Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.535
Filtrar
1.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003073

RESUMEN

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Asunto(s)
Agua Potable , Farmacorresistencia Microbiana , Metagenómica , Farmacorresistencia Microbiana/genética , Agua Potable/microbiología , China , Monitoreo del Ambiente , Antibacterianos/farmacología , Microbiología del Agua
2.
J Hazard Mater ; 479: 135525, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39217943

RESUMEN

Composting is widely applied in recycling ever-increasing sewage sludge. However, the insufficient elimination of antibiotics and antibiotic resistance genes (ARGs) in conventional compost fertilizer poses considerable threat to agriculture safety and human health. Here we investigated the efficacy and potential mechanisms in the removal of antibiotics and ARGs from sludge in hyperthermophilic composting (HTC) plant. Our results demonstrated that the HTC product was of high maturity. HTC led to complete elimination of antibiotics and potential pathogens, as well as removal of 98.8 % of ARGs and 88.1 % of mobile genetic elements (MGEs). The enrichment of antibiotic-degrading candidates and related metabolic functions during HTC suggested that biodegradation played a crucial role in antibiotic removal. Redundancy analysis (RDA) and structural equation modelling (SEM) revealed that the reduction of ARGs was attributed to the decline of ARG-associated bacteria, mainly due to the high-temperature selection. These findings highlight the feasibility of HTC in sludge recycling and provide a deeper understanding of its mechanism in simultaneous removal of antibiotics and ARGs.

3.
Bioresour Technol ; : 131399, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218364

RESUMEN

A self-corrosion microelectrolysis (SME)-enhanced membrane-aerated biofilm reactor (eMABR) was developed for the removal of pollutants and reduction of antibiotic resistance genes (ARGs). Fe2+ and Fe3+ formed iron oxides on the biofilm, which enhanced the adsorption and redox process. SME can induce microorganisms to secrete more extracellular proteins and up-regulate the expression of ammonia monooxygenase (AMO) (0.92 log2). AMO exposed extra binding sites (ASP-69) for antibiotics, weakening the competition between NH4+-N and sulfamethoxazole (SMX). The NH4+-N removal efficiency in the S-eMABR (adding SMX and IC) increased by 44.87 % compared to the S-MABR (adding SMX). SME increased the removal performance of SMX by approximately 1.45 times, down-regulated the expressions of sul1 (-1.69 log2) and sul2 (-1.30 log2) genes, and controlled their transfer within the genus. This study provides a novel strategy for synergistic reduction of antibiotics and ARGs, and elucidates the corresponding mechanism based on metatranscriptomic and molecular docking analyses.

4.
Microb Pathog ; : 106902, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218374

RESUMEN

Mastitis remains a paramount economic threat to dairy livestock, with antibiotic resistance severely compromising treatment efficacy. This study provides an in-depth investigation into the multidrug resistance (MDR) mechanisms in bacterial isolates from bovine mastitis, emphasizing the roles of antimicrobial resistance genes (ARGs), biofilm formation, and active efflux systems. A total of 162 Staphylococci, eight Escherichia coli, and seven Klebsiella spp. isolates were obtained from 215 milk samples of clinical and subclinical mastitis cases. Antibiotic susceptibility testing identified Twenty Staphylococci (12.35%), six E. coli (75%) and seven Klebsiella (100%) identified as MDR displaying significant resistance to ß-lactams and tetracyclines The Multiple Antibiotic Resistance (MAR) index of these isolates ranged from 0.375 to 1.0, highlighting extensive resistance. Notably, 29 of the 33 MDR isolates produced biofilms on Congo red agar, while all exhibited biofilm formation in the Microtitre Plate assay. Critical ARGs (blaZ, blaTEM, blaCTX-M, tetM, tetA, tetB, tetC, strA/B, aadA) and efflux pump genes (acrB, acrE, acrF, emrB, norB) regulating active efflux were identified. This pioneering study elucidates the synergistic contribution of ARGs, biofilm production, and efflux pump activity to MDR in bovine mastitis pathogens. To our knowledge, this comprehensive study is the first of its kind, offering novel insights into the complex resistance mechanisms. The findings underscore the imperative need for advanced antibiotic stewardship and strategic interventions in dairy farming to curb the rise of antibiotic-resistant infections, thereby protecting both animal and public health.

5.
J Hazard Mater ; 479: 135624, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39208634

RESUMEN

Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents.

6.
Environ Pollut ; 361: 124852, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216670

RESUMEN

The pervasive use of antibiotics has raised substantial environmental concerns, especially regarding their temporal and spatial distribution across diverse water systems. This study addressed the gap in comprehensive research on antibiotic contamination during different hydrological periods, focusing on the Jilin section of the Songliao Basin in Northeast China, an area with severe winter ice cover. The study examined the occurrence, distribution, influencing factors, and potential ecological risks of prevalent antibiotic contaminants. Findings revealed antibiotic concentrations ranging from 239.64 to 965.81 ng/L, with antibiotic resistance genes (ARGs) at 5.22 × 10-2 16S rRNA-1 and antibiotic-resistant bacteria (ARB) up to 5.76 log10 CFU/mL. Ecological risk assessments identified significant risks to algae from oxytetracycline, erythromycin, and amoxicillin. Redundancy analysis and co-occurrence networks with ordinary least squares (OLS) demonstrated that the dispersion of ARGs and ARB is significantly influenced by environmental factors such as total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), fluoride (F⁻), and nitrate (NO3⁻). These elements, along with mobile genetic elements (MGEs), play crucial roles in ARG patterns (R2 = 0.94, p ≤ 0.01). This investigation offers foundational insights into antibiotic pollution dynamics in cold climates, supporting the development of targeted mitigation strategies for aquatic systems.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39200594

RESUMEN

Antimicrobial resistance (AMR) has emerged as a conspicuous global public health threat. The World Health Organization (WHO) has launched the "One-Health" approach, which encourages the assessment of antibiotic resistance genes (ARGs) within an environment to constrain and alleviate the development of AMR. The prolonged use and overuse of antibiotics in treating human and veterinary illnesses, and the inability of wastewater treatment plants to remove them have resulted in elevated concentrations of these metabolites in the surroundings. Microbes residing within these settings acquire resistance under selective pressure and circulate between the air-land interface. Initial evidence on the indoor environments of wastewater treatment plants, hospitals, and livestock-rearing facilities as channels of AMR has been documented. Long- and short-range transport in a downwind direction disseminate aerosols within urban communities. Inhalation of such aerosols poses a considerable occupational and public health risk. The horizontal gene transfer (HGT) is another plausible route of AMR spread. The characterization of ARGs in the atmosphere therefore calls for cutting-edge research. In the present review, we provide a succinct summary of the studies that demonstrated aerosols as a media of AMR transport in the atmosphere, strengthening the need to biomonitor these pernicious pollutants. This review will be a useful resource for environmental researchers, healthcare practitioners, and policymakers to issue related health advisories.


Asunto(s)
Aerosoles , Transferencia de Gen Horizontal , Aerosoles/análisis , Humanos , Monitoreo Biológico , Farmacorresistencia Microbiana/genética , Microbiología del Aire , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Antibacterianos/análisis , Farmacorresistencia Bacteriana/genética
8.
Int J Antimicrob Agents ; 64(3): 107296, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098620

RESUMEN

OBJECTIVE: This study aimed to explore the abundance and diversity of antibiotic resistance genes (ARGs) in seahorses (Hippocampus barbouri and Hippocampus comes) and their surrounding environment. METHODS: A combination of shotgun metagenomics and bioinformatics was used to investigate the resistome of both seahorse species. RESULTS: The analyses demonstrated a higher abundance of ARGs in seahorse-associated microbiomes, particularly in skin and gut samples, compared to those from water and sediment. Interestingly, genes conferring multidrug resistance (e.g., acrB, acrF, cpxA, msbA, and oqxB) were highly prevalent in all samples, especially in skin and gut samples. High levels of genes conferring resistance to fluoroquinolones (e.g., mfd and emrB), ß-lactam (e.g., blaCMY-71, blaOXA-55, and penA), aminocoumarin (e.g., mdtB and mdtC), and peptide antibiotics (arnA, pmrE, and rosA) were also observed in skin and gut samples. An enrichment of mobile genetic elements (MGEs) was also observed in the analysed samples, highlighting their potential role in facilitating the acquisition and spread of ARGs. In fact, the abundance of mobilisation (MOB) relaxases (e.g., MOBF, MOBP, MOBT, and MOBV) in gut and skin samples suggests a high potential for conjugation events. CONCLUSIONS: The occurrence of ARGs and MGEs in seahorses and the surrounding environment raises concerns about their transmission to humans, either through direct contact or the consumption of contaminated seafood. To the best of our knowledge, this study represents the first comprehensive analysis of ARGs in seahorse-associated microbiomes, and its results emphasise the need for monitoring and controlling the spread of ARGs in environmental settings.


Asunto(s)
Metagenómica , Smegmamorpha , Animales , Smegmamorpha/microbiología , Antibacterianos/farmacología , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Piel/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Microbiota/genética , Microbiota/efectos de los fármacos , Secuencias Repetitivas Esparcidas/genética
9.
Environ Pollut ; 359: 124713, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39134166

RESUMEN

Antibiotic resistance genes (ARGs) have been extensively observed in bacterial DNA, and more recently, in phage particles from various water sources and food items. The pivotal role played by ARG transmission in the proliferation of antibiotic resistance and emergence of new resistant strains calls for a thorough understanding of the underlying mechanisms. The aim of this study was to assess the suitability of the prototypical p-crAssphage, a proposed indicator of human fecal contamination, and the recently isolated crAssBcn phages, both belonging to the Crassvirales group, as potential indicators of ARGs. These crAss-like phages were evaluated alongside specific ARGs (blaTEM, blaCTX-M-1, blaCTX-M-9, blaVIM, blaOXA-48, qnrA, qnrS, tetW and sul1) within the total DNA and phage DNA fractions in water and food samples containing different levels of fecal pollution. In samples with high fecal load (>103 CFU/g or ml of E. coli or somatic coliphages), such as wastewater and sludge, positive correlations were found between both types of crAss-like phages and ARGs in both DNA fractions. The strongest correlation was observed between sul1 and crAssBcn phages (rho = 0.90) in sludge samples, followed by blaCTX-M-9 and p-crAssphage (rho = 0.86) in sewage samples, both in the phage DNA fraction. The use of crAssphage and crAssBcn as indicators of ARGs, considered to be emerging environmental contaminants of anthropogenic origin, is supported by their close association with the human gut. Monitoring ARGs can help to mitigate their dissemination and prevent the emergence of new resistant bacterial strains, thus safeguarding public health.


Asunto(s)
Bacteriófagos , Heces , Heces/microbiología , Heces/virología , Bacteriófagos/genética , Monitoreo del Ambiente/métodos , Humanos , Farmacorresistencia Microbiana/genética , Aguas Residuales/virología , Farmacorresistencia Bacteriana/genética , Escherichia coli/genética , Aguas del Alcantarillado , Antibacterianos/farmacología
10.
Environ Res ; 260: 119794, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142461

RESUMEN

Pharmaceuticals and personal care products (PPCPs) are insufficiently degraded in saline wastewater treatment processes and are found at high concentrations and detection frequencies in aquatic environments. In this study, the wetland plant Thalia dealbata was selected using a screening plant experiment to ensure good salt tolerance and high efficiency in removing PPCPs. An electric integrated vertical-flow constructed wetland (E-VFCW) was developed to improve the removal of PPCPs and reduce the abundance of antibiotic resistance genes (ARGs). The removal efficiency of ofloxacin, enrofloxacin, and diclofenac in the system with anaerobic cathodic and aerobic anodic chambers is higher than that of the control system (41.84 ± 2.88%, 47.29 ± 3.01%, 53.29 ± 2.54%) by approximately 20.31%, 16.04%, and 35.25%. The removal efficiency of ibuprofen in the system with the aerobic anodic and anaerobic cathodic chamber was 28.51% higher than that of the control system (72.41 ± 3.06%) and promotes the reduction of ARGs. Electrical stimulation can increase the activity of plant enzymes, increasing their adaptability to stress caused by PPCPs, and PPCPs are transferred to plants. Species related to PPCPs biodegradation (Geobacter, Lactococcus, Hydrogenophaga, and Nitrospira) were enriched in the anodic and cathodic chambers of the system. This study provides an essential reference for the removal of PPCPs in saline-constructed wetlands.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Humedales , Aguas Residuales/microbiología , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Farmacorresistencia Microbiana/genética , Eliminación de Residuos Líquidos/métodos , Preparaciones Farmacéuticas/análisis , Biodegradación Ambiental , Técnicas Electroquímicas/métodos , Antibacterianos
11.
Mol Biotechnol ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158623

RESUMEN

The current study explored the resistomes and viromes of three Indian ethnic populations: Jaisalmer, Khargone, and Ladakh. These three groups had different dietary habits and antibiotic consumption rates. A resistome analysis indicated that compared to the Jaisalmer (n = 10) group, the burden of antibiotic resistance genes in the gut microbiome was higher in the Khargone (n = 12) and Ladakh (n = 9) groups. However, correlational analysis factoring in food habits, healthcare, and economic status was not statistically significant due to the limited number of samples. A considerable number of antibiotic resistance genes (ARGs) were present in well-known gut commensals such as Bifidobacteriaceae, Acidomonococcaceae, etc., as retrieved directly by mapping to the Resfinder database using the Groot tool. Further, the raw reads were assembled using MEGAHIT, and putative bacteriophages were retrieved using the VIBRANT tool. Many of the classified bacteriophages of the virome revealed that bacteria belonging to the families Bifidobacteriaceae and Enterocococcaceae were their hosts. The prophages identified in these groups primarily contained auxiliary metabolic genes (AMGs) for primary amino acid metabolism. However, there were significantly fewer AMGs in the Ladakh group than in the Jaisalmer group (p < 0.05). None of the classified bacteriophages or prophages contained ARGs. This indicates that phages do not normally carry antibiotic resistance genes.

12.
Environ Sci Technol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137285

RESUMEN

The consumption of disposable surgical masks (DSMs) considerably increased during the coronavirus pandemic in 2019. Herein, we explored the spread of antibiotic resistance genes (ARGs) and the potential risks of antibiotic resistant bacteria (ARB) on DSMs. At environmentally relevant concentrations, the conjugate transfer frequency (CTF) of ARGs increased by 1.34-2.37 folds by 20 µg/m3 of atmospheric water-soluble inorganic ions (WSIIs), and it increased by 2.62-2.86 folds by 80 ng/m3 of polycyclic aromatic hydrocarbons (PAHs). Total suspended particulates (TSP) further promoted the CTF in combination with WSIIs or PAHs. Under WSII and PAH exposure, gene expression levels related to oxidative stress, cell membrane, and the adenosine triphosphate (ATP) were upregulated. WSIIs predominantly induced cellular contact, while PAHs triggered ATP formation and membrane damage. Molecular dynamics simulations showed that WSIIs and PAHs reduced membrane lipid fluidity and increased membrane permeability through interactions with the phosphatidylcholine bilayer. DSM filtering performance decreased, and the CTF of ARGs increased with the wearing time. The gut simulator test showed that ARB disrupted the human gut microbial community and increased total ARG abundance but did not change the ARG abundance carried by ARB themselves. A mathematical model showed that long-term WSII and PAH exposure accelerated ARG dissemination in DSMs.

13.
J Hazard Mater ; 478: 135472, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39137548

RESUMEN

Antibiotic resistance genes (ARGs) carried by gut pathogens may pose a threat to the host and ecological environment. However, few studies focus on the effects of cold stress on intestinal bacteria and ARGs in plateau animals. Here, we used 16S rRNA gene sequencing and gene chip technique to explore the difference of gut microbes and ARGs in plateau pika under 4 °C and 25 °C. The results showed that tetracycline and aminoglycoside resistance genes were the dominant ARGs in pika intestine. Seven kinds of high-risk ARGs (aadA-01, aadA-02, ermB, floR, mphA-01, mphA-02, tetM-02) existed in pika's intestine, and cold had no significant effect on the composition and structure of pika's intestinal ARGs. The dominant phyla in pika intestine were Bacteroidetes and Firmicutes. Cold influenced 0.47 % of pika intestinal bacteria in OTU level, while most other bacteria had no significant change. The diversity and community assembly of intestinal bacteria in pika remained relatively stable under cold conditions, while low temperature decreased gut microbial network complexity. In addition, low temperature led to the enrichment of glycine biosynthesis and metabolism-related pathways. Moreover, the correlation analysis showed that eight opportunistic pathogens (such as Clostridium, Staphylococcus, Streptococcus, etc.) detected in pika intestine might be potential hosts of ARGs.

14.
Sci Rep ; 14(1): 18701, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134593

RESUMEN

Colonization of the infant gut is an important developmental process characterized by high carriage of antimicrobial resistance genes (ARGs) and high abundances of pathobionts. The horizontal transfer of ARGs to pathogenic bacteria represents a major public health concern. However, there is still a paucity of longitudinal studies surveilling ARGs in healthy infant guts at high temporal resolution. Furthermore, we do not yet have a clear view of how temporal variation in ARG carriage relates to the dynamics of specific bacterial populations, as well as community virulence potential. Here, we performed deep shotgun metagenomic sequencing of monthly fecal samples from a cohort of 12 infants, covering the first year of life to interrogate the infant gut microbiome for ARG content. We further relate ARG dynamics to the dynamics of taxa, virulence potential, as well as the potential for ARG mobilization. We identify a core resistome dominated by efflux systems typically associated with Enterobacteriaceae. Overall ARG carriage declined over the first year of life and showed strong contemporaneous correlation with the population dynamics of Proteobacteria. Furthermore, the majority of ARGs could be further mapped to metagenome-assembled genomes (MAGs) classified to this phylum. We were able to assign a large number of ARGs to E. coli by correlating the temporal dynamics of individual genes with species dynamics, and we show that the temporal dynamics of ARGs and virulence factors are highly correlated, suggesting close taxonomic associations between these two gene classes. Finally, we identify ARGs linked with various categories of mobile genetic elements, demonstrating preferential linkage among mobility categories and resistance to different drug classes. While individual variation in ARG carriage is substantial during infancy there is a clear reduction over the first year of life. With few exceptions, ARG abundances closely track the dynamics of pathobionts and community virulence potential. These findings emphasize the potential for development of resistant pathogens in the developing infant gut, and the importance of effective surveillance in order to detect such events.


Asunto(s)
Heces , Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Lactante , Heces/microbiología , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Metagenómica/métodos , Metagenoma , Genes Bacterianos , Bacterias/genética , Bacterias/clasificación , Recién Nacido , Femenino
15.
Heliyon ; 10(14): e34692, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149034

RESUMEN

The emergence and development of antibiotic resistance in bacteria is a serious threat to global public health. Antibiotic resistance genes (ARGs) are often located on mobile genetic elements (MGEs). They can be transferred among bacteria by horizontal gene transfer (HGT), leading to the spread of drug-resistant strains and antibiotic treatment failure. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated genes) is one of the many strategies bacteria have developed under long-term selection pressure to restrict the HGT. CRISPR-Cas systems exist in about half of bacterial genomes and play a significant role in limiting the spread of antibiotic resistance. On the other hand, bacteriophages and other MGEs encode a wide range of anti-CRISPR proteins (Acrs) to counteract the immunity of the CRISPR-Cas system. The Acrs could decrease the CRISPR-Cas system's activity against phages and facilitate the acquisition of ARGs and virulence traits for bacteria. This review aimed to assess the relationship between the CRISPR-Cas systems and Acrs with bacterial antibiotic resistance. We also highlighted the CRISPR technology and Acrs to control and prevent antibacterial resistance. The CRISPR-Cas system can target nucleic acid sequences with high accuracy and reliability; therefore, it has become a novel gene editing and gene therapy tool to prevent the spread of antibiotic resistance. CRISPR-based approaches may pave the way for developing smart antibiotics, which could eliminate multidrug-resistant (MDR) bacteria and distinguish between pathogenic and beneficial microorganisms. Additionally, the engineered anti-CRISPR gene-containing phages in combination with antibiotics could be used as a cutting-edge treatment approach to reduce antibiotic resistance.

16.
Front Microbiol ; 15: 1459466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161608

RESUMEN

Background: Vibrio vulnificus (V. vulnificus) is a deadly opportunistic human pathogen with high mortality worldwide. Notably, climate warming is likely to expand its geographical range and increase the infection risk for individuals in coastal regions. However, due to the absence of comprehensive surveillance systems, the emergence and characteristics of clinical V. vulnificus isolates remain poorly understood in China. Methods: In this study, we investigate antibiotic resistance, virulence including serum resistance, and hemolytic ability, as well as molecular characteristics of 21 V. vulnificus isolates collected from patients in Ningbo, China. Results and discussion: The results indicate that all isolates have been identified as potential virulent vcg C type, with the majority (16 of 21) classified as 16S rRNA B type. Furthermore, these isolates exhibit a high level of antibiotic resistance, with 66.7% resistance to more than three antibiotics and 61.9% possessing a multiple antibiotic resistance (MAR) index exceeding 0.2. In terms of virulence, most isolates were categorized as grade 1 in serum resistance, with one strain, S12, demonstrating intermediate sensitivity in serum resistance, belonging to grade 3. Whole genome analysis disclosed the profiles of antibiotic resistance genes (ARGs) and virulence factors (VFs) in these strains. The strains share substantial VF genes associated with adherence, iron uptake, antiphagocytosis, toxin, and motility. In particular, key VFs such as capsule (CPS), lipopolysaccharide (LPS), and multifunctional autoprocessing repeats-in-toxin (MARTX) are prevalent in all isolates. Specifically, S12 possesses a notably high number of VF genes (672), which potentially explains its higher virulence. Additionally, these strains shared six ARGs, namely, PBP3, adeF, varG, parE, and CRP, which likely determine their antibiotic resistance phenotype. Conclusion: Overall, our study provides valuable baseline information for clinical tracking, prevention, control, and treatment of V. vulnificus infections.

17.
J Environ Manage ; 368: 122242, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39163669

RESUMEN

The widespread presence of antibiotics in global watershed environments poses a serious threat to public health and ecosystems. It is essential to examine the resistance of microbial communities in watershed environments in response to shifting antibiotic residues. Sediment samples were collected from seven sites across a watershed, encompassing surface sediment (0-10 cm) and bottom sediment (30-40 cm) depths. The aim was to replicate exposure scenarios to different antibiotics (oxytetracycline (OTC) and sulfadiazine (SD)) at varying concentrations (0, 10, and 100 µg/L) in sediment overlying water, within controlled laboratory settings. The study findings revealed significant variations in the microbial community structure of sediments between different treatments, with distinct differences observed in the upper stream and top sediment layers compared to the sediments located downstream and in the bottom layers. After the introduction of antibiotics, a significant decrease in microbial nodes was observed in the genus-level co-occurrence network analysis of the bottom sediment layer, particularly in the OTC treatment groups. In contrast, the downstream region displayed more robust correlations among the top 20 genera than the upstream area. There was no significant variance observed in the expression of Antibiotic resistance genes (ARGs), consisting of tetracycline resistance genes (tetC, tetG, tetM, tetW, and tetX) and sulfonamide resistance genes (sul1, sul2, and sul3), between sediments in the top and bottom layers. Nevertheless, downstream samples exhibited significantly higher levels of ARGs when compared to upstream samples. Network correlation analysis indicated notably lower correlations between ARGs and bacterial genera in sediments from upstream or surface layers compared to those in downstream or deeper layers. Moreover, correlations in the sediments from surface layers and upstream regions showed a decreasing trend with increasing SD exposure concentrations, while those in deeper layers and downstream areas remained relatively stable. The presence of antibiotics notably enhanced the correlation between sediment properties and ARGs, particularly emphasizing associations with total carbon, nitrogen, and sulfur content. However, the introduction of SD and OTC resulted in a decrease in the influence of these sediment factors on microbial community functions related to sulfur and nitrogen metabolism, as indicated by KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation. The research provided empirical evidence on how microbial resistance responds to changes in antibiotics in sediment samples taken from various depths and locations within a watershed. It emphasized the urgent need for heightened awareness of the movement and alteration of antibiotic resistance patterns in watershed ecosystems.

18.
Bioresour Technol ; 410: 131297, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153702

RESUMEN

Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R1 and R2, were constructed and optimized for treating SW from two pig farms, identified as SW1 and SW2. R2 showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R1 and 14.1 % in R2, respectively. Mantel's test revealed that pH, NH4+-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.

19.
Environ Pollut ; 360: 124772, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39168438

RESUMEN

The effects of co-occurrent pollutants on antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs) have raised attentions. However, how the different realistic exposure scenarios determining the effects of nanomaterials (NMs) on ARGs, was still unknown. Herein, the effects of NMs on ARGs under two realistic scenarios was investigated by short-term and long-term exposure modes. The presence of NMs with two different exposure modes could both promote the dissemination of ARGs, and the results were dose-, type- and duration-dependent. Compared to short-term exposure, the long-term exposure increased the abundances of ARGs with a greater extent except nano-ZnO. The long-term exposure increased the overall abundances of target ARGs by 2.9%-20.4%, while shot-term exposure caused the 3.4%-10.5% increment. The mechanisms of ARGs fates driven by NMs exposure were further investigated from the levels of microbial community shift, intracellular oxidative stress, and gene abundance. The variations of several potential bacterial hosts did not contribute to the difference in the ARGs transmission with different exposure modes because NMs types played more vital roles in the shift of microbial community compared to the exposure modes. For the short-term exposure, NMs were capable of triggering the QS by upregulating relevant genes, and further activated the production of surfactin and increased membrane permeability, resulting in the facilitation of ARGs transfer. However, NMs under long-term exposure scenario preferentially stimulated oxidative stress by generating more ROS, which then enhanced ARGs dissemination. Therefore, the exposure mode of NMs was one of the pivotal factors determining the ARGs fates by different triggering mechanisms. This study highlighted the importance of exposure scenario of co-occurrent pollutants on ARGs spread, which will benefit the comprehensive understanding of the actual environmental fates of ARGs.

20.
Cell Host Microbe ; 32(8): 1444-1454.e6, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146801

RESUMEN

Pregnant women undergoing a cesarean section (CS) typically receive antibiotics prior to skin incision to prevent infections. To investigate if the timing of antibiotics influences the infant gut microbiome, we conducted a randomized controlled trial (NCT06030713) in women delivering via a scheduled CS who received antibiotics either before skin incision or after umbilical cord clamping. We performed a longitudinal analysis on 172 samples from 28 infants at 8 post-birth time points and a cross-sectional analysis at 1 month in 79 infants from 3 cohorts. Although no significant associations with bacterial composition, metabolic pathways, short-chain fatty acids, and bile acids were found, we observed subtle differences between the groups at the bacterial strain level and in the load of antibiotic resistance genes. Rather, feeding mode was a predominant and defining factor impacting infant microbial composition. In conclusion, antibiotic administration during CS has only limited effects on the early-life gut microbiome.


Asunto(s)
Antibacterianos , Profilaxis Antibiótica , Cesárea , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Profilaxis Antibiótica/métodos , Embarazo , Antibacterianos/administración & dosificación , Lactante , Recién Nacido , Adulto , Estudios Transversales , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/clasificación , Estudios Longitudinales , Ácidos y Sales Biliares/metabolismo , Heces/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA