of treatment. Understanding the distinct subtypes of hASCs and their phenotypic implications will enable the selection of appropriate subpopulations for targeted approaches in regenerative medicine or inflammatory diseases. METHODS: hASC subtypes expressing dipeptidyl peptidase-4 (DPP4) were identified via fluorescence-activated cell sorting (FACS) analysis. DPP4 expression was knocked down in DPP4+ hASCs via DPP4 siRNA. The capacity for proliferation, hepatocyte differentiation, inflammatory factor secretion and T-cell functionality regulation of hASCs from DPP4-, DPP4+, and control siRNA-treated DPP4+ hASCs and DPP4 siRNA-treated DPP4+ hASCs were assessed. RESULTS: DPP4+ hASCs and control siRNA-treated DPP4+ hASCs presented a lower proliferative capacity but greater hepatocyte differentiation capacity than DPP4- hASCs and DPP4 siRNA-treated DPP4+ hASCs. Both DPP4+ hASCs and DPP4- hASCs secreted high levels of vascular endothelial growth factor-A (VEGF-A), monocyte chemoattractant protein-1 (MCP-1), and interleukin 6 (IL-6), whereas the levels of other factors, including matrix metalloproteinase (MMP)-1, eotaxin-3, fractalkine (FKN, CX3CL1), growth-related oncogene-alpha (GRO-alpha, CXCL1), monokine induced by interferon-gamma (MIG), macrophage inflammatory protein (MIP)-1beta, and macrophage colony-stimulating factor (M-CSF), were significantly greater in the supernatants of DPP4+ hASCs than in those of DPP4- hASCs. Exposure to hASC subtypes and their conditioned media triggered changes in the secreted cytokine profiles of T cells from healthy donors. The percentage of functional T cells that secreted factors such as MIP-1beta and IL-8 increased when these cells were cocultured with DPP4+ hASCs. The percentage of polyfunctional CD8+ T cells that secreted multiple factors, such as IL-17A, tumour necrosis factor alpha (TNF-α) and TNF-ß, decreased when these cells were cocultured with supernatants derived from DPP4+ hASCs. CONCLUSIONS: DPP4 may regulate proliferation, hepatocyte differentiation, inflammatory cytokine secretion and T-cell functionality of hASCs. These data provide a key foundation for understanding the important role of hASC subpopulations in the regulation of T cells, which may be helpful for future immune activation studies and allow them to be customized for clinical application.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Dipeptidil Peptidasa 4 , Hepatocitos , Humanos , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/genética , Hepatocitos/metabolismo , Hepatocitos/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Cultivadas , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Células del Estroma/metabolismo , Células del Estroma/citología , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Adulto , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Interleucina-6/metabolismo , Interleucina-6/genética , Femenino , Factor de Necrosis Tumoral alfa/metabolismo , Células Madre/metabolismo , Células Madre/citología
2.
Cell Rep Methods ; 4(5): 100778, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38749443

RESUMEN

Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.


Asunto(s)
Tejido Adiposo , Etanol , Hepatocitos , Hepatopatías Alcohólicas , Organoides , Humanos , Organoides/patología , Organoides/efectos de los fármacos , Etanol/farmacología , Etanol/efectos adversos , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hepatocitos/metabolismo , Tejido Adiposo/patología , Tejido Adiposo/citología , Alcohol Deshidrogenasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Hígado/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/patología , Modelos Biológicos , Familia de Aldehído Deshidrogenasa 1/metabolismo , Familia de Aldehído Deshidrogenasa 1/genética , Células del Estroma/patología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Tiorredoxinas/metabolismo
3.
Methods Mol Biol ; 2783: 367-390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478247

RESUMEN

Cellular fate is determined by the activity of nuclear transcription factors. Here, we describe a series of protocols for detecting transcription factors at both the transcript and protein levels in human adipose cells. Methods for analysis of transcript include RNA extraction, reverse transcription polymerase chain reaction (RT-PCR), endpoint PCR, and RT-qPCR. Evaluation of protein expression includes protocols for protein extraction, quantification by Bradford assay, SDS-PAGE, western blotting, and quantification with ImageJ. Each of these steps is critical for a reliable and reproducible assessment of transcription expression and characterization of human adult-derived adipose stromal/stem cells.


Asunto(s)
Factores de Transcripción , Adulto , Humanos , Factores de Transcripción/genética , Western Blotting , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Front Cell Dev Biol ; 11: 1219218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842092

RESUMEN

Background: Adipose tissue engineering may provide 3D models for the understanding of diseases such as obesity and type II diabetes. Recently, distinct adipose stem/stromal cell (ASC) subpopulations were identified from subcutaneous adipose tissue (SAT): superficial (sSAT), deep (dSAT), and the superficial retinacula cutis (sRC). This study aimed to test these subpopulations ASCs in 3D spheroid culture induced for adipogenesis under a pro-inflammatory stimulus with lipopolysaccharide (LPS). Methods: The samples of abdominal human subcutaneous adipose tissue were obtained during plastic aesthetic surgery (Protocol 145/09). Results: ASC spheroids showed high response to adipogenic induction in sSAT. All ASC spheroids increased their capacity to lipolysis under LPS. However, spheroids from dSAT were higher than from sSAT (p = 0.0045) and sRC (p = 0.0005). Newly formed spheroids and spheroids under LPS stimulus from sSAT showed the highest levels of fatty acid-binding protein 4 (FABP4) and CCAAT/enhancer-binding protein-α (C/EBPα) mRNA expression compared with dSAT and sRC (p < 0.0001). ASC spheroids from sRC showed the highest synthesis of angiogenic cytokines such as vascular endothelial growth factor (VEGF) compared with dSAT (p < 0.0228). Under LPS stimulus, ASC spheroids from sRC showed the highest synthesis of pro-inflammatory cytokines such as IL-6 compared with dSAT (p < 0.0092). Conclusion: Distinct physiological properties of SAT can be recapitulated in ASC spheroids. In summary, the ASC spheroid from dSAT showed the greatest lipolytic capacity, from sSAT the greatest adipogenic induction, and sRC showed greater secretory capacity when compared to the dSAT. Together, all these capacities form a true mimicry of SAT and hold the potential to contribute for a deeper understanding of cellular and molecular mechanisms in healthy and unhealthy adipose tissue scenarios or in response to pharmacological interventions.

5.
Bone Rep ; 17: 101601, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35874168

RESUMEN

Adipose tissue is widely recognized as an abundant and accessible human tissue that serves as a source of cells and extracellular matrix scaffolds for regenerative surgical applications. Increasingly, orthopedic surgeons are turning to adipose tissue as a resource in their treatment of osteoarthritis and related conditions. In the U.S., the regulatory landscape governing the orthopedic surgical utilization of autologous and allogeneic adipose tissue remains complex. This manuscript reviews the Food and Drug Administration's nomenclature and guidance regarding adipose tissue products. Additionally, it surveys recent pre-clinical and clinical trial literature relating to the application of adipose-derived cells and tissues in the treatment of osteoarthritis.

6.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163472

RESUMEN

Over the last decade, several compounds have been identified for the treatment of obesity. However, due to the complexity of the disease, many pharmacological interventions have raised concerns about their efficacy and safety. Therefore, it is important to discover new factors involved in the induction/progression of obesity. Adipose stromal/stem cells (ASCs), which are mostly isolated from subcutaneous adipose tissue, are the primary cells contributing to the expansion of fat mass. Like other cells, ASCs release nanoparticles known as extracellular vesicles (EVs), which are being actively studied for their potential applications in a variety of diseases. Here, we focused on the importance of the con-tribution of ASC-derived EVs in the regulation of metabolic processes. In addition, we outlined the advantages/disadvantages of the use of EVs as potential next-generation anti-obesity agents.


Asunto(s)
Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/citología , Obesidad/metabolismo , Adipogénesis , Vesículas Extracelulares/trasplante , Homeostasis , Humanos , Obesidad/terapia , Grasa Subcutánea/citología , Grasa Subcutánea/metabolismo
7.
Trends Endocrinol Metab ; 32(12): 994-1006, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34625375

RESUMEN

We describe adipose stromal/stem cells (ASCs) in the structural/functional context of the adipose tissue (AT) stem niche (adiponiche), including cell-cell interactions and the microenvironment, and emphasize findings obtained in humans and in lineage-tracing models. ASCs have distinctive markers, 'colors', and anatomical 'locations' which influence their functions. Each adiponiche component can become impaired, thereby contributing to the pathological AT alterations seen in obesity and metabolic diseases. We discuss adiposopathy with a focus on adiponiche dysfunction, and underline the mechanisms that control AT expansion and energy balance. Better understanding of adiponiche regulation and ASC features could help to identify therapeutic targets that favor weight loss and counteract weight regain, and also contribute to innovative strategies for regenerative medicine.


Asunto(s)
Tejido Adiposo , Enfermedades Metabólicas , Tejido Adiposo/metabolismo , Humanos , Obesidad/metabolismo , Células del Estroma/metabolismo , Pérdida de Peso
8.
Stem Cell Res Ther ; 12(1): 480, 2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454629

RESUMEN

BACKGROUND: In human subcutaneous adipose tissue, the superficial fascia distinguishes superficial and deep microenvironments showing extensions called retinacula cutis. The superficial subcutaneous adipose tissue has been described as hyperplastic and the deep subcutaneous adipose tissue as inflammatory. However, few studies have described stromal-vascular fraction (SVF) content and adipose-derived stromal/stem cells (ASCs) behavior derived from superficial and deep subcutaneous adipose tissue. In this study, we analyzed a third conjunctive microenvironment: the retinacula cutis superficialis derived from superficial subcutaneous adipose tissue. METHODS: The samples of abdominal human subcutaneous adipose tissue were obtained during plastic aesthetic surgery in France (Declaration DC-2008-162) and Brazil (Protocol 145/09). RESULTS: The SVF content was characterized in situ by immunofluorescence and ex vivo by flow cytometry revealing a high content of pre-adipocytes rather in superficial subcutaneous adipose tissue microenvironment. Adipogenic assays revealed higher percentage of lipid accumulation area in ASCs from superficial subcutaneous adipose tissue compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001). The high adipogenic potential of superficial subcutaneous adipose tissue was corroborated by an up-regulation of adipocyte fatty acid-binding protein (FABP4) compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001) and of C/EBPα (CCAAT/enhancer-binding protein alpha) compared with retinacula cutis superficialis (p < 0.0001) and deep subcutaneous adipose tissue (p < 0.0001) microenvironments. Curiously, ASCs from retinacula cutis superficialis showed a higher level of adiponectin receptor gene compared with superficial subcutaneous adipose tissue (p = 0.0409), widely known as an anti-inflammatory hormone. Non-induced ASCs from retinacula cutis superficialis showed higher secretion of human vascular endothelial growth factor (VEGF), compared with superficial (p = 0.0485) and deep (p = 0.0112) subcutaneous adipose tissue and with adipogenic-induced ASCs from superficial (p = 0.0175) and deep (p = 0.0328) subcutaneous adipose tissue. Furthermore, ASCs from retinacula cutis superficialis showed higher secretion of Chemokine (C-C motif) ligand 5 (CCL5) compared with non-induced (p = 0.0029) and induced (p = 0.0089) superficial subcutaneous adipose tissue. CONCLUSIONS: This study highlights the contribution to ASCs from retinacula cutis superficialis in their angiogenic property previously described for the whole superficial subcutaneous adipose tissue besides supporting its adipogenic potential for superficial subcutaneous adipose tissue.


Asunto(s)
Tejido Subcutáneo , Factor A de Crecimiento Endotelial Vascular , Adipogénesis , Humanos , Grasa Subcutánea , Grasa Subcutánea Abdominal
9.
Artif Organs ; 45(10): 1208-1218, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34036603

RESUMEN

As an alternative to the classical tissue engineering approach, bottom-up tissue engineering emerges using building blocks in bioassembly technologies. Spheroids can be used as building blocks to reach a highly complex ordered tissue by their fusion (bioassembly), representing the foundation of biofabrication. In this study, we analyzed the biomechanical properties and the fusion capacity of human adipose stem/stromal cell (ASC) we spheroids during an in vitro model of hypertrophic cartilage established by our research group. Hypertrophic induced-ASC spheroids showed a statistically significant higher Young's modulus at weeks 2 (P < .001) and 3 (P < .0005) compared with non-induced. After fusion, non-induced and induced-ASC spheroids increased the contact area and decreased their pairs' total length. At weeks 3 and 5, induced-ASC spheroids did not fuse completely, and the cells migrate preferentially in the fusion contact region. Alizarin red O staining showed the highest intensity of staining in the fused induced-ASC spheroids at week 5, together with intense staining for collagen type I and osteocalcin. Transmission electron microscopy and element content analysis (X-ray Energy Dispersive Spectroscopy) revealed in the fused quartet at week 3 a crystal-like structure. Hypertrophic induction interferes with the intrinsic capacity of spheroids to fuse. The measurements of contact between spheroids during the fusion process, together with the change in viscoelastic profile to the plastic, will impact the establishment of bioassembly protocols using hypertrophic induced-ASC spheroids as building blocks in biofabrication.


Asunto(s)
Tejido Adiposo/citología , Cartílago/crecimiento & desarrollo , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos/métodos , Tejido Adiposo/fisiología , Fenómenos Biomecánicos , Cartílago/citología , Cartílago/ultraestructura , Células Cultivadas , Humanos , Hipertrofia , Células Madre Mesenquimatosas/fisiología , Microscopía Electrónica de Transmisión , Esferoides Celulares/fisiología , Esferoides Celulares/ultraestructura , Células del Estroma/fisiología
10.
World J Stem Cells ; 12(2): 110-122, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32184936

RESUMEN

Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating, in vitro, tissues with more authentic properties. Cell clusters called spheroids are the basis for scaffold-free tissue engineering. In this review, we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis, and are capable of spontaneously fusing to other spheroids, making them ideal building blocks for bone and cartilage tissue engineering. Here, we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall, recent studies support the notion that spheroids are ideal "building blocks" for tissue engineering by "bottom-up" approaches, which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting. Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.

11.
World J Stem Cells ; 12(1): 1-7, 2020 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110271

RESUMEN

This article presents the stem and progenitor cells from subcutaneous adipose tissue, briefly comparing them with their bone marrow counterparts, and discussing their potential for use in regenerative medicine. Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells (MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels. Pre-adipocytes are present both in the stromal-vascular fraction (SVF; freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells (ASCs; in vitro expanded cells), and have an active role on the chronic inflammation environment established in obesity, likely due their monocytic-macrophage lineage identity. The SVF and ASCs have been explored in cell therapy protocols with relative success, given their paracrine and immunomodulatory effects. Importantly, the widely explored multipotentiality of ASCs has direct application in bone, cartilage and adipose tissue engineering. The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue, revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering. Innovative cell culture techniques, in particular 3D scaffold-free cultures such as spheroids, are now available to increase the potential for regeneration and differentiation of mesenchymal lineages. Spheroids are being explored not only as a model for cell differentiation, but also as powerful 3D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.

12.
J Biomed Mater Res A ; 106(7): 1987-1996, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29569326

RESUMEN

Methacrylated gellan gum (GGMA) formulation is proposed as a second-generation hydrogel for controlled delivery of cartilage-forming cells into focal chondral lesions, allowing immediate in situ retention of cells and 3D filling of lesion volume, such approach deemed compatible with an arthroscopic procedure. Formulation optimization was carried out in vitro using chondrocytes and adipose mesenchymal stromal/stem cells (ASCs). A proof-of-concept in vivo study was conducted using a rabbit model with induced chondral lesions. Outcomes were compared with microfracture or non-treated control. Three grading scores were used to evaluate tissue repair after 8 weeks by macroscopic, histological and immunohistochemical analysis. Intense collagen type II and low collagen type I gene and protein expression were achieved in vitro by the ASC + GGMA formulation, in light with development of healthy chondral tissue. In vivo, this formulation promoted significantly superior de novo cartilage formation compared with the non-treated group. Maintenance of chondral height and integration with native tissue was further accomplished. The physicochemical properties of the proposed GGMA hydrogel exhibited highly favorable characteristics and biological performance both in vitro and in vivo, positioning itself as an attractive xeno-free biomaterial to be used with chondrogenic cells for a cost-effective treatment of focal chondral lesions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1987-1996, 2018.


Asunto(s)
Cartílago Articular/patología , Hidrogeles/farmacología , Metacrilatos/farmacología , Polisacáridos Bacterianos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Tejido Adiposo/citología , Animales , Cartílago Articular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Conejos
13.
Acta Histochem ; 118(5): 513-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27265810

RESUMEN

The stromal vascular fraction (SVF) is a heterogeneous population obtained from collagenase digestion of adipose tissue. When cultured the population becomes more homogeneous and the cells are then termed adipose stromal/stem cells (ASCs). Both the freshly isolated primary SVF population and the cultured ASC population possess regenerative abilities suggested to be mediated by paracrine mechanisms mainly. The use of ASCs and SVF cells, both in animal studies and human clinical studies, has dramatically increased during recent years. However, more knowledge regarding optimal donor characteristics such as age is demanded. Here we report that even a short age difference has an impact on the phenotype of primary SVF cells. We observed that a 3-month difference in relatively young adult rats affects the expression pattern of several mesenchymal stem cell markers in their primary SVF. The younger animals had significantly more CD90+/CD44+/CD29+/PDGFRα+primary cells, than the aged rats, suggesting an age dependent shift in the relative cell type distribution within the population. Taken together with recent studies of much more pronounced age differences, our data strongly suggest that donor age is a very critical parameter that should be taken into account in future stem cell studies, especially when using primary cells.


Asunto(s)
Células Madre/fisiología , Factores de Edad , Animales , Antígenos CD/metabolismo , Diferenciación Celular , Forma de la Célula , Células Cultivadas , Fibroblastos/fisiología , Grasa Intraabdominal/citología , Masculino , Fenotipo , Cultivo Primario de Células , Ratas Sprague-Dawley , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Testículo/anatomía & histología
14.
Polymers (Basel) ; 8(5)2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30979270

RESUMEN

Polymeric biomaterials based on polyurethane and polylactide blends are promising candidates for regenerative medicine applications as biocompatible, bioresorbable carriers. In current research we showed that 80/20 polyurethane/polylactide blends (PU/PLDL) with confirmed biological properties in vitro may be further improved by the addition of ZnO nanoparticles for the delivery of bioactive zinc oxide for cells. The PU/PLDL blends were doped with different concentrations of ZnO (0.001%, 0.01%, 0.05%) and undertaken for in vitro biological evaluation using human adipose stromal stem cells (ASCs) and olfactory ensheathing cells (OECs). The addition of 0.001% of ZnO to the biomaterials positively influenced the morphology, proliferation, and phenotype of cells cultured on the scaffolds. Moreover, the analysis of oxidative stress markers revealed that 0.001% of ZnO added to the material decreased the stress level in both cell lines. In addition, the levels of neural-specific genes were upregulated in OECs when cultured on sample 0.001 ZnO, while the apoptosis-related genes were downregulated in OECs and ASCs in the same group. Therefore, we showed that PU/PLDL blends doped with 0.001% of ZnO exert beneficial influence on ASCs and OECs in vitro and they may be considered for future applications in the field of regenerative medicine.

15.
Stem Cells ; 34(3): 614-26, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26700612

RESUMEN

Multiple sclerosis is an autoimmune disease that affects the white matter of the central nervous system and involves inflammation and demyelination. The recent advances in our understanding of adipose-derived stromal/stem cells (ASCs) and the utilization of these cells in clinical settings to treat diseases have made it essential to identify the most effective ASCs for therapy. Studies have not yet investigated the impact of obesity on the therapeutic efficacy of ASCs. Obesity is characterized by adipocyte hyperplasia and hypertrophy and can extend to metabolic and endocrine dysfunction. Investigating the impact obesity has on ASC biology will determine whether these cells are suitable for use in regenerative medicine. The therapeutic efficacy of ASCs isolated from lean subjects (body mass index [BMI] < 25; lnASCs) and obese subjects (BMI > 30; obASCs) were determined in murine experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Compared with the EAE disease-modifying effects of lnASCs, obASCs consistently failed to alleviate clinical symptoms or inhibit inflammation in the central nervous system. When activated, obASCs expressed higher mRNA levels of several pro-inflammatory cytokines compared with lnASCs. Additionally, conditioned media (CM) collected from the obASCs markedly enhanced the proliferation and differentiation of T cells; whereas, CM from lnASC did not. These results indicate that obesity reduces, or eliminates, the anti-inflammatory effects of human ASCs such that they may not be a suitable cell source for the treatment of autoimmune diseases. The data suggest that donor demographics may be particularly important when identifying suitable stem cells for treatment.


Asunto(s)
Encefalomielitis Autoinmune Experimental/terapia , Inflamación/terapia , Trasplante de Células Madre Mesenquimatosas , Esclerosis Múltiple/terapia , Adipocitos/metabolismo , Adipocitos/trasplante , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Tejido Adiposo/trasplante , Animales , Diferenciación Celular/genética , Encefalomielitis Autoinmune Experimental/patología , Humanos , Inflamación/patología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Esclerosis Múltiple/patología , Obesidad/genética , Obesidad/metabolismo , Donantes de Tejidos
16.
Stem Cells ; 33(3): 859-69, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25420617

RESUMEN

Sarcomas are frequent tumors in children and young adults that, despite a relative chemo-sensitivity, show high relapse rates with up to 80% of metastatic patients dying in 5 years from diagnosis. The real ontogeny of sarcomas is still debated and evidences suggest they may derive from precursors identified within mesenchymal stromal/stem cells (MSC) fractions. Recent studies on sarcoma microenvironment additionally indicated that MSC could take active part in generation of a supportive stroma. Based on this knowledge, we conceived to use modified MSC to deliver tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) targeting different sarcoma histotypes. Gene modified MSC expressing TRAIL were cocultured with different osteosarcoma, rhabdomyosarcoma, and Ewing's Sarcoma (ES) cell lines assessing viability and caspase-8 activation. An in vivo model focused on ES was then implemented considering the impact of MSC-TRAIL on tumor size, apoptosis, and angiogenesis. MSC expressing TRAIL induced significantly high apoptosis in all tested lines. Sarcoma death was specifically associated with caspase-8 activation starting from 8 hours of coculture with MSC-TRAIL. When injected into pre-established ES xenotransplants, MSC-TRAIL persisted within its stroma, causing significant tumor apoptosis versus control groups. Additional histological and in vitro studies reveal that MSC-TRAIL could also exert potent antiangiogenic functions. Our results suggest that MSC as TRAIL vehicles could open novel therapeutic opportunities for sarcoma by multiple mechanisms.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Sarcoma/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/biosíntesis , Animales , Apoptosis/fisiología , Neoplasias Óseas/patología , Neoplasias Óseas/terapia , Línea Celular Tumoral , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos NOD , Osteosarcoma/patología , Osteosarcoma/terapia , Rabdomiosarcoma/patología , Rabdomiosarcoma/terapia , Sarcoma/patología , Sarcoma de Ewing/patología , Sarcoma de Ewing/terapia , Ligando Inductor de Apoptosis Relacionado con TNF/genética
17.
Cytotherapy ; 15(8): 979-85, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23725689

RESUMEN

BACKGROUND AIMS: The isolation of human adipose stromal/stem cells (ASCs) currently relies on the use of the enzyme collagenase, which digests the triple helix region of peptide bonds in the collagen of adipose tissue. Collagenase is an expensive reagent derived from a bacterial source, and its use in isolating ASCs is a time-consuming procedure. This experiment evaluated the extraction of ASCs without an enzymatic digest. METHODS: We used a simple method of washing adipose tissue to isolate and characterize the cells and compared this method with the enzymatic procedure in terms of processing time, stem cell yield, differentiation potential and immunophenotype. RESULTS: Based on fluorescence activated cell sorting analysis, the stromal vascular fractions isolated with the washing method displayed a distinct and potentially favorable immunophenotype relative to the collagenase digestion. This difference may reflect the absence of chemical alteration of the cells by collagenase digestion. Independent of the isolation procedure, the resulting passaged ASCs were comparable based on immunophenotype and adipogenic and osteogenic differentiation potential. CONCLUSIONS: Although using collagenase substantially increases cell yield, the two methods yield a similar cell product.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Separación Celular/métodos , Células Madre Mesenquimatosas/citología , Adulto , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Colagenasas/química , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación , Masculino , Osteogénesis , Ingeniería de Tejidos
18.
Organogenesis ; 9(1): 3-10, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23538753

RESUMEN

Until recently, the complexity of adipose tissue and its physiological role was not well appreciated. This changed with the discovery of adipokines such as leptin. The cellular composition of adipose tissue is heterogeneous and changes as a function of diabetes and disease states such as diabetes. Tissue engineers view adipose tissue as a rich source of adult stromal/stem cells isolated by collagenase digestion. In vitro and in vivo studies have documented that adipose stromal/stem cells are multipotent, with the ability to differentiate along the adipocyte, chondrocyte, osteoblast and other lineage pathways. The adipose stromal/stem cells secrete a wide range of cytokines and growth factors with potential paracrine actions. Furthermore, adipose stromal/stem cells exert immunomodulatory functions when added to mixed lymphocyte reactions, suggesting that they can be transplanted allogeneically. This review article focuses on these mechanisms of adipose stromal/stem cell action and their potential utility as cellular therapeutics.


Asunto(s)
Tejido Adiposo/citología , Células Madre/citología , Animales , Microambiente Celular , Humanos , Inmunomodulación , Trasplante de Células Madre , Células Madre/inmunología , Células del Estroma/citología , Células del Estroma/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA