Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.636
Filtrar
1.
Acta Pharm Sin B ; 14(8): 3385-3415, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39220868

RESUMEN

Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.

2.
Mar Biotechnol (NY) ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207652

RESUMEN

In this study, we examined the effect of Laminaria japonica polysaccharide (fucoidan) on the regulation of lipid metabolism. A rat model of diabetes mellitus (DM) was established by a high-sugar and high-fat diet combined with streptozotocin. Changes in the rats' body weight and blood glucose level during the experiment were recorded. Before the end of the experiment, an automatic biochemical analyzer was used to detect the fasting blood glucose (FBG), lipid content in serum, and insulin content, and calculate the insulin resistance index. Oil red O staining was used to detect lipid deposition in the liver. H&E staining, Masson staining, and PASM staining were used to observe the pathological structural changes in the liver. 16 s RNA sequencing and targeted metabolomics were used to detect intestinal microbiota and bile acid content. The results showed that fucoidan was able to inhibit weight loss in the DM rats and reduce the content of triglycerides (TG), cholesterol (TC), and low-density lipoprotein (LDL-C) in serum. Oil red O staining showed a decrease in liver fat accumulation after fucoidan treatment. 16 s RNA sequencing demonstrated that fucoidan increased the abundance of Bacteroidia, Campylobacteria, Clostridia, Gammaproteobacteria, Negativicutes, and Verrucomicrobi. Fucoidan also increased the secretion of secondary bile acids (Nor-DCA, TLCA, ß-UDCA) and alleviated lipid metabolism disorders. The expression of α-SMA was inhibited by fucoidan, whereas the expression of FXR and TGR5 was promoted. Fucoidan shows good activity in regulating lipid metabolism by regulating the expression of FXR and TGR5 and acting on the intestinal flora-bile acid axis.

3.
Front Microbiol ; 15: 1419424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206367

RESUMEN

Introduction: Evidence suggests that the dietary intake of Candida tropicalisZD-3 (ZD-3) has various health benefits, but the treatment mechanisms and effects remain unclear. The aim of this study investigates the effect of ZD-3 on reducing fat deposition in broilers and the underlying mechanism. Methods: 180 one-day-old, yellow-feathered broilers were randomly divided into three groups: control (CON) group fed a basal diet, an active Candida tropicalis ZD-3 (ZD) group supplemented with ZD, and a heat-inactivated Candida tropicalis ZD-3 (HZD) group supplemented with HZD. The experiment lasted for 28 d. Results: The ZD and HZD treatments significantly reduced the abdominal fat index (p < 0.05), decreased TG levels in serum and liver (p < 0.05), altered the ileal microbial composition by reducing the Firmicutes to Bacteroidetes (F/B) ratio. Additionally, the ZD and HZD treatments reduced liver cholesterol by decreasing ileal FXR-FGF19 signaling and increasing liver FXR-SHP signaling (p < 0.05). The ZD and HZD treatments also changed liver PC and TG classes lipid composition, regulating liver lipid metabolism by promoting TG degradation and modulating the signal transduction of the cell membrane. Discussion: Overall, ZD-3 was effective in improving lipid metabolism in broilers by regulating the ileal microbial composition and BAs enterohepatic circulation. This study provides a theoretical basis for the development and application of ZD-3 for the regulation of lipid metabolism in broilers.

4.
Front Pharmacol ; 15: 1426049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211777

RESUMEN

Background: The preservation of the Lingguizhugan (LGZG) decoction and patient compliance issue often limit the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). Hence, herein, an LGZG oral solution was developed for alleviating MASLD. Additionally, the potential mechanisms underlying LGZG-mediated MASLD mitigation were explored. Methods: A MASLD mouse model was constructed using oleic and palmitic acid-induced LO2 cells and a high-fat diet. The apoptosis, lipid deposition, and mouse liver function were analyzed to assess the therapeutic effects of the LGZG oral solution on MASLD. Serum untargeted metabolomics, gut microbiota, bile acid (BA) metabolism, immunohistochemistry, and Western blotting analyses were performed to investigate the potential mechanism of action of LGZG oral solution on MASLD. Results: The LGZG oral solution ameliorated lipid deposition, oxidative stress, inflammation, and pathological damage. Serum untargeted metabolomics results revealed the LGZG-mediated regulation of the primary BA biosynthetic pathway. The 16S ribosomal RNA sequencing of the fecal microbiota showed that LGZG oral solution increased the relative abundance of the BA metabolism-associated Bacteroides, Akkermansia, and decreased that of Lactobacillus. Additionally, the BA metabolism analysis results revealed a decrease in the total taurine-α/ß-muricholic acid levels, whereas those of deoxycholic acid were increased, which activated specific receptors in the liver and ileum, including farnesoid X receptor (FXR) and takeda G protein-coupled receptor 5 (TGR5). Activation of FXR resulted in an increase in short heterodimer partner and subsequent inhibition of cholesterol 7α-hydroxylase and sterol regulatory element-binding protein-1c expression, and activation of FXR also results in the upregulation of fibroblast growth factor 15/19 expression, and consequently inhibition of cholesterol 7α-hydroxylase, which correlated with hepatic BA synthesis and lipogenesis, ultimately attenuating lipid deposition and bile acid stasis, thereby improving MASLD. Conclusion: Altogether, the findings of this study suggest that modulating microbiota-BA-FXR/TGR5 signaling pathway may be a potential mechanism of action of LGZG oral solution for the treatment of MASLD.

5.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39204119

RESUMEN

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a metabolic syndrome characterized by chronic inflammation, insulin resistance, and islet cell damage. The prevention of T2DM and its associated complications is an urgent public health issue that affects hundreds of millions of people globally. Numerous studies suggest that disturbances in gut metabolites are important driving forces for the pathogenesis of diabetes. However, the functions and mechanisms of action of most commensal bacteria in T2DM remain largely unknown. METHODS: The quantification of bile acids (BAs) in fecal samples was performed using ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). The anti-diabetic effects of Bacteroides uniformis (B. uniformis) and its metabolites cholic acid (CA) and chenodeoxycholic acid (CDCA) were assessed in T2DM mice induced by streptozocin (STZ) plus high-fat diet (HFD). RESULTS: We found that the abundance of B. uniformis in the feces and the contents of CA and CDCA were significantly downregulated in T2DM mice. B. uniformis was diminished in diabetic individuals and this bacterium was sufficient to promote the production of BAs. Colonization of B. uniformis and intragastric gavage of CA and CDCA effectively improved the disorder of glucose and lipid metabolism in T2DM mice by inhibiting gluconeogenesis and lipolysis in the liver. CA and CDCA improved hepatic glucose and lipid metabolism by acting on the Takeda G protein-coupled receptor 5 (TGR5)/adenosine monophosphate-activated protein kinase (AMPK) signaling pathway since knockdown of TGR5 minimized the benefit of CA and CDCA. Furthermore, we screened a natural product-vaccarin (VAC)-that exhibited anti-diabetic effects by promoting the growth of B. uniformis in vitro and in vivo. Gut microbiota pre-depletion abolished the favorable effects of VAC in diabetic mice. CONCLUSIONS: These data suggest that supplementation of B. uniformis may be a promising avenue to ameliorate T2DM by linking the gut and liver.

6.
Poult Sci ; 103(11): 104183, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39216266

RESUMEN

The current study investigated the effects of dietary crude protein (CP) level on the liver lipid metabolism, gut microbiota, and bile acids (BA) profiles of growing pullets. Roman growing pullets (N = 180, 13-wk-old) were divided into 3 treatments groups with 6 replicates in each group and 10 hens in each replicate and provided 3 different dietary CP level diet treatments. The diet treatments included: a high-protein diet (15.5% CP, HP group), a medium-protein diet (14.5% CP, MP group), and a low-protein diet (13.5% CP, LP group). Compared with HP group, LP group significantly increased the lipid contents in the body (such as Breast intramuscular fat [BIMF], Leg intramuscular fat [LIMF], Percentage of abdominal fat [PAF], liver triglyceride [TG] and liver cholesterol [TC]), and the lipid metabolism-related parameters in serum (such as cholesterol (TC), high density lipoprotein cholesterol [HDL-C], low density lipoprotein cholesterol [LDL-C], very low density lipoprotein [VLDL]), and the mRNA expression of lipid metabolism-related genes (such as fatty acid synthase [FAS], CCAAT/enhancer binding protein ß [C/EBPß], and fatty acid translocase [FAT/CD6]) (P < 0.05). In addition, LP group significantly reduced the contents of lithocholic acid (LCA), isoLCA, and ursodesoxycholic acid (UDCA), and increased the deoxycholic acid (DCA) content compared with HP group (P < 0.05). The effects of LCA on lipid deposition were confirmed in chicken preadipocyte cell line (CPI), in which LCA supplementation significantly decreased the relative expression of PPARγ, FAS, acyl-CoA carboxylase (ACC) and SREBP-1c (P < 0.05). Correlation analysis further revealed a significant association between BA profiles and lipid metabolism-related parameters. Furthermore, 16S rRNA gene sequencing indicated that dietary protein level can significantly affect the richness, diversity, and composition of cecal microbiota in growing pullets. LP group significantly increased the abundance of Bacteroidetes and significantly decreased the abundance of Firmicutesa compared with the HP group. In summary, low protein diet in growing pullets influence the liver lipid metabolism through changing the gut microbiota and liver BA metabolism.

8.
J Anim Sci Biotechnol ; 15(1): 113, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135090

RESUMEN

BACKGROUND: High-fat diets (HFD) are known to enhance feed conversion ratio in broiler chickens, yet they can also result in hepatic fat accumulation. Bile acids (BAs) and gut microbiota also play key roles in the formation of fatty liver. In this study, our objective was to elucidate the mechanisms through which BA supplementation reduces hepatic fat deposition in broiler chickens, with a focus on the involvement of gut microbiota and liver BA composition. RESULTS: Newly hatched broiler chickens were allocated to either a low-fat diet (LFD) or HFD, supplemented with or without BAs, and subsequently assessed their impacts on gut microbiota, hepatic lipid metabolism, and hepatic BA composition. Our findings showed that BA supplementation significantly reduced plasma and liver tissue triglyceride (TG) levels in 42-day-old broiler chickens (P < 0.05), concurrently with a significant decrease in the expression levels of fatty acid synthase (FAS) in liver tissue (P < 0.05). These results suggest that BA supplementation effectively diminishes hepatic fat deposition. Under the LFD, BAs supplementation increased the BA content and ratio of Non 12-OH BAs/12-OH BAs in the liver and increased the Akkermansia abundance in cecum. Under the HFD, BA supplementation decreased the BAs and increased the relative abundances of chenodeoxycholic acid (CDCA) and cholic acid (CA) in hepatic tissue, while the relative abundances of Bacteroides were dramatically reduced and the Bifidobacterium, Escherichia, and Lactobacillus were increased in cecum. Correlation analyses showed a significant positive correlation between the Akkermansia abundance and Non 12-OH BA content under the LFD, and presented a significant negative correlation between the Bacteroides abundance and CA or CDCA content under the HFD. CONCLUSIONS: The results indicate that supplementation of BAs in both LFD and HFD may ameliorate hepatic fat deposition in broiler chickens with the involvement of differentiated microbiota-bile acid profile pathways.

9.
Int J Biol Macromol ; 277(Pt 4): 134607, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127294

RESUMEN

Cordyceps guangdongensis, a novel edible mushroom in China, has shown many positive health effects. In this study, we extracted the C. guangdongensis polysaccharides (CGP) from the fruiting bodies, and investigated the mechanism for CGP improved high-fat diet-induced (HFDI) metabolic diseases. We found that CGP notably reduced fat mass, improved blood lipid levels and hepatic damage, and restored the gut microbiota dysbiosis induced by high-fat diet (HFD). Metabolome analyses showed that CGP changed the composition of bile acids, and regulated HFDI metabolic disorder in hepatic tissue. Transcriptome comparison showed that the improvement of hepatic steatosis for CGP was mainly related to lipid and carbohydrate metabolism. Association analysis result revealed that Odoribacter, Bifidobacterium and Bi. pseudolongum were negatively correlated to fat and blood lipid indicators, and were significantly associated with genes and metabolites related to carbohydrate and lipid metabolism. Collectively, these results indicate that CGP may be a promising supplement for the treatment of obesity and related metabolic diseases.

10.
JPGN Rep ; 5(3): 296-302, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39149201

RESUMEN

Objectives: Odevixibat, a reversible ileal bile acid transport inhibitor, has been shown to reduce serum bile acids (sBA) and pruritus mostly in children with progressive familial intrahepatic cholestasis (PFIC) 1 and 2 in clinical trials and case reports. There are currently no published case reports or series describing its use in rare variants of cholestatic liver disease. Methods: We describe three children with progressive cholestatic liver disease who developed refractory pruritus, who had a genotypic diagnosis of AKR1D1, ABCB4 variant, and PKHD1 and PKHD2 variants; all being variants of unknown significance as per the American College of Medical Genetics and Genomics guidelines. Results: On Odevixibat there was a significant improvement in sBA (absolute change from baseline: -196 and -393 µmol/L) and pruritus in two children with heterozygous AKR1D1 and ABCB4 mutations. The child with ABCB4 variants was found to have features of sclerosing cholangitis along with a diagnosis of Crohn's disease, which represents the first reported usage of Odevixibat in such a case with good response. There was some reported improvement in the third child with PKHD1 and PKHD2 variants; however, we hypothesize that no sustained improvement could be due to severe and progressive nature of the disease. There were no side effects reported and it was well tolerated in all. Conclusion: We suggest that Odevixibat may be used as an adjunctive drug in refractory pruritus and could be started early in the course of disease if clinically and phenotypically indicated.

11.
Expert Opin Pharmacother ; : 1-9, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39155775

RESUMEN

INTRODUCTION: Alagille syndrome (ALGS) is a rare, genetic, multisystem disorder commonly associated with cholestatic liver disease; patients with ALGS may experience elevated serum bile acids and severe pruritus with associated impaired sleep. The ileal bile acid transporter (IBAT) is located on the luminal surface of enterocytes in the terminal ileum; this transport protein mediates resorption of conjugated bile acids for recirculation back to the liver. Inhibition of IBAT disrupts the enterohepatic circulation and leads to fecal elimination of bile acids. AREAS COVERED: Here, the role of odevixibat as a novel, nonsurgical approach to interrupting the enterohepatic circulation from the intestine by inhibition of IBAT is reviewed, specifically in reference to currently available data on pharmacologic IBAT inhibition. IBAT inhibition has been shown to reduce serum bile acids and pruritus in trials of cholestatic liver diseases in children including ALGS. EXPERT OPINION: Odevixibat or IBAT inhibitor should be considered as a first-line treatment for ALGS to improve pruritis, quality of life and liver-related outcomes including absence of liver transplant, surgical biliary diversion, hepatic decompensation, and death.

12.
Microbiol Spectr ; : e0118124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162543

RESUMEN

The marine bacterium Vibrio parahaemolyticus is a major cause of seafood-borne gastroenteritis in humans and of acute hepatopancreatic necrosis disease in shrimp. Bile acids, produced by the host and modified into secondary bile acids by commensal bacteria in the gastrointestinal tract, induce the virulence factors leading to disease in humans and shrimp. Here, we show that secondary bile acids also activate this pathogen's type VI secretion system 1, a toxin delivery apparatus mediating interbacterial competition. This finding implies that Vibrio parahaemolyticus exploits secondary bile acids to activate its virulence factors and identify the presence of commensal bacteria that it needs to outcompete in order to colonize the host.IMPORTANCEBacterial pathogens often manipulate their host and cause disease by secreting toxic proteins. However, to successfully colonize a host, they must also remove commensal bacteria that reside in it and may compete with them over resources. Here, we find that the same host-derived molecules that activate the secreted virulence toxins in a gut bacterial pathogen, Vibrio parahaemolyticus, also activate an antibacterial toxin delivery system that targets such commensal bacteria. These findings suggest that a pathogen can use one cue to launch a coordinated, trans-kingdom attack that enables it to colonize a host.

13.
Cureus ; 16(8): e67132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39156998

RESUMEN

BACKGROUND: There have been reports that elobixibat improves bowel movements in patients with chronic constipation. However, no studies have been conducted to date to examine bowel movements after the administration of elobixibat in patients with chronic constipation in terms of the presence or absence of the gallbladder. In this study, we examined the frequency of bowel movements and stool forms in patients with gallbladders and post-cholecystectomy patients before and after the administration of elobixibat for chronic constipation. METHODS: Elobixibat 10 mg was administered to treat chronic constipation in 40 patients with gallbladders and 18 patients who underwent cholecystectomy. The frequencies of bowel movements one week before and after elobixibat administration were compared between the two groups, using the Bristol Stool Form Scale (BSFS). RESULTS: No significant difference in patient background with or without cholecystectomy was noted between the groups. In patients with gallbladders, the pre-dosing mean frequency of bowel movements was 2.389 ± 0.502 with BSFS of 2.179 ± 0.721 and the post-dosing mean frequency of bowel movements was 4.308 ± 1.151 with BSFS of 3.718 ± 1.521, indicating significant improvement in bowel movements (p < 0.001). In post-cholecystectomy patients, the pre-dosing mean frequency of bowel movements was 2.389 ± 0.502 with BSFS of 2.222 ± 0.647 and the post-dosing mean frequency of bowel movements was 4.222 ± 1.734 with BSFS of 3.333±1.237, indicating significant improvement in bowel movements (p < 0.001). No significant difference in bowel movements was noted between patients with or without the gallbladder. CONCLUSIONS: Elobixibat is useful in improving the bowel movements of patients with chronic constipation. No significant difference was noted in the improvement of bowel movements due to cholecystectomy. It was suggested that even post-cholecystectomy patients could obtain therapeutic effects similar to patients with gallbladders.

14.
Pharmacol Res ; 208: 107361, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159729

RESUMEN

Emerging evidence shows that disrupted gut microbiota-bile acid (BA) axis is critically involved in the development of neurodegenerative diseases. However, the alterations in spatial distribution of BAs among different brain regions that command important functions during aging and their exact roles in aging-related neurodegenerative diseases are poorly understood. Here, we analyzed the BA profiles in cerebral cortex, hippocampus, and hypothalamus of young and natural aging mice of both sexes. The results showed that aging altered brain BA profiles sex- and region- dependently, in which TßMCA was consistently elevated in aging mice of both sexes, particularly in the hippocampus and hypothalamus. Furthermore, we found that aging accumulated-TßMCA stimulated microglia inflammation in vitro and shortened the lifespan of C. elegans, as well as behavioral impairment and neuroinflammation in mice. In addition, metagenomic analysis suggested that the accumulation of brain TßMCA during aging was partially attributed to reduction in BSH-carrying bacteria. Finally, rejuvenation of gut microbiota by co-housing aged mice with young mice restored brain BA homeostasis and improved neurological dysfunctions in natural aging mice. In conclusion, our current study highlighted the potential of improving aging-related neuro-impairment by targeting gut microbiota-brain BA axis.

15.
Phytomedicine ; 133: 155947, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39178642

RESUMEN

BACKGROUND: Silymarin is recognized for its excellent hepato-protective properties. Recent clinical studies have examined the effects of silymarin on metabolic dysfunction-associated steatotic liver disease (MASLD), highlighting the necessity of further exploration into optimal dosages, active components, and mechanisms of action. METHODS AND RESULTS: This study assessed the anti-inflammatory activity of the principal constituents of silymarin at the cellular level. The therapeutic effects of varying silymarin doses and components on MASLD in mouse models induced by a high-fat diet (HFD) were also examined. These findings indicate the superior efficacy of 80 mg kg-1 silymarin in mitigating liver steatosis and reducing lipid accumulation compared to 30 mg kg-1 silymarin or a combination of silybin and isosilybin A. The mechanism of silymarin involves regulating gut microbiota homeostasis and influencing the TLR4/NF-κB signalling pathway through LPS. Bile acid-targeted metabolomics analysis revealed that silymarin significantly decreases the HFD-induced increase in 7-keto-deoxycholic acid (7-KDCA). Further investigations suggested that 7-KDCA as an antagonist targeted farnesoid X receptor (FXR) and that both silybin and isosilybin A could directly interact with FXR. CONCLUSION: These findings elucidate that 80 mg kg-1 of silymarin can exert therapeutic effects on MASLD mice and offer novel insights into the mechanism of silymarin in treating MASLD. Especially, it was found that silymarin could regulate bile acid metabolism, reduce the concentration of 7-KDCA, and thus perform negative feedback regulation on FXR.


Asunto(s)
Ácido Desoxicólico , Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares , Silimarina , Animales , Silimarina/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Masculino , Ratones , Ácido Desoxicólico/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Silibina/farmacología , Transducción de Señal/efectos de los fármacos , Humanos , FN-kappa B/metabolismo , Ácidos y Sales Biliares/metabolismo , Hígado Graso/tratamiento farmacológico , Ratones Obesos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptor Toll-Like 4/metabolismo , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/metabolismo , Células Hep G2
16.
Brain Behav Immun ; 122: 510-526, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39191350

RESUMEN

The intricacy and multifaceted nature of Alzheimer's disease (AD) necessitate therapies that target multiple aspects of the disease. Mesenchymal stromal cells (MSCs) emerge as potential agents to mitigate AD symptoms; however, whether their therapeutic efficacy involves modulation of gut microbiota and the microbiome-gut-brain axis (MGBA) remains unexplored. In this study, we evaluated the effects of three distinct MSCs types-derived from the umbilical cord (UCMSC), dental pulp (SHED), and adipose tissue (ADSC)-in an APP/PS1 mouse model of AD. In comparison to saline control, MSCs administration resulted in a significant reduction of behavioral disturbances, amyloid plaques, and phosphorylated tau in the hippocampus and frontal cortex, accompanied by an increase in neuronal count and Nissl body density across AD-afflicted brain regions. Through 16S rRNA gene sequencing, we identified partial restoration of gut microbial balance in AD mice post-MSCs treatment, evidenced by the elevation of neuroprotective Akkermansia and reduction of the AD-associated Sphingomonas. To examine whether gut microbiota involved in MSCs efficacy in treating AD, SHED with better anti-inflammatory and gut microbiota recovery effects among three MSCs, and another AD model 5 × FAD mice with earlier and more pathological proteins in brain than APP/PS1, were selected for further studies. Antibiotic-mediated gut microbial inactivation attenuated MSCs efficacy in 5 × FAD mice, implicating the involvement of gut microbiota in the therapeutic mechanism. Functional analysis of altered gut microbiota and targeted bile acid metabolism profiling revealed a significant enhancement in bile acid variety following MSCs therapy. A chief bile acid constituent, taurocholic acid (TCA), was orally administered to AD mice and similarly abated AD symptoms. Nonetheless, the disruption of intestinal neuronal integrity with enterotoxin abrogated the ameliorative impact of both MSCs and TCA treatments. Collectively, our findings substantiate that MSCs confer therapeutic benefits in AD within a paradigm that primarily involves regulation of gut microbiota and their metabolites through the MGBA.

17.
Ecotoxicol Environ Saf ; 283: 116929, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39213751

RESUMEN

During pregnancy, the maternal body undergoes a series of adaptative physiological changes, leading to a slight increase in serum bile acid (BA) levels. Although the fetal liver can synthesize BAs since the first trimester through the alternative pathway, the BA metabolic system is immature in the fetus. Compared to adults, the fetus has a distinct composition of BA pool and limited expression of BA synthesis enzymes and transporters. Besides, the "enterohepatic circulation" of BAs is absent in fetus. Thus, fetal BAs need to be transported to the mother through the placenta for further metabolism and excretion, and maternal BAs can also be transported to the fetus. That is what we call the "fetal-placental-maternal BA circulation". Various BA transporters and nuclear receptors are essential for maintaining the balance of this BA circulation to ensure normal fetal development. However, prenatal adverse environments can alter fetal BA metabolism, resulting in intrauterine developmental abnormalities and susceptibility to a variety of adult chronic diseases. This review summarizes the current understanding of the fetal-placental-maternal BA circulation and discusses the effects of prenatal adverse environments on this particular BA circulation, aiming to provide a theoretical basis for exploring early prevention and treatment strategies for BA metabolism-associated adverse pregnancy outcomes and long-term impairments.

18.
Drug Metab Dispos ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214664

RESUMEN

CYP8B1 is the unique P450 enzyme with sterol 12-oxidation activity, playing an exclusive role in 12α-hydroxylating intermediates along the bile acid (BA) synthesis pathway. Despite the long history of BA metabolism studies, it is unclear whether CYP8B1 catalyzes 12α-hydroxylation of C27 BAs, the key intermediates shuttling between mitochondria and peroxisomes. This work provides robust in vitro evidence that both microsomal and recombinant CYP8B1 enzymes catalyze the 12α-hydroxylation of dihydroxycoprostanic acid (DHCA) into trihydroxycoprostanic acid (THCA). On the one hand, DHCA 12α-hydroxylation reactivity is conservatively detected in liver microsomes of both human and preclinical animals. The reactivity of human tissue fractions conforms well with the selectivity of CYP8B1 mRNA expression, while the contribution of P450 enzymes other than CYP8B1 is excluded by reaction phenotyping in commercial recombinant enzymes. On the other hand, we prepared functional recombinant human CYP8B1 proteins according to a recently published protocol. Titration of the purified CYP8B1 proteins with either C4 (7α-hydroxy-4-cholesten-3-one) or DHCA yields expected blue shifts of the heme Soret peak (type I binding). The recombinant CYP8B1 proteins efficiently catalyze 12α-hydroxylation of both DHCA and C4, with Km of 3.0 and 1.9 µM and kcat of 3.2 and 2.6 min-1, respectively. In summary, the confirmed role of CYP8B1 in 12α-hydroxylation of C27 BAs has furnished the forgotten passageway in the BA synthesis pathway. The present finding might have opened a new window to consider the biology of CYP8B1 in glucolipid metabolism and to evaluate CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases. Significance Statement Academic community has spent about 90 years interpreting the synthesis of bile acids. However, the 12α-hydroxylation of intermediates catalyzed by CYP8B1 is not completely mapped on the classic pathway, particularly for the C27 bile acids, the pivotal intermediates shuttling between mitochondria and peroxisomes. This work discloses the forgotten 12α-hydroxylation pathway from dihydroxycoprostanic acid into trihydroxycoprostanic acid. The present finding may facilitate evaluating CYP8B1 inhibition as a therapeutic approach of crucial interest for metabolic diseases.

19.
J Anim Sci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39212095

RESUMEN

Chicken meal, shrimp meal, blood meal, and soybean protein concentrate (SPC) are common alternatives to fishmeal. This study used them to prepare three diets with different levels of fishmeal (FM48, FM40, FM32) for largemouth bass (Micropterus salmoides). The results found no significant difference in the growth performance of largemouth bass fed different diets. Mixed protein increased the total cholesterol (T-CHO) content in plasma, and reduced the total superoxide dismutase (T-SOD) activity in plasma and liver. Targeted metabolomics analysis found that the low fishmeal diets affected the cholesterol and bile acid metabolism of largemouth bass. Mixed protein inhibited cyp7a1 and enhanced hmgcr and pparγ mRNA levels, as well as enhanced the expression levels of FXR in the liver. The fish fed FM32 diet showed inhibited fxr, rxrα and cyp7a1 mRNA levels in the intestine. The results of TUNEL fluorescence staining showed that mixed protein induced apoptosis in largemouth bass. The caspase 3 and caspase 9 mRNA levels in the fish fed FM40 and FM32 diet significantly increased, as well as the expression levels of CASPASE 3. The experiment also found that it could induce oxidative stress and endoplasmic reticulum stress. In conclusion, replacement of fishmeal with mixed animal and plant protein diets did not affect the growth performance, but the health and bile acid metabolism of largemouth bass was affected when the fishmeal level was reduced to 32 %.

20.
J Nutr ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128547

RESUMEN

BACKGROUND: Prior research has highlighted inverse associations between concentrations of circulating very long-chain saturated fatty acids (VLCSFAs) and coronary artery disease (CAD). However, the intricate links involving VLCSFAs, gut microbiota, and bile acids remain underexplored. OBJECTIVES: This study examined the association of erythrocyte VLCSFAs with CHD incidence, focusing on the mediating role of gut microbiota and fecal bile acids. METHODS: This 10-y prospective study included 2383 participants without CHD at baseline. Erythrocyte VLCSFAs [arachidic acid (C20:0), behenic acid (C22:0), and lignoceric acid (C24:0)] were measured using gas chromatography at baseline, and 274 CHD incidents were documented in triennial follow-ups. Gut microbiota in 1744 participants and fecal bile acid metabolites in 945 participants were analyzed using 16S ribosomal ribonucleic acid sequencing and ultra-performance liquid chromatography-tandem mass spectrometry at middle-term. RESULTS: The multivariable-adjusted hazard ratios (95% confidence interval) for CHD incidence in highest compared with lowest quartiles were 0.87 (0.61, 1.25) for C20:0, 0.63 (0.42, 0.96) for C22:0, 0.59 (0.41, 0.85) for C24:0, and 0.57 (0.39, 0.83) for total VLCSFAs. Participants with higher total VLCSFA concentrations exhibited increased abundances of Holdemanella, Coriobacteriales Incertae Sedis spp., Ruminococcaceae UCG-005 and UCG-010, and Lachnospiraceae ND3007 group. These 5 genera generated overlapping differential microbial scores (ODMSs) that accounted for 11.52% of the total VLCSFAs-CHD association (Pmediation = 0.018). Bile acids tauro_α_ and tauro_ß_muricholic acid were inversely associated with ODMS and positively associated with incident CHD. Opposite associations were found for glycolithocholic acid and glycodeoxycholic acid. Mediation analyses indicated that glycolithocholic acid, glycodeoxycholic acid, and tauro_α_ and tauro_ß_muricholic acid explained 56.40%, 35.19%, and 26.17% of the ODMS-CHD association, respectively (Pmediation = 0.002, 0.008, and 0.020). CONCLUSIONS: Elevated erythrocyte VLCSFAs are inversely associated with CHD risk in the Chinese population, with gut microbiota and fecal bile acid profiles potentially mediating this association. The identified microbiota and bile acid metabolites may serve as potential intervention targets in future studies. This trial was registered at www. CLINICALTRIALS: gov as NCT03179657.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA