Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 451
Filtrar
1.
Heliyon ; 10(17): e35418, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296013

RESUMEN

The present review assessed the effect of heat processing on red peppers' (Capsicum annum L.) bioactive compounds and antioxidant capacity. The Google Scholar and Scopus databases were used to search the existing literature. Out of 422 articles accessed based on the inclusion and exclusion criterias included, only 15 studies were qualified for detailed review. The studies examined effects of processing on red hot peppers' bioactive compounds and antioxidant capacity. Information on type of heat applied for individual processes and the conditions used, countries in which the studies were carried out and effect of heat processing's were assessed. The review showed many studies were incomprehensive to details of processing condition constraining the validity of the results obtained from various cooking effects on bioactive compounds and antioxidant capacity. Further studies aimed at gaining a better understanding of the heat processing conditions and factors that influence the bioactive compounds and antioxidant capacity of red peppers are needed.

2.
Heliyon ; 10(17): e37406, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296116

RESUMEN

Numerous cultivars of chili are grown in Bangladesh for their nutritional and sensory attributes, serving as both spices and food items. Among many, indigenous chili cultivars in Bangladesh include Sada Akshi, Kajini, Dhani, and Naga are the important ones. The functional qualities of chili peppers are attributed to the plentiful presence of bioactive substances. Consequently, this study aimed to determine the variations in bioactive compounds, antioxidant activities, and hotness among the pre-mature, mature, pre-ripening, and ripening stages of four distinct chili cultivars. Four different cultivars of chilis at four different maturity stages were collected and analyzed for their antioxidant and bioactive profiles. The findings of the research revealed that all chili varieties exhibited a notable range of vitamin C concentration, ranging from 1.67 to 8.45 mg/g FW during the maturity stages. The values of TPC, TFC, total carotenoids, and chlorophyll a and b ranged from 16.68 to 46.76 mg GAE/g, 2.80-8.53 mg QE/g, 4.31-85.79 µg/g DW, 2.83-15.54 and 0.74-5.66 µg/g DW on a dry weight basis, respectively. The antioxidant activity was assessed using the FRAP and the DPPH scavenging assay and the values ranged from 142.62 to 311.03 mM Fe (II) Equivalent/100g DW and 216.36-329.52 µM Trolox Equivalent/g DW, respectively. The content of vitamin C, TPC, total carotenoids, and chlorophyll b was increased with the stages of development. The hotness of chili also increased with the development stages. However, the antioxidant activity fluctuated during the development stages of chili. Furthermore, the study incorporated the evaluation of physical parameters, such as height, weight, and color attributes concerning chilies. The Naga variety of chili demonstrated the highest level of efficacy when compared to other varieties. The nutritional and physicochemical information of the different cultivars of chili in this study might be useful to the breeders, spice processors, and consumers for desired size, taste, and hotness with health-promoting bioactive compounds, eventually for determining the harvest time.

3.
Foods ; 13(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272585

RESUMEN

Ulvan is a water-soluble sulfated polysaccharide extracted from the green algae cell wall. Compared with polysaccharides, oligosaccharides have drawn increasing attention in various industries due to their enhanced biocompatibility and solubility. Ulvan lyase degrades polysaccharides into low molecular weight oligosaccharides through the ß-elimination mechanism. The elucidation of the structure, catalytic mechanism, and molecular modification of ulvan lyase will be helpful to obtain high value-added products from marine biomass resources, as well as reduce environmental pollution caused by the eutrophication of green algae. This review summarizes the structure and bioactivity of ulvan, the microbial origin of ulvan lyase, as well as its sequence, three-dimensional structure, and enzymatic mechanism. In addition, the molecular modification of ulvan lyase, prospects and challenges in the application of enzymatic methods to prepare oligosaccharides are also discussed. It provides information for the preparation of bioactive Ulva oligosaccharides through enzymatic hydrolysis, the technological bottlenecks, and possible solutions to address these issues within the enzymatic process.

4.
Int J Biol Macromol ; 279(Pt 3): 135395, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245105

RESUMEN

This study aims to fabricate high internal phase emulsion gels (HIPEGs) using modified hemp protein isolates for microencapsulating cannabidiol (CBD) to enhance their chemical stability and bioaccessibility. Importantly, the combined effect of CBD concentrations (0.1 vs 0.5 wt%) and post gel storage conditions (before-refrigeration (BR) vs after-refrigeration (AR)) on the properties of HIPEGs were investigated. The results showed that the CBD concentration above 0.4 % is necessary to fabricate a stable HIPEG. The rheological properties of HIPEGs were influenced by CBD concentration and refrigeration. The AR gels with 0.5 % CBD showed the highest gel strength (up to 91.7 Pa) and solid-like structures. These properties allowed to HIPEGs maintain good physical stability during storage at 4, 25, and 37 °C for 14 days due to the interconnected polyhedral protein matrices and thick interfacial protein layers. These unique protein architectures offered superior protection against CBD degradation (<2 % of initial added amount) for 100 days during exposure to light and temperature (25 or 37 °C). The INFOGEST digestion results showed the BR gels effectively protected CBD during digestion and consequently improved their stability and bioaccessibility up to 95 % and 74 %, respectively. Overall, the fabricated HIPEGs could be valuable for nutraceutical delivery.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39244957

RESUMEN

BACKGROUND: The Atractylodes chinensis (DC.) Koidz (A. chinensis) Chinese herb possesses numerous therapeutic properties and is extensively utilized in the pharmaceutical industry. Its quality is closely associated with the harvest periods. However, the optimal quality and harvest periods of A. chinensis remain elusive. METHODS: The bioactive compounds of perennial A. chinensis were detected by ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap mass spectrometry (UHPLC-Q-Orbitrap/MS) metabolomics, and differentially abundant compounds were selected by multivariate statistical analysis. Then, variations in the content of differential compounds in samples harvested at different periods were analyzed, while correlation analysis was carried out on the differential compounds to determine the suitable harvest period for distinct components. RESULTS: A total of 61 bioactive compounds were detected in all samples, grouped into 9 known classes. The results revealed that the chemical compositions of A. chinensis at different harvest periods were significantly different. The volatile oil content in the four-year-old and five-year-old samples was relatively high, at 31.92 mg/g and 32.42 mg/g, respectively. There were also significant differences in the content of the six active ingredients, for example, the five-year-old sample had the highest content of atractylodin (4.38 mg/g). Indeed, the harvest period was correlated with the abundance of most bioactive compounds. Specifically, quinquennial samples were significantly negatively correlated with the abundance of organic acids and aliphatics while moderately positively correlated with the abundance of other classes of bioactive compounds. CONCLUSIONS: According to the results, the ideal harvest time for atractylenolide Ⅲ was 3 years. Regarding organic acids, the optimal harvest time was around 2-3 years. Taken together, these results offer valuable insights to producers for optimizing the harvest period for A. chinensis.


Asunto(s)
Atractylodes , Atractylodes/química , Cromatografía Líquida de Alta Presión/métodos , Análisis Multivariante , Sesquiterpenos/análisis , Lactonas/análisis , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Aceites Volátiles/análisis , Aceites Volátiles/química , Espectrometría de Masas/métodos , Metabolómica/métodos
6.
Eur J Med Chem ; 279: 116840, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244863

RESUMEN

Pseudoalteromonas is a genus of marine bacteria and a promising source of natural products with antibacterial, antifungal, and antifouling bioactivities. To accelerate the exploration of new compounds from this genus, we applied the gene-first approach to study 632 public Pseudoalteromonas genomes. We identified 3968 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites and classified them into 995 gene cluster families (GCFs). Surprisingly, only 9 GCFs (0.9 %) included an experimentally identified reference biosynthetic gene cluster from the Minimum Information about a Biosynthetic Gene cluster database (MIBiG), suggesting a striking novelty of secondary metabolites in Pseudoalteromonas. Bioinformatic analysis of the biosynthetic diversity encoded in the identified BGCs uncovered six dominant species of this genus, P. citrea, P. flavipulchra, P. luteoviolacea, P. maricaloris, P. piscicida, and P. rubra, that encoded more than 17 BGCs on average. Moreover, each species exhibited a species-specific distribution of BGC. However, a deep analysis revealed two BGCs conserved across five of the six dominant species. These BGCS encoded an unknown lanthipeptide and the siderophore myxochelin B implying an essential role of antibiotics for Pseudoalteromonas. We chemically profiled 11 strains from the 6 dominant species and identified four new antibiotics, korormicins L-O (1-4), from P. citrea WJX-3. Our results highlight the unexplored biosynthetic potential for bioactive compounds in Pseudoalteromonas and provide an important guideline for targeting exploration.

7.
Curr Res Microb Sci ; 7: 100241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091295

RESUMEN

Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.

8.
Foods ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39123500

RESUMEN

Arazá is a fruit native to the Amazonian region with characteristic properties such as aroma, texture, color, and marked acidity. Additionally, the fruit is rich in bioactive compounds in its three fractions (seed, pulp, and peel), such as ascorbic acid, phenolic compounds (and their derivatives), and carotenoids, which have been extensively investigated in the literature for their beneficial properties for human health. However, it is a little-known fruit, and the role it can play in health-promoting activities related to the treatment and prevention of non-communicable diseases (NCDs) when incorporated into the diet is also unknown. Therefore, it is necessary to know the profile of bioactive compounds and the biological properties Arazá possesses, which is the aim of this review.

9.
J Hazard Mater ; 478: 135490, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39141946

RESUMEN

Harmful algal bloom (HAB) is an unresolved existing problem worldwide. Here, we reported a novel algicidal bacterium, Pseudomonas fragi YB2, capable of lysing multiple algal species. To Chlorella vulgaris, YB2 exhibited a maximum algicidal rate of 95.02 % at 120 h. The uniqueness of YB2 lies in its ability to self-produce three algicidal compounds: 2-methyl-1, 3-cyclohexanedione (2-MECHD), N-phenyl-2-naphthylamine, and cyclo (Pro-Leu). The algicidal properties of 2-MECHD have not been previously reported. YB2 significantly affected the chloroplast and mitochondrion, thus decreasing in chlorophyll a by 4.74 times for 120 h and succinate dehydrogenase activity by 103 times for 36 h. These physiological damages disrupted reactive oxygen species and Ca2+ homeostasis at the cellular level, increasing cytosolic superoxide dismutase (23 %), catalase (35 %), and Ca2+ influx. Additionally, the disruption of Ca2+ homeostasis rarely reported in algicidal bacteria-algae interaction was observed using the non-invasive micro-test technology. We proposed a putative algicidal mechanism based on the algicidal outcomes and physiological algicidal effects and explored the potential of YB2 through an algicidal simulation test. Overall, this study is the first to report the algicidal bacterium P. fragi and identify a novel algicidal compound, 2-MECHD, providing new insights and a potent microbial resource for the biocontrol of HAB.


Asunto(s)
Chlorella vulgaris , Pseudomonas , Pseudomonas/metabolismo , Pseudomonas/efectos de los fármacos , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/metabolismo , Ciclohexanonas/toxicidad , Ciclohexanonas/química , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Clorofila A/metabolismo
10.
PeerJ ; 12: e17882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39184384

RESUMEN

Plants and bacteria are co-evolving and interact with one another in a continuous process. This interaction enables the plant to assimilate the nutrients and acquire protection with the help of beneficial bacteria known as plant growth-promoting bacteria (PGPB). These beneficial bacteria naturally produce bioactive compounds that can assist plants' stress tolerance. Moreover, they employ various direct and indirect processes to induce plant growth and protect plants against pathogens. The direct mechanisms involve phytohormone production, phosphate solubilization, zinc solubilization, potassium solubilization, ammonia production, and nitrogen fixation while, the production of siderophores, lytic enzymes, hydrogen cyanide, and antibiotics are included under indirect mechanisms. This property can be exploited to prepare bioformulants for biofertilizers, biopesticides, and biofungicides, which are convenient alternatives for chemical-based products to achieve sustainable agricultural practices. However, the application and importance of PGPB in sustainable agriculture are still debatable despite its immense diversity and plant growth-supporting activities. Moreover, the performance of PGPB varies greatly and is dictated by the environmental factors affecting plant growth and development. This review emphasizes the role of PGPB in plant growth-promoting activities (stress tolerance, production of bioactive compounds and phytohormones) and summarises new formulations and opportunities.


Asunto(s)
Bacterias , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas , Estrés Fisiológico , Desarrollo de la Planta/efectos de los fármacos , Desarrollo de la Planta/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Adaptación Fisiológica , Plantas/microbiología , Plantas/metabolismo , Microbiología del Suelo
11.
Nutrients ; 16(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39203781

RESUMEN

Breast cancer (BC) is one of the most common cancers worldwide and a leading cause of cancer-related deaths among women. The escalating incidence of BC underscores the necessity of multi-level treatment. BC is a complex and heterogeneous disease involving many genetic, lifestyle, and environmental factors. Growing evidence suggests that nutrition intervention is an evolving effective prevention and treatment strategy for BC. In addition, the human microbiota, particularly the gut microbiota, is now widely recognized as a significant player contributing to health or disease status. It is also associated with the risk and development of BC. This review will focus on nutrition intervention in BC, including dietary patterns, bioactive compounds, and nutrients that affect BC prevention and therapeutic responses in both animal and human studies. Additionally, this paper examines the impacts of these nutrition interventions on modulating the composition and functionality of the gut microbiome, highlighting the microbiome-mediated mechanisms in BC. The combination treatment of nutrition factors and microbes is also discussed. Insights from this review paper emphasize the necessity of comprehensive BC management that focuses on the nutrition-microbiome axis.


Asunto(s)
Neoplasias de la Mama , Microbioma Gastrointestinal , Humanos , Neoplasias de la Mama/microbiología , Neoplasias de la Mama/dietoterapia , Femenino , Animales , Dieta , Estado Nutricional
12.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39204189

RESUMEN

Chemotherapy-induced hair loss is a distressing side effect of cancer treatment, and medical interventions are often needed to address this problem. The objectives of this study were to evaluate the bioactivity of goat placenta (GP) extract on both normal and chemotherapy-induced hair cells and to develop PEGylated liposomes (PL) and microspicule (MS) formulations for promoting hair growth in patients with chemotherapy-induced hair loss. The bioactivities of GP extract on human follicle dermal papilla (HFDP) cells and cells damaged by chemotherapy were assessed. GP extract was incorporated into PLs and MS gel (PL-MS) and then investigated in vitro skin permeation and in vivo studies on the scalps of patients with chemotherapy-induced hair loss. GP extract stimulated HFDP cell proliferation in both normal and cisplatin-damaged cells. PL nanovesicles and MS gel worked synergistically to deliver macromolecular proteins into the skin and hair follicles. The application of GP extract-loaded PL-MS to the scalps of chemotherapy-treated patients for 12 weeks significantly enhanced the hair growth rate, without causing skin irritation. In conclusion, GP extract promoted the proliferation of hair cells damaged by chemotherapy, when this extract, combined with PL-MS, effectively delivered bioactive macromolecules across the skin and hair follicles, resulting in successful regrowth of hair post-chemotherapy.

13.
Int J Food Sci ; 2024: 2662967, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132548

RESUMEN

This research investigated the impact of enriching bread with banana peel powder (BPP) on nutritional attributes, bioactive components, antioxidant activity, and sensory characteristics. Four bread samples were prepared and evaluated: S1 (control), S2 (5% BPP), S3 (7% BPP), and S4 (10% BPP). The addition of BPP resulted in a reduction in moisture content and an increase in ash, fat, protein, and fibre levels, while reducing overall carbohydrate content. Furthermore, BPP-enriched bread exhibited an increase in total phenolic content (TPC) (ranging from 28.46 to 42.38 mg GAE/100 g) and total flavonoid content (TFC) (ranging from 6.63 to 9.46 QE mg/g), indicating enhanced antioxidant properties. The DPPH assay demonstrated the antioxidant potential of BPP-incorporated bread, with the radical scavenging activity (RSA) increasing from 18.84% to 53.03% with increasing BPP enrichment. Color assessment revealed changes in both crust and crumb, with a decrease from 78.46 to 40.53 in the lightness (L∗) value of the crust and from 61.21 to 41.10 in the lightness (L∗) value of the crumb. Additionally, changes in a∗ and b∗ values were observed. The a∗ values varied between 17.59 and 12.42 for the crust and between 6.96 and 5.89 for the crumb. The b∗ values varied between 31.61 and 23.65 for the crust and between 19.63 and 16.58 for the crumb. Sensory evaluation suggested that up to 5% BPP inclusion in bread mirrored the texture, taste, appearance, and overall acceptability of control bread, but enrichment beyond 5% resulted in lower sensory scores. In summary, the incorporation of BPP significantly influenced various aspects of bread, highlighting its potential for applications in the food and industry sectors.

14.
J Food Sci Technol ; 61(6): 1180-1187, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39118873

RESUMEN

The objective of this study was to create a plant-based drink from jackfruit seed. Firstly, jackfruit seed powder was hydrolyzed step by step with 0.2% α-amylase for 60 min and 0.3% glucoamylase for 90 min. The sample then was fermented with Lactiplantibacillus plantarum (L. plantarum) at 37 °C for 15 h. The findings indicated that hydrolysis and lactic acid fermentation enhanced the polyphenol, flavonoid, and antioxidant activity of jackfruit seed drink. Jackfruit seed drink was a favorable matrix for L. plantarum delivery. Moreover, the product underwent fermentation and reached the viability density of L. plantarum of 8.15 Log CFU/mL. The overall sensory liking score was rated between 5 and 5.5/7 points. Throughout the 35 days of storage period at 4-6 °C, the number of L. plantarum uncharged, whereas the bioactive compound and antioxidant activity of the product diminished by nearly 20-50% compared to the sample before storage. Overall, this research highlights the potential of the the fermented jackfruit seed drink as a probiotic plant-based drink with massive biological function and sensory appeal.

15.
Foods ; 13(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39200418

RESUMEN

Today, food scientists are interested in more rational use of crops that possess desirable nutritional properties, and buckwheat is one of the functional pseudocereals that represents a rich source of bioactive compounds (BACs) and nutrients, phytochemicals, antimicrobial (AM) agents and antioxidants (AOs), which can be effectively applied in the prevention of malnutrition and celiac disease and treatment of various important health problems. There is ample evidence of the high potential of buckwheat consumption in various forms (food, dietary supplements, home remedies or alone, or in synergy with pharmaceutical drugs) with concrete benefits for human health. Contamination as well as other side-effects of all the aforementioned forms for application in different ways in humans must be seriously considered. This review paper presents an overview of the most important recent research related to buckwheat bioactive compounds (BACs), highlighting their various functions and proven positive effects on human health.

16.
Comput Biol Chem ; 112: 108180, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168017

RESUMEN

Avicenna, a pioneer of modern medicine, recommended diuretic therapy to treat diabetes. Like Avicenna's approach, current medicine frequently prescribes oral antidiabetic pills with diuretic and hypoglycemic effects by blocking the absorption of sodium and glucose. To this end, the paper sought natural compounds with potential antidiabetic, cardioprotective, and diuretic properties through computer-based drug design (CADD) techniques, targeting the inhibition of SGLT2 proteins. We identified several bioactive compounds from various sources exhibiting potential multifunctionality through high-throughput virtual screening (HTVS) of vast compound libraries. Subsequent molecular docking and dynamics simulations were employed to assess these compounds' binding efficacy and stability with their respective targets, alongside ADMET prediction, to evaluate their pharmacokinetic and safety profiles. The top hits, phenylalanyltryptophan, tyrosyl-tryptophan, tyrosyl-tyrosine, celecoxib, and DIBOA trihexose, had superior docking scores ranging from -11,4 to -9,8 kcal/mol. The molecular dynamics simulations displayed steady interactions between target proteins and biocompounds throughout 100 ns without significant conformational shifts. These findings lay the groundwork for lead optimization and preclinical testing. This meticulous process ensures the safety and efficacy of potential treatments, marking a meaningful step toward developing innovative treatments for managing diabetes and its associated health complications.


Asunto(s)
Diuréticos , Diseño de Fármacos , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Diuréticos/química , Diuréticos/farmacología , Humanos , Simulación de Dinámica Molecular , Transportador 2 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/química , Inhibidores del Cotransportador de Sodio-Glucosa 2/química , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Estructura Molecular
18.
Access Microbiol ; 6(6)2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045239

RESUMEN

The ethanolic (80 %), methanolic (80 %) and aqueous decoction (100 % distilled water) of whole plant of Oxalis corniculata Linn (Indian Sorrel) was evaluated for its anti-microbial and antioxidant properties by in vitro methods. Methanolic (80 %) and ethanolic (80 %) decoctions showed significant antibacterial property against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella typhi bacterial strains. In comparison to Chloramphenicol (C30) against bacteria, 80 % ethanolic decoctions showed significant effect, among the decoctions. Nowadays though the standard soap is in huge demand but it's also facing major backlash due to the presence of synthetic compounds in it, which over long use may cause harmful effects on the skin health. Therefore, the organic soaps which are made up of natural ingredients, herbs or any sort Ayurvedic compound have fewer side effects on the human skin and are much safer than standard daily soap. The formulated therapeutic soap exhibits a significant amount of reducing potential (high FRAP and TAC values) and antioxidant activity (DPPH, ABTS assay).

19.
Plants (Basel) ; 13(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065442

RESUMEN

Phedimus aizoon has been utilized as a medicinal plant in Asia. However, the production of phytochemical-rich extracts from P. aizoon and the evaluation of their bioactivity are limited. Herein, phytochemical-rich extracts were prepared by ultrasound-assisted extraction of P. aizoon, with a high extraction yield of 16.56%. The extracts contained about 126 mg of phenolics and 31 mg of flavonoids per g of the extracts. The chromatographic analysis (GC-MS and HPLC analyses) identified 19 notable phytochemicals of the extracts from P. aizoon, including pentacosane, hexadecanoic acid, gallic acid, vanillic acid, and quercetin. The gallic acid content of the extracts was relatively high at 2.75 mg/g. The identified compounds are known to have various bioactivities, such as antioxidant, antibacterial, and antifungal activities. In fact, the prepared extracts exhibited antioxidant activity at 24-28% of that of ascorbic acid. In addition, it showed antibacterial activity against both Escherichia coli (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacteria). This study highlights that P. aizoon deserves attention as a natural bioactive substance and emphasizes the need for applications of the extracts from P. aizoon.

20.
J Invertebr Pathol ; 206: 108164, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960029

RESUMEN

This study aims to investigate how bioactivities of the coral surface mucus layer (SML) respond to changes in mucus-associated bacterial communities between bleached and healthy Porites lobata corals in Nha Trang Bay, Vietnam. The findings suggested that significant shifts in the mucus-associated bacterial communities were related to changes in coral health states from bleached to healthy P. lobata colonies (p < 0.05), while bacterial compositions were not significantly different across seasons and locations (p > 0.05). Of which 8 genera, Shewanella, Fusibacter, Halodesulfovibrio, Marinifilum, Endozoicomonas, Litoribacillus, Algicola, and Vibrio were present only in the SML of bleached coral while absent in the SML of the healthy one. As compared with the bleached SML, the healthy SML demonstrated stronger antibacterial activity against a coral bleaching pathogen, V. coralliilyticus, higher antitumor activity against HCT116 cell accompanied with increased induction of cleaved PARP and accelerated cell nucleic apoptosis and cycle arrest at S and G2/M phases exhibiting several typical characteristics, cell shrinkage, lost cell contact, and apoptotic body formation. Moreover, putative compounds detected at 280 nm in the healthy SML were obviously higher than those in the bleached one, probably they could be bioactive molecules responsible for competitively exclusion of pathogens, Algicola and Vibrio, from the healthy SML.


Asunto(s)
Antozoos , Moco , Animales , Antozoos/microbiología , Moco/microbiología , Humanos , Vibrio/fisiología , Vietnam , Bacterias/efectos de los fármacos , Microbiota
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA