Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.071
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2313851121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38976734

RESUMEN

Mass spectrometry-based omics technologies are increasingly used in perturbation studies to map drug effects to biological pathways by identifying significant molecular events. Significance is influenced by fold change and variation of each molecular parameter, but also by multiple testing corrections. While the fold change is largely determined by the biological system, the variation is determined by experimental workflows. Here, it is shown that memory effects of prior subculture can influence the variation of perturbation profiles using the two colon carcinoma cell lines SW480 and HCT116. These memory effects are largely driven by differences in growth states that persist into the perturbation experiment. In SW480 cells, memory effects combined with moderate treatment effects amplify the variation in multiple omics levels, including eicosadomics, proteomics, and phosphoproteomics. With stronger treatment effects, the memory effect was less pronounced, as demonstrated in HCT116 cells. Subculture homogeneity was controlled by real-time monitoring of cell growth. Controlled homogeneous subculture resulted in a perturbation network of 321 causal conjectures based on combined proteomic and phosphoproteomic data, compared to only 58 causal conjectures without controlling subculture homogeneity in SW480 cells. Some cellular responses and regulatory events were identified that extend the mode of action of arsenic trioxide (ATO) only when accounting for these memory effects. Controlled prior subculture led to the finding of a synergistic combination treatment of ATO with the thioredoxin reductase 1 inhibitor auranofin, which may prove useful in the management of NRF2-mediated resistance mechanisms.


Asunto(s)
Proteómica , Humanos , Proteómica/métodos , Línea Celular Tumoral , Células HCT116 , Técnicas de Cultivo de Célula/métodos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Trióxido de Arsénico/farmacología , Auranofina/farmacología , Proliferación Celular/efectos de los fármacos , Espectrometría de Masas/métodos
2.
Neurooncol Adv ; 6(1): vdae089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978961

RESUMEN

Background: When arsenic trioxide (ATO) was combined with radiation for treatment of transplanted murine gliomas in the brain, tumor response improved with disrupted tumor blood flow and survival was significantly prolonged. Methods: Total of 31 patients with newly diagnosed glioblastoma were accrued to a multi-institutional, NCI-funded, phase I study to determine the maximum tolerated dose (MTD) of ATO administered with radiation. Secondary objectives were survival and pharmacodynamic changes in perfusion on magnetic resonance imaging (MRI). Patients (unknown MGMT and IDH status) received ATO either once or twice weekly during radiation without concurrent or adjuvant temozolomide. Results: Median age: 54.9 years, male: 68%, KPS ≥ 90: 77%, debulking surgery: 77%. Treatments were well-tolerated: 81% of patients received all the planned ATO doses. Dose-limiting toxicities included elevated liver function tests, hypokalemia, and edema. The MTD on the weekly schedule was 0.4 mg/kg and on the biweekly was 0.3 mg/kg. The median survival (mOS) for all patients was 17.7 months. Survival on the biweekly schedule (22.8 months) was longer than on the weekly schedule (12.1 months) (P = .039) as was progression-free survival (P = .004). Similarly, cerebral blood flow was significantly reduced in patients treated on the biweekly schedule (P = .007). Conclusions: ATO with standard radiation is well tolerated in patients with newly diagnosed glioblastoma. Even without temozolomide or adjuvant therapy, the overall survival of all patients (17.7 months) and especially patients who received biweekly ATO (22.8 months) is surprising and accompanied by pharmacodynamic changes on MRI. Further studies of this regimen are warranted.

3.
Oncol Rep ; 52(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963046

RESUMEN

Arsenic trioxide (ATO) is expected to be a chemical drug with antitumor activity against acute promyelocytic leukemia (APL), a type of acute myeloid leukemia. In Japan, its antitumor effects were confirmed in clinical trials for APL, and it has been approved in various countries around the world. However, there have been no reports on ATO's antitumor effects on radioresistant leukemia cells, which can be developed during radiotherapy and in combination with therapeutic radiation beams. The present study sought to clarify the antitumor effect of ATO on APL cells with radiation resistance and determine its efficacy when combined with ionizing radiation (IR). The radiation­resistant HL60 (Res­HL60) cell line was generated by subjecting the native cells to 4­Gy irradiation every week for 4 weeks. The half­maximal inhibitory concentration (IC50) for cell proliferation by ATO on native cell was 0.87 µM (R2=0.67), while the IC50 for cell proliferation by ATO on Res­HL60 was 2.24 µM (R2=0.91). IR exposure increased the sub­G1 and G2/M phase ratios in both cell lines. The addition of ATO resulted in a higher population of G2/M after 24 h rather than 48 h. When the rate of change in the sub­G1 phase was examined in greater detail, the sub­G1 phase in both control cells without ATO significantly increased by exposure to IR at 24 h, but only under the condition of 2 Gy irradiation, it had continued to increase at 48 h. Res­HL60 supplemented with ATO showed a higher rate of sub­G1 change at 24 h; however, 2 Gy irradiation resulted in a decrease compared with the control. There was a significant increase in the ratio of the G2/M phase in cells after incubation with ATO for 24 h, and exposure to 2 Gy irradiation caused an even greater increase. To determine whether the inhibition of cell proliferation and cell cycle disruptions is related to reactive oxygen species (ROS) activity, intracellular ROS levels were measured with a flow cytometric assay. Although the ROS levels of Res­HL60 were higher than those of native cells in the absence of irradiation, they did not change after 0.5 or 2 Gy irradiation. Furthermore, adding ATO to Res­HL60 reduced intracellular ROS levels. These findings provide important information that radioresistant leukemia cells respond differently to the antitumor effect of ATO and the combined effect of IR.


Asunto(s)
Trióxido de Arsénico , Arsenicales , Proliferación Celular , Leucemia Promielocítica Aguda , Óxidos , Radiación Ionizante , Humanos , Trióxido de Arsénico/farmacología , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/patología , Leucemia Promielocítica Aguda/radioterapia , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Células HL-60 , Arsenicales/farmacología , Óxidos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Tolerancia a Radiación/efectos de los fármacos , Antineoplásicos/farmacología , Especies Reactivas de Oxígeno/metabolismo
4.
Adv Exp Med Biol ; 1459: 321-339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39017850

RESUMEN

The transformation of acute promyelocytic leukemia (APL) from the most fatal to the most curable subtype of acute myeloid leukemia (AML), with long-term survival exceeding 90%, has represented one of the most exciting successes in hematology and in oncology. APL is a paradigm for oncoprotein-targeted cure.APL is caused by a 15/17 chromosomal translocation which generates the PML-RARA fusion protein and can be cured by the chemotherapy-free approach based on the combination of two therapies targeting PML-RARA: retinoic acid (RA) and arsenic. PML-RARA is the key driver of APL and acts by deregulating transcriptional control, particularly RAR targets involved in self-renewal or myeloid differentiation, also disrupting PML nuclear bodies. PML-RARA mainly acts as a modulator of the expression of specific target genes: genes whose regulatory elements recruit PML-RARA are not uniformly repressed but also may be upregulated or remain unchanged. RA and arsenic trioxide directly target PML-RARA-mediated transcriptional deregulation and protein stability, removing the differentiation block at promyelocytic stage and inducing clinical remission of APL patients.


Asunto(s)
Leucemia Promielocítica Aguda , Proteínas de Fusión Oncogénica , Tretinoina , Humanos , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Tretinoina/uso terapéutico , Tretinoina/farmacología , Trióxido de Arsénico/uso terapéutico , Trióxido de Arsénico/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Arsenicales/uso terapéutico , Arsenicales/farmacología , Óxidos/uso terapéutico , Óxidos/farmacología , Animales
5.
Int J Pharm ; 661: 124426, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38972519

RESUMEN

In recent years, the use of arsenic trioxide (ATO) in the context of ovarian cancer chemotherapy has attracted significant attention. However, ATO's limited biocompatibility and the occurrence of severe toxic side effects hinder its clinical application. A nanoparticle (NP) drug delivery system using ATO as a therapeutic agent is reported in this study. Achieving a synergistic effect by combining starvation therapy, chemodynamic therapy, and chemotherapy for the treatment of ovarian cancer was the ultimate goal of this system. This nanotechnology-based drug delivery system (NDDS) introduced arsenic-manganese complexes into cancer cells, leading to the subsequent release of lethal arsenic ions (As3+) and manganese ions (Mn2+). The acidic microenvironment of the tumor facilitated this process, and MR imaging offered real-time monitoring of the ATO dose distribution. Simultaneously, to produce reactive oxygen species that induced cell death through a Fenton-like reaction, Mn2+ exploited the surplus of hydrogen peroxide (H2O2) within tumor cells. Glucose oxidase-based starvation therapy further supported this mechanism, which restored H2O2 and lowered the cellular acidity. Consequently, this approach achieved self-enhanced chemodynamic therapy. Homologous targeting of the NPs was facilitated through the use of SKOV3 cell membranes that encapsulated the NPs. Hence, the use of a multimodal NDDS that integrated ATO delivery, therapy, and monitoring exhibited superior efficacy and biocompatibility compared with the nonspecific administration of ATO. This approach presents a novel concept for the diagnosis and treatment of ovarian cancer.

6.
Phytomedicine ; 132: 155891, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059093

RESUMEN

BACKGROUD: Arsenic trioxide (ATO), the first-line drug in treating acute premyelogenous leukemia, has the profound side effect of inducing endothelial mesenchymal transition (EndMT) and causing cardiac fibrosis. Diosgenin (DIO), a pharmaceutical compound found in Paris polyphylla, exhibits promising potential in safeguarding cardiovascular health by mitigating EndMT. PURPOSE: This study aims to explore the role and mechanism of DIO in ATO-induced myocardial fibrosis to provide a novel therapeutic agent for ATO-induced cardiac fibrosis. METHODS: Wistar rats were given DIO by gavage and ATO by tail vein. Cardiac function and fibrosis were evaluated by echocardiography and Masson's trichrome staining in rats. Human aortic endothelial cells (HAECs) were utilized to analyze ATO-induced EndMT in vitro. The cytoskeleton of HAECs was visualized using F-actin staining to observe cell morphology, while Dil-Ac-LDL staining was employed to assess cell functionality. EndMT-related factors (CD31 and α-SMA), glucocorticoid receptor (GR) and interleukin-6 (IL-6) were detected by immunofluorescence and Western blot in vivo and in vitro. Furthermore, GR was knocked down by si-GR, and IL-6 was blocked by IL-6 neutralizing antibody to verify their role in the effect of DIO on ATO-induced EndMT in HAECs. RESULTS: DIO exhibited significant efficacy in ATO-induced damage to both cardiac diastolic and systolic function, along with mitigating cardiac fibrosis. Additionally, DIO alleviated the loss of cytoskeletal anisotropy and enhanced the uptake of Dil-Ac-LDL in HAECs. Furthermore, it reversed the ATO-induced downregulation of endothelial-specific markers CD31 and GR, while suppressing the upregulation of mesenchymal markers α-SMA and IL-6, both in vivo and in vitro. Notably, the protective effect of DIO was compromised upon knockdown of GR, which also led to a reversal of DIO-induced IL-6 downregulation. Furthermore, the neutralization of IL-6 with specific antibodies abolished the ATO-induced changes related to EndMT. CONCLUSION: In this study, we clarified the protective effect of DIO on ATO-induced myocardial fibrosis against EndMT via the GR/IL-6 axis for the first time and provided a potential therapeutic agent for preventing heart damage caused by ATO.

7.
Nanomedicine (Lond) ; : 1-13, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011923

RESUMEN

Aim: Cu2O nanoparticles were synthesized using an extract from S. latifolium algae (SLCu2O NPs). Their effect on PANC-1 cells and the expression of two drug resistance-related lncRNAs were evaluated in comparison with Arsenic trioxide. Materials & methods: SLCu2O NPs were characterized using XRD, SEM, and TEM microscopies. The effects of SLCu2O NPs on cell cytotoxicity, cell cycle, and apoptosis, and expression of two drug resistance-related lncRNAs were examined using MTT assay, flow cytometry, and real-time PCR, respectively. Results: SLCu2O NPs demonstrated anti-cancer properties against PANC-1 cells comparable to Arsenic trioxide, and the expression of lncRNAs increased upon treatment with them. Conclusion: SLCu2O NPs demonstrate anti-cancer properties against PANC-1 cells; however, using gene silencing strategies along with SLCu2O NPs is suggested.


[Box: see text].

8.
Acta Pharm Sin B ; 14(7): 2977-2991, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027231

RESUMEN

Cyclin D1 has been recognized as an oncogene due to its abnormal upregulation in different types of cancers. Here, we demonstrated that cyclin D1 is SUMOylated, and we identified Itch as a specific E3 ligase recognizing SUMOylated cyclin D1 and mediating SUMO-induced ubiquitination and proteasome degradation of cyclin D1. We generated cyclin D1 mutant mice with mutations in the SUMOylation site, phosphorylation site, or both sites of cyclin D1, and found that double mutant mice developed a Mantle cell lymphoma (MCL)-like phenotype. We showed that arsenic trioxide (ATO) enhances cyclin D1 SUMOylation-mediated degradation through inhibition of cyclin D1 deSUMOylation enzymes, leading to MCL cell apoptosis. Treatment of severe combined immunodeficiency (SCID) mice grafted with MCL cells with ATO resulted in a significant reduction in tumor growth. In this study, we provide novel insights into the mechanisms of MCL tumor development and cyclin D1 regulation and discover a new strategy for MCL treatment.

9.
PeerJ ; 12: e17559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854798

RESUMEN

Background: To investigate the effects of arsenic trioxide (ATO) on human colorectal cancer cells (HCT116) growth and the role of transient receptor potential melastatin 4 (TRPM4) channel in this process. Methods: The viability of HCT116 cells was assessed using the CCK-8 assay. Western blot analysis was employed to examine the protein expression of TRPM4. The apoptosis of HCT116 cells was determined using TUNEL and Flow cytometry. Cell migration was assessed through the cell scratch recovery assay and Transwell cell migration assay. Additionally, Transwell cell invasion assay was performed to determine the invasion ability of HCT116 cells. Results: ATO suppressed the viability of HCT116 cells in a dose-dependent manner, accompanied by a decline in cell migration and invasion, and an increase in apoptosis. 9-phenanthroline (9-Ph), a specific inhibitor of TRPM4, abrogated the ATO-induced upregulation of TRPM4 expression. Additionally, blocking TRPM4 reversed the effects of ATO on HCT116 cells proliferation, including restoration of cell viability, migration and invasion, as well as the inhibition of apoptosis. Conclusion: ATO inhibits CRC cell growth by inducing TRPM4 expression, our findings indicate that ATO is a promising therapeutic strategy and TRPM4 may be a novel target for the treatment of CRC.


Asunto(s)
Apoptosis , Trióxido de Arsénico , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Neoplasias Colorrectales , Canales Catiónicos TRPM , Humanos , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/genética , Trióxido de Arsénico/farmacología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Células HCT116 , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Óxidos/farmacología , Antineoplásicos/farmacología , Invasividad Neoplásica , Arsenicales/farmacología
10.
Artículo en Inglés | MEDLINE | ID: mdl-38847245

RESUMEN

BACKGROUND: Non-Small Cell Lung Cancer (NSCLC) ranks as a leading cause of cancer-related mortality, necessitating the urgent search for cost-effective and efficient anti-NSCLC drugs. Our preliminary research has demonstrated that arsenic trioxide (ATO) significantly inhibits NSCLC angiogenesis, exerting anti-tumor effects. In conjunction with existing literature reports, the Nrf2-IL-33 pathway is emerging as a novel mechanism in NSCLC angiogenesis. OBJECTIVE: This study aimed to elucidate whether ATO can inhibit NSCLC angiogenesis through the Nrf2-IL-33 pathway. METHODS: Immunohistochemistry was employed to assess the expression of Nrf2, IL-33, and CD31 in tumor tissues from patients with NSCLC. DETA-NONOate was used as a nitric oxide (NO) donor to mimic high levels of NO in the tumor microenvironment. Western blot, quantitative real-time PCR, and enzyme-linked immunosorbent assay were utilized to evaluate the expression of Nrf2 and IL-33 in the NCI-H1299 cell line. Subcutaneous xenograft models were established in nude mice by implanting NCI-H1299 cells to assess the anti-tumor efficacy of ATO. RESULTS: High expression levels of Nrf2 and IL-33 were observed in tumor samples from patients with NSCLC, and Nrf2 expression positively correlated with microvascular density in NSCLC. In vitro, NO (released from 1mM DETA-NONOate) promoted activation of the Nrf2-IL-33 signaling pathway in NCI-H1299 cells, which was reversed by ATO. Additionally, both Nrf2 deficiency and ATO treatment significantly attenuated NOinduced IL-33 expression. In vivo, both ATO and the Nrf2 inhibitor ML385 demonstrated significant inhibitory effects on angiogenesis tumor growth. CONCLUSION: Nrf2-IL-33 signaling is usually activated in NSCLC and positively correlates with tumor angiogenesis. ATO effectively disrupts the activation of the Nrf2-IL-33 pathway in NSCLC and thus inhibits angiogenesis, suggesting its potential as an anti-angiogenic agent for use in the treatment of NSCLC.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38935127

RESUMEN

The current study compared the effects of incorporated exposure to arsenic trioxide (As) and zinc oxide nanoparticles (ZnONPs) on male reproductive hormones, oxidative stress, and inflammatory biomarkers in adult rats to each metal alone. A defensive trial with gallic acid (GA) has also been studied. A total of 60 adult male Sprague Dawley rats were categorized into six groups: control, GA (20 mg/kg), ZnONPs (100 mg/kg), As (8 mg/kg), ZnONPs with As, and GA concurrently with ZnONPs and As at the same previous doses. The regimens were applied for 60 days in sequence. Current findings showed significant weight loss in all study groups, with testicular weights significantly decreased in the As and combined groups. Testosterone, follicular stimulating hormone, and luteinizing hormone serum levels were also considerably reduced, while serum levels of estradiol increased. Inducible nitric oxide synthase (iNOS) immunoexpression was significantly upregulated while proliferating cell nuclear antigen (PCNA) was downregulated. Moreover, there was a significant elevation of testicular malondialdehyde, reduction of testicular superoxide dismutase, and glutathione peroxidase with disruptive testes, prostate glands, and seminal vesicle alterations in all experimental groups with marked changes in the combined group. Additionally, the present results revealed the protective effects of GA on ZnONPs and As adverse alterations in rats. GA enhanced sperm picture, oxidant status, and hormonal profile. Also, it modulates iNOS and PCNA immunoexpression and recovers the histoarchitecture of the testes, prostate glands, and seminal vesicles. Ultimately, GA may be a promising safeguarding agent against ZnONPs and As-induced disturbances to reproductive parameters.

12.
Expert Opin Drug Deliv ; 21(6): 867-880, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38913024

RESUMEN

INTRODUCTION: Arsenicals have a special place in the history of human health, acting both as poison and medicine. Having been used to treat a variety of diseases in the past, the success of arsenic trioxide (ATO) in treating acute promyelocytic leukemia (APL) in the last century marked its use as a drug in modern medicine. To expand their role against cancer, there have been clinical uses of arsenicals worldwide and progress in the development of drug delivery for various malignancies, especially solid tumors. AREAS COVERED: In this review, conducted on Google Scholar [1977-2024], we start with various forms of arsenicals, highlighting the well-known ATO. The mechanism of action of arsenicals in cancer therapy is then overviewed. A summary of the research progress in developing new delivery approaches (e.g. polymers, inorganic frameworks, and biomacromolecules) in recent years is provided, addressing the challenges and opportunities in treating various malignant tumors. EXPERT OPINION: Reducing toxicity and enhancing therapeutic efficacy are guidelines for designing and developing new arsenicals and drug delivery systems. They have shown potential in the fight against cancer and emerging pathogens. New technologies and strategies can help us harness the potency of arsenicals and make better products.


Asunto(s)
Antineoplásicos , Trióxido de Arsénico , Arsenicales , Sistemas de Liberación de Medicamentos , Neoplasias , Humanos , Trióxido de Arsénico/administración & dosificación , Trióxido de Arsénico/uso terapéutico , Trióxido de Arsénico/farmacocinética , Neoplasias/tratamiento farmacológico , Arsenicales/administración & dosificación , Arsenicales/uso terapéutico , Arsenicales/farmacocinética , Antineoplásicos/administración & dosificación , Animales , Desarrollo de Medicamentos , Diseño de Fármacos , Leucemia Promielocítica Aguda/tratamiento farmacológico
13.
Colloids Surf B Biointerfaces ; 241: 114014, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38850742

RESUMEN

Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.


Asunto(s)
Antineoplásicos , Trióxido de Arsénico , Portadores de Fármacos , Neoplasias , Trióxido de Arsénico/química , Trióxido de Arsénico/administración & dosificación , Trióxido de Arsénico/farmacología , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Animales , Sistemas de Liberación de Medicamentos
14.
EMBO Mol Med ; 16(6): 1324-1351, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38730056

RESUMEN

Clear-cell renal cell carcinoma (ccRCC), the major subtype of RCC, is frequently diagnosed at late/metastatic stage with 13% 5-year disease-free survival. Functional inactivation of the wild-type p53 protein is implicated in ccRCC therapy resistance, but the detailed mechanisms of p53 malfunction are still poorly characterized. Thus, a better understanding of the mechanisms of disease progression and therapy resistance is required. Here, we report a novel ccRCC dependence on the promyelocytic leukemia (PML) protein. We show that PML is overexpressed in ccRCC and that PML depletion inhibits cell proliferation and relieves pathologic features of anaplastic disease in vivo. Mechanistically, PML loss unleashed p53-dependent cellular senescence thus depicting a novel regulatory axis to limit p53 activity and senescence in ccRCC. Treatment with the FDA-approved PML inhibitor arsenic trioxide induced PML degradation and p53 accumulation and inhibited ccRCC expansion in vitro and in vivo. Therefore, by defining non-oncogene addiction to the PML gene, our work uncovers a novel ccRCC vulnerability and lays the foundation for repurposing an available pharmacological intervention to restore p53 function and chemosensitivity.


Asunto(s)
Carcinoma de Células Renales , Senescencia Celular , Neoplasias Renales , Proteína de la Leucemia Promielocítica , Proteína p53 Supresora de Tumor , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/tratamiento farmacológico , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Senescencia Celular/efectos de los fármacos , Animales , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Trióxido de Arsénico/farmacología , Ratones
15.
Leg Med (Tokyo) ; 69: 102458, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781725

RESUMEN

Arsenic trioxide (ATO), one of the oldest and most frequently used poisons, is well-known in forensic science for inducing hepatotoxicity. The regulation of peroxisomal antioxidative enzyme catalase (CAT) involves intricate mechanisms at both transcriptional and post-transcriptional levels. However, the molecular mechanisms underlying the regulation of CAT gene expression in hepatic cells remain elusive. Furthermore, the regulation of CAT gene expression evident in animals administered with ATO in vivo is not well-explored, although several studies have revealed ATO-induced reductions in CAT enzymatic activity in rat livers. In this study, we revealed ATO-dependent reductions in CAT gene expression in both rat liver and Huh-7 human hepatoma cells. Our results indicate that the decline in CAT enzymatic activity can be attributed, at least in part, to the downregulation of its gene expression. The ATO-induced reduction in CAT expression was concurrent with the reduction in peroxisome proliferator-activated receptor-gamma (PPARγ) coactivator (PGC)-1α and inactivation of PPARγ, both considered as positive regulators of CAT gene expression. Moreover, antioxidant N-acetylcysteine (NAC) demonstrated the capability to alleviate the downregulation of CAT gene expression both in vivo and in vitro. Additionally, NAC played a role in alleviating ATO-induced hepatotoxicity, potentially by mitigating the transcriptional downregulation of the CAT gene. Altogether, these results indicate that ATO exerts toxicity by inhibiting the antioxidant defense mechanism, which may be useful for forensic diagnosis of arsenic poisoning and clinical treatment of mitigating ATO-induced hepatotoxicity.


Asunto(s)
Acetilcisteína , Trióxido de Arsénico , Catalasa , Hígado , Óxidos , Trióxido de Arsénico/farmacología , Acetilcisteína/farmacología , Animales , Catalasa/metabolismo , Catalasa/genética , Ratas , Hígado/metabolismo , Hígado/efectos de los fármacos , Masculino , Arsenicales , Humanos , Expresión Génica/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo
16.
Talanta ; 276: 126240, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754186

RESUMEN

Arsenic has been an element of great interest among scientists for many years as it is a widespread metalloid in our ecosystem. Arsenic is mostly recognized with negative connotations due to its toxicity. Surely, most of us know that a long time ago, arsenic trioxide was used in medicine to treat, mainly, skin diseases. However, not everyone knows about its very wide and promising use in the treatment of cancer. Initially, in the seventies, it was used to treat leukemia, but new technological possibilities and the development of nanotechnology have made it possible to use arsenic trioxide for the treatment of solid tumours. The most toxic arsenic compound - arsenic trioxide - as the basis of anticancer drugs in which they function as a component of nanoparticles is used in the fight against various types of cancer. This review aims to present the current solutions in various cancer treatment using arsenic compounds with different binding motifs and methods of preparation to create targeted nanoparticles, nanodiamonds, nanohybrids, nanodrugs, or nanovehicles.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Arsénico/farmacología , Arsénico/uso terapéutico , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Nanopartículas/química , Neoplasias/tratamiento farmacológico
17.
Immunopharmacol Immunotoxicol ; 46(3): 408-416, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816179

RESUMEN

BACKGROUND: Myelodysplastic syndrome (MDS) is a prevalent hematological neoplastic disorder in clinics and its immunopathogenesis has garnered growing interest. Oral and intravenous arsenic agents have long been used to treat hematological malignancies. The main component of oral arsenic is realgar (arsenic disulfide), while arsenic trioxide is the main component of intravenous arsenic. METHODS: This study aimed to assess the effects of ATO and Realgar on the enhancement of peripheral blood, drug safety, and T cell immune status in the NUP98-HOXD13 (NHD13) mice model of MDS, specifically in the peripheral blood, spleen, and liver. RESULTS: The study findings indicate that realgar and arsenic trioxide (ATO) can improve peripheral hemogram in mice, whereas realgar promotes higher peripheral blood cell production than ATO. Furthermore, the clinical administration method and dose did not cause significant toxicity or side effects and thus can be considered safe. Coexistence and interconversion of hyperimmune function and immunosuppression in mice were also observed in this study. In addition, there were interactions between immune cells in the peripheral blood, spleen, and liver to regulate the immune balance of the body and activate immunity via T-cell activation. CONCLUSION: In summary, oral and intravenous arsenic agents are beneficial in improving peripheral hemogram and immunity in mice.


Asunto(s)
Trióxido de Arsénico , Arsenicales , Modelos Animales de Enfermedad , Síndromes Mielodisplásicos , Animales , Trióxido de Arsénico/administración & dosificación , Trióxido de Arsénico/farmacología , Arsenicales/farmacología , Arsenicales/administración & dosificación , Ratones , Síndromes Mielodisplásicos/tratamiento farmacológico , Síndromes Mielodisplásicos/inmunología , Sulfuros/farmacología , Sulfuros/administración & dosificación , Disulfuros/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Bazo/efectos de los fármacos , Bazo/inmunología
18.
Br J Pharmacol ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741475

RESUMEN

BACKGROUND AND PURPOSE: Nicorandil, a selective opener of potassium channels, used to treat angina, has drawn attention for its potential in mitigating lung injury, positioning it as a promising therapeutic approach to treat drug-induced lung toxicity. This study aimed to explore the protective role of nicorandil in arsenic trioxide (ATO)-induced lung injury and to elucidate the underlying mechanistic pathways. EXPERIMENTAL APPROACH: We assessed the effects of nicorandil (15 mg·kg-1, p.o.) in a rat model of pulmonary injury induced by ATO (5 mg·kg-1, i.p.). The assessment included oxidative stress biomarkers, inflammatory cytokine levels, and other biomarkers, including sirtuin-1, sirtuin-3, STAT3, TFAM, and JAK in lung tissue. Histological examination using H&E staining and molecular investigations using western blotting and PCR techniques were conducted. KEY RESULTS: In our model of lung injury, treatment with nicorandil ameliorated pathological changes as seen with H&E staining, reduced tissue levels of toxicity markers, and exerted significant antioxidant and anti-inflammatory actions. On a molecular level, treatment with nicorandil down-regulated JAK, STAT3, PPARγ, Nrf2, VEGF, p53, and micro-RNA 132 while up-regulating Sirt1, 3, TFAM, AMPK, and ERR-α in lung tissue. CONCLUSIONS AND IMPLICATIONS: The results presented here show nicorandil as a significant agent in attenuating lung injury induced by ATO in a rodent model. Nonetheless, further clinical studies are warranted to strengthen these findings.

20.
Ann Hematol ; 103(6): 1919-1929, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38630133

RESUMEN

De novo acute myeloid leukemia (AML) patients with FMS-like tyrosine kinase 3 internal tandem duplications (FLT3-ITD) have worse treatment outcomes. Arsenic trioxide (ATO) used in the treatment of acute promyelocytic leukemia (APL) has been reported to be effective in degrading the FLT3 protein in AML cell lines and sensitizing non-APL AML patient samples in-vitro. We have previously reported that primary cells from FLT3-ITD mutated AML patients were sensitive to ATO in-vitro compared to other non-M3 AML and molecular/pharmacological inhibition of NF-E2 related factor 2 (NRF2), a master regulator of antioxidant response improved the chemosensitivity to ATO and daunorubicin even in non FLT3-ITD mutated cell lines and primary samples. We examined the effects of molecular/pharmacological suppression of NRF2 on acquired ATO resistance in the FLT3-ITD mutant AML cell line (MV4-11-ATO-R). ATO-R cells showed increased NRF2 expression, nuclear localization, and upregulation of bonafide NRF2 targets. Molecular inhibition of NRF2 in this resistant cell line improved ATO sensitivity in vitro. Digoxin treatment lowered p-AKT expression, abrogating nuclear NRF2 localization and sensitizing cells to ATO. However, digoxin and ATO did not sensitize non-ITD AML cell line THP1 with high NRF2 expression. Digoxin decreased leukemic burden and prolonged survival in MV4-11 ATO-R xenograft mice. We establish that altering NRF2 expression may reverse acquired ATO resistance in FLT3-ITD AML.


Asunto(s)
Trióxido de Arsénico , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Mutación , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Tirosina Quinasa 3 Similar a fms , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Animales , Ratones , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...