Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
Antimicrob Agents Chemother ; : e0075124, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133021

RESUMEN

Taniborbactam, a bicyclic boronate ß-lactamase inhibitor with activity against Klebsiella pneumoniae carbapenemase (KPC), Verona integron-encoded metallo-ß-lactamase (VIM), New Delhi metallo-ß-lactamase (NDM), extended-spectrum beta-lactamases (ESBLs), OXA-48, and AmpC ß-lactamases, is under clinical development in combination with cefepime. Susceptibility of 200 previously characterized carbapenem-resistant K. pneumoniae and 197 multidrug-resistant (MDR) Pseudomonas aeruginosa to cefepime-taniborbactam and comparators was determined by broth microdilution. For K. pneumoniae (192 KPC; 7 OXA-48-related), MIC90 values of ß-lactam components for cefepime-taniborbactam, ceftazidime-avibactam, and meropenem-vaborbactam were 2, 2, and 1 mg/L, respectively. For cefepime-taniborbactam, 100% and 99.5% of isolates of K. pneumoniae were inhibited at ≤16 mg/L and ≤8 mg/L, respectively, while 98.0% and 95.5% of isolates were susceptible to ceftazidime-avibactam and meropenem-vaborbactam, respectively. For P. aeruginosa, MIC90 values of ß-lactam components of cefepime-taniborbactam, ceftazidime-avibactam, ceftolozane-tazobactam, and meropenem-vaborbactam were 16, >8, >8, and >4 mg/L, respectively. Of 89 carbapenem-susceptible isolates, 100% were susceptible to ceftolozane-tazobactam, ceftazidime-avibactam, and cefepime-taniborbactam at ≤8 mg/L. Of 73 carbapenem-intermediate/resistant P. aeruginosa isolates without carbapenemases, 87.7% were susceptible to ceftolozane-tazobactam, 79.5% to ceftazidime-avibactam, and 95.9% and 83.6% to cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively. Cefepime-taniborbactam at ≤16 mg/L and ≤8 mg/L, respectively, was active against 73.3% and 46.7% of 15 VIM- and 60.0% and 35.0% of 20 KPC-producing P. aeruginosa isolates. Of all 108 carbapenem-intermediate/resistant P. aeruginosa isolates, cefepime-taniborbactam was active against 86.1% and 69.4% at ≤16 mg/L and ≤8 mg/L, respectively, compared to 59.3% for ceftolozane-tazobactam and 63.0% for ceftazidime-avibactam. Cefepime-taniborbactam had in vitro activity comparable to ceftazidime-avibactam and greater than meropenem-vaborbactam against carbapenem-resistant K. pneumoniae and carbapenem-intermediate/resistant MDR P. aeruginosa.

2.
J Food Sci ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150691

RESUMEN

A novel and facile surface molecularly imprinted polymer coated on magnetic chitosan (Fe3O4@CS@MIP) was fabricated for the selective recognition and enrichment of naringin (NRG). The Fe3O4@CS@MIP was prepared based on covalent-noncovalent synergistic imprinting strategies, utilizing 4-vinyl phenyl boric acid as covalent functional monomer, deep eutectic solvent (choline chloride/methacrylic acid [ChCl/MAA]) as non-covalent functional monomer and Fe3O4@CS nanoparticles as the magnetic support. The obtained Fe3O4@CS@MIP exhibited a uniform morphology, excellent crystallinity, outstanding magnetic properties, and high surface area. Owing to the double recognition abilities, the resultant polymer showed exceptional binding performance and rapid mass transfer in phosphate buffer (pH 7.0). The maximum binding amount of Fe3O4@CS@MIP was found to be 15.08 mg g-1, and the equilibrium adsorption could be achieved within 180 min. Moreover, they also exhibited stronger selectivity for NRG and satisfactory reusability, with only 11.0% loss after five adsorption-desorption cycles. Additionally, the Fe3O4@CS@MIP, serving as an adsorbent, presented practical application potential in the separation and enrichment of NRG from pummelo peel, with extraction efficiency in the range of 79.53% to 84.63%. This work provided a new strategy for improving the performance of MIP and contributed an attractive option for the extraction of NRG in complex samples.

3.
Carbohydr Polym ; 343: 122492, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174142

RESUMEN

Effective wound care remains a significant challenge due to the need for infection prevention, inflammation reduction, and minimal tissue damage during dressing changes. To tackle these issues, we have developed a multifunctional hydrogel (CHI/CPBA/RU), composed of chitosan (CHI) modified with 4-carboxyphenylboronic acid (CPBA) and the natural flavonoid, rutin (RU). This design endows the hydrogel with body temperature-responsive adhesion and low temperature-triggered detachment, thus enabling painless removal during dressing changes. The CHI/CPBA/RU hydrogels exhibit excellent biocompatibility, maintaining over 97 % viability of L929 cells. They also demonstrate potent intracellular free radical scavenging activity, with scavenging ratios ranging from 53 % to 70 %. Additionally, these hydrogels show anti-inflammatory effects by inhibiting pro-inflammatory cytokines (TNF-α, IL-6, and iNOS) and increasing anti-inflammatory markers (Arg1 and CD206) in RAW 264.7 macrophages. Notably, they possess robust antimicrobial properties, inhibiting over 99.9 % of the growth of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus growth. In vivo testing on a murine full-thickness skin defect model shows that the hydrogel significantly accelerates wound healing by reducing inflammation, increasing collagen deposition, and promoting angiogenesis, achieving 98 % healing by day 10 compared to 78 % in the control group. These attributes make the polysaccharide-based hydrogel a promising material for advanced wound care.


Asunto(s)
Antibacterianos , Antiinflamatorios , Quitosano , Hidrogeles , Rutina , Piel , Staphylococcus aureus , Cicatrización de Heridas , Animales , Quitosano/química , Quitosano/farmacología , Cicatrización de Heridas/efectos de los fármacos , Ratones , Hidrogeles/química , Hidrogeles/farmacología , Células RAW 264.7 , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Piel/efectos de los fármacos , Rutina/farmacología , Rutina/química , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
4.
Chemistry ; : e202402409, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183180

RESUMEN

Complex dynamic systems displaying interdependency between nitroaldol and boronic ester reactions have been demonstrated. Nitroalkane-1,3-diols, generated by the nitroaldol reaction, were susceptible to ester formation with different boronic acids in aprotic solvents, whereas hydrolysis of the esters occurred in the presence of water. The boronic ester formation led to significant stabilization of the nitroaldol adducts under basic conditions. The use of bifunctional building blocks was furthermore established, allowing for main chain nitroaldol-boronate dynamers as well as complex network dynamers with distinct topologies. The shape and rigidity of the resulting dynamers showed an apparent dependency on the configuration of the boronic acids.

5.
Angew Chem Int Ed Engl ; : e202406856, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143025

RESUMEN

Diaryl-substituted vinyl boronates as potent building modules are challenging to synthesize. Herein, we present a convenient strategy based on a gold-catalyzed Hiyama arylation of (Z)-ß-(borylvinyl)silanes which are easily accessible by hydroboration of silylalkynes. By exploiting the highly electronegative nature of the Au(III) intermediate (which is accessed by the light-assisted oxidation with aryl diazonium salts), a selective activation of the silyl group in the presence of the boron moiety is achieved. This opens a route to selectively synthesize diaryl-substituted vinyl boronates. The reaction shows a broad substrate range, excellent functional group tolerance and perfect chemo-selectivity. Experimental studies and DFT calculations allowed us to elucidate the mechanism of the reaction, the synthetic potential was demonstrated by downstream transformations providing a facile route to bifunctional phenanthrenes and triaryl-substituted olefins.

6.
J Agric Food Chem ; 72(28): 15959-15970, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38954479

RESUMEN

The lack of practical platforms for bacterial separation remains a hindrance to the detection of bacteria in complex samples. Herein, a composite cryogel was synthesized by using clickable building blocks and boronic acid for bacterial separation. Macroporous cryogels were synthesized by cryo-gelation polymerization using 2-hydroxyethyl methacrylate and allyl glycidyl ether. The interconnected macroporous architecture enabled high interfering substance tolerance. Nanohybrid nanoparticles were prepared via surface-initiated atom transfer radical polymerization and immobilized onto cryogel by click reaction. Alkyne-tagged boronic acid was conjugated to the composite for specific bacteria binding. The physical and chemical characteristics of the composite cryogel were analyzed systematically. Benefitting from the synergistic, multiple binding sites provided by the silica-assisted polymer, the composite cryogel exhibited excellent affinity toward S. aureus and Salmonella spp. with capacities of 91.6 × 107 CFU/g and 241.3 × 107 CFU/g in 0.01 M PBS (pH 8.0), respectively. Bacterial binding can be tuned by variations in pH and temperature and the addition of monosaccharides. The composite was employed to separate S. aureus and Salmonella spp. from spiked tap water, 40% cow milk, and sea cucumber enzymatic hydrolysate, which resulted in high bacteria separation and demonstrated remarkable potential in bacteria separation from food samples.


Asunto(s)
Química Clic , Criogeles , Salmonella , Staphylococcus aureus , Criogeles/química , Staphylococcus aureus/aislamiento & purificación , Animales , Salmonella/aislamiento & purificación , Porosidad , Leche/microbiología , Leche/química , Ácidos Borónicos/química , Bovinos , Metacrilatos/química
7.
J Chromatogr A ; 1731: 465198, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39059303

RESUMEN

Exploiting high-performance magnetic beads for specific enrichment of ribonucleic acid (RNA) has important significance in the biomedical research field. Herein, a simple strategy was proposed for fabricating boronate-decorated polyethyleneimine-grafted magnetic agarose beads (BPMAB), which can selectively isolate cis-diol-containing substances through boronate affinity. The size of the basic magnetic agarose beads was controlled through the emulsification of the water-in-oil emulsion with a high-speed shear machine, which enhanced the specific surface area of BPMAB. Subsequently, to modify more boronic acid ligands, branched PEI with excellent hydrophilicity and numerous reaction sites was grafted. 2,4-Difluoro-3-formylphenyl boronic acid (2,4-DFPBA) was covalently immobilized for selectively capturing cis-diol-containing substances under physiological condition (pH 7.4). The BPMAB with a diameter range from 1.86 µm to 11.60 µm possessed clearly spherical structure, and excellent magnetic responsiveness and suspension ability in aqueous solution. ß-Nicotinamide adenine dinucleotide (ß-NAD), a short-chain cis-diol carrying agent, was selected as a target molecule for evaluating the adsorption property of BPMAB and the maximum adsorption capacity of BPMAB for ß-NAD could reach 205.11 mg g-1. In addition, the BPMAB as adsorbent was used to selectively enrich RNA from mammalian cells. The maximum adsorption capacity of BPMAB for RNA was 140.50 mg g-1. Under optimized conditions, the BPMAB-based MSPE successfully enriched the high-quality total RNA with 28S to 18S ribosomal RNA ratios ranging from 2.06 to 2.16. According to the PCR analysis of GADPH gene, the extracted total RNA was successfully reverse transcribed into cDNA. Therefore, we believe that the BPMAB-based MSPE could be applicable for the specific enrichment of RNA from complex biological systems.


Asunto(s)
Ácidos Borónicos , Polietileneimina , ARN , Sefarosa , Ácidos Borónicos/química , Polietileneimina/química , Sefarosa/química , ARN/química , Humanos , Adsorción , Animales , Tamaño de la Partícula
8.
ACS Appl Mater Interfaces ; 16(23): 29834-29843, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38831710

RESUMEN

cis-Diol-containing molecules, an essential type of compounds in living organisms, have attracted intensive research interest from various fields. The analysis of cis-diol-containing molecules is still suffering from some drawbacks, including low abundance and abundant interference. Metal-organic frameworks (MOFs) have proven to be an ideal sorbent for sample preparation. However, most of the reported MOFs are mainly restricted to a microporous regime (pore size <2 nm), which greatly limits the application. Herein, a facile strategy is established to construction of boronate affinity MOFs via the postsynthetic ligand-exchange process. Owing to the fact that the ligand-exchange process was assisted by the structural integrity of the primitive metal-organic framework and the great compatibility of click chemistry, the obtained EPBA-PCN-333(Fe) is able to realize the maximum maintaining the porosity and crystallinity of the parent material. Several intriguing features of EPBA-PCN-333(Fe) (e.g., excellent selectivity, efficient diffusion, good accessibility, and size exclusion effect) are experimentally demonstrated via a series of cis-diol-containing molecules with different molecular sizes (small molecules, glycopeptides, and glycoproteins). The binding performance of EPBA-PCN-333(Fe) is evaluated by employing catechol as the test molecule (binding capacity: 0.25 mmol/g, LOD: 200 ng/mL). Finally, the real-world applications of EPBA-PCN-333(Fe) were demonstrated by the detection of nucleosides of human urine samples.

9.
Microbiol Spectr ; 12(7): e0008424, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38842354

RESUMEN

Non-tuberculosis mycobacteria (NTM), particularly Mycobacterium abscessus subsp. abscessus (M. abscessus), are increasingly being recognized as etiological agents of NTM pulmonary disease. However, treatment options for M. abscessus are limited owing to their natural resistance to most antibiotics, including ß-lactams. M. abscessus produces a class A ß-lactamase, whose activity is inhibited by cyclic boronic acid ß-lactamase inhibitors. We aimed to evaluate the in vitro effects of xeruborbactam, a cyclic boronic acid ß-lactamase inhibitor, against M. abscessus when combined with five ß-lactams (amoxicillin, tebipenem, cefdinir, cefuroxime, and cefoxitin). The drug susceptibilities of 43 M. abscessus clinical isolates obtained from 43 patients between August 2005 and May 2014 were tested. The MIC results for each ß-lactam with or without 4 µg/mL xeruborbactam were examined. Xeruborbactam lowered the MIC90 values of tebipenem, amoxicillin, cefuroxime, and cefdinir by 5, ≥4, 3, and 3 dilutions, respectively. The MIC90 values of cefoxitin without xeruborbactam were 32 µg/mL and did not change upon the addition of xeruborbactam. The lowest MIC90 value was obtained for tebipenem with xeruborbactam. Almost all isolates had an MIC of 4 µg/mL; one isolate had an MIC of 2 µg/mL. With respect to the susceptibility to the same family drug, the number of susceptible isolates increased from 1/43 (2%) to 43/43 (100%) for tebipenem with xeruborbactam. Combining tebipenem and xeruborbactam could be considered an effective all-oral regimen that benefits outpatient treatment of M. abscessus pulmonary disease. IMPORTANCE: Mycobacterium abscessus subsp. abscessus (M. abscessus) disease is treated in two phases; injectable drugs for initial followed by others for continuation. There is a need to develop all-oral treatment methods for M. abscessus infection, especially in the continuation phase. However, treatment options for M. abscessus are limited owing to their natural resistance to most antibiotics. This is the first report to evaluate the in vitro effects of xeruborbactam, a cyclic boronic acid ß-lactamase inhibitor capable of inhibiting the class A ß-lactamase produced by M. abscessus, against 43 M. abscessus clinical isolates when combined with five ß-lactam antibiotics. Xeruborbactam lowered the MIC90 values of tebipenem by five dilutions, and the number of susceptible isolates increased from 1/43 (2%) to 43/43 (100%). We showed that the tebipenem-xeruborbactam combination might be of interest to explore further as a potentially effective oral regimen for outpatient treatment of M. abscessus pulmonary disease.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Inhibidores de beta-Lactamasas , beta-Lactamas , Humanos , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium abscessus/aislamiento & purificación , Inhibidores de beta-Lactamasas/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Antibacterianos/farmacología , beta-Lactamas/farmacología , Ácidos Borónicos/farmacología
10.
Lab Med ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801245

RESUMEN

BACKGROUND: Glycated hemoglobin, or hemoglobin A1c (HbA1c), serves as a crucial marker for diagnosing diabetes and monitoring its progression. We aimed to assess the interference posed by common Hb variants on popular HbA1c measurement systems. METHODS: A total of 63 variant and nonvariant samples with target values assigned by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) reference method were included. We assessed 6 methods for measuring HbA1c in the presence of HbS, HbC, HbD, HbE, and fetal hemoglobin (HbF): 2 cation-exchange high-performance liquid chromatography (HPLC) methods (Bio-Rad D-100 and HLC-723 G8), a capillary electrophoresis (CE) method (Sebia Capillarys 3 TERA), an immunoassay (Roche c501), an enzyme assay system (Mindray BS-600M), and a boronate affinity method (Primus Premier Hb9210). RESULTS: The HbA1c results for nonvariant samples from the 6 methods were in good agreement with the IFCC reference method results. The Bio-Rad D-100, Capillarys 3, Mindray BS-600M, Premier Hb9210, and Roche c501 showed no interference from HbS, HbC, HbD, and HbE. Clinically significant interference was observed for the HLC-723 G8 standard mode. Elevated HbF levels caused significant negative biases for all 6 methods, which increased with increasing HbF concentration. CONCLUSION: Elevated levels of HbF can severely affect HbA1c measurements by borate affinity, immunoassays, and enzyme assays.

11.
Angew Chem Int Ed Engl ; 63(36): e202407824, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38781007

RESUMEN

Bis(alkenyl)boronates react with optically active Ir(π-allyl) species in a process that involves allylation of the more substituted olefin and 1,2-metalate shift of the less substituted olefin. The method constructs valuable enantioenriched tertiary allylic boronic esters with high chemoselectivity, enantioselectivity and diastereoselectivity. Allylic functionalization reactions transform the 1,3-stereodiad to 1,5- and 1,6-stereochemical relationships.

12.
Angew Chem Int Ed Engl ; 63(33): e202401782, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818649

RESUMEN

gem-Diborylalkanes are highly valuable building blocks in organic synthesis and pharmaceutical chemistry due to their ability to participate in multi-step cross-coupling transformations, allowing for the rapid generation of molecular complexity. While progress has been made in their synthetic metholodology, the construction of ß-tertiary and C(sp3)-rich gem-diborylalkanes remains a synthetic challenge due to substrate limitations and steric hindrance issues. An approach is presented that utilizes synergistic photoredox and copper catalysis to achieve efficient C(sp3)-C(sp3) cross-coupling of alkyl N-hydroxyphthalimide esters, which can easily be obtained from alkyl carboxylic acids, with diborylmethyl species, providing a series of C(sp3)-rich gem-diborylalkanes with 1°, 2°, and even 3° ß positions. Furthermore, this approach can also be applied to complex medicinal compounds and natural products, offering rapid access to molecular complexity and late-stage functionalization of C(sp3)-rich drug candidates. Mechanistic experiments revealed that diborylmethyl Cu(I) species participated in both the photoredox process and the key C(sp3)-C(sp3) bond-forming step.

13.
J Control Release ; 370: 626-642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734314

RESUMEN

Severe nephrotoxicity and infusion-related side effects pose significant obstacles to the clinical application of Amphotericin B (AmB) in life-threatening systemic fungal infections. In pursuit of a cost-effective and safe formulation, we have introduced multiple phenylboronic acid (PBA) moieties onto a linear dendritic telodendrimer (TD) scaffold, enabling effective AmB conjugation via boronate chemistry through a rapid, high yield, catalysis-free and dialysis-free "Click" drug loading process. Optimized AmB-TD prodrugs self-assemble into monodispersed micelles characterized by small particle sizes and neutral surface charges. AmB prodrugs sustain drug release in circulation, which is accelerated in response to the acidic pH and Reactive Oxygen Species (ROS) in the infection and inflammation. Prodrugs mitigate the AmB aggregation status, reduce cytotoxicity and hemolytic activity compared to Fungizone®, and demonstrate superior antifungal activity to AmBisome®. AmB-PEG5kBA4 has a comparable maximum tolerated dose (MTD) to AmBisome®, while over 20-fold increase than Fungizone®. A single dose of AmB-PEG5kBA4 demonstrates superior efficacy to Fungizone® and AmBisome® in treating systemic fungal infections in both immunocompetent and immunocompromised mice.


Asunto(s)
Anfotericina B , Antifúngicos , Fungemia , Profármacos , Animales , Anfotericina B/administración & dosificación , Anfotericina B/farmacología , Anfotericina B/química , Anfotericina B/farmacocinética , Profármacos/administración & dosificación , Profármacos/química , Profármacos/farmacología , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/uso terapéutico , Humanos , Fungemia/tratamiento farmacológico , Nanopartículas/química , Liberación de Fármacos , Micelas , Ratones , Femenino , Química Clic , Candida albicans/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/administración & dosificación
14.
J Agric Food Chem ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38817042

RESUMEN

To achieve effective separation and enrichment of bacteria, a novel synthetic scheme was developed to synthesize star-style boronate-functionalized copolymers with excellent hydrophilicity and temperature and pH responsiveness. A hydrophilic copolymer brush was synthesized by combining surface-initiated atom-transfer radical polymerization with amide reaction using bovine serum albumin as the core. The copolymer brush was further modified by introducing and immobilizing fluorophenylboronic acids through an amide reaction, resulting in the formation of boronate affinity material BSA@poly(NIPAm-co-AGE)@DFFPBA. The morphology and organic content of BSA@poly(NIPAm-co-AGE)@DFFPBA were systematically characterized. The BSA-derived composites demonstrated a strong binding capacity to both Gram-positive and Gram-negative bacteria. The binding capabilities of the affinity composite to Staphylococcus aureus and Salmonella spp. were 195.8 × 1010 CFU/g and 79.2 × 1010 CFU/g, respectively, which indicates that the novel composite exhibits a high binding capability to bacteria and shows a particularly more significant binding capacity toward Gram-positive bacteria. The bacterial binding of BSA@poly(NIPAm-co-AGE)@DFFPBA can be effectively altered by adjusting the pH and temperature. This study demonstrated that the star-shaped affinity composite had the potential to serve as an affinity material for the rapid separation and enrichment of bacteria in complex samples.

15.
Chemistry ; 30(33): e202401235, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38593362

RESUMEN

Trialkyl phosphines PMe3 and PEt3 catalyze the 1,2-cis-diboration of 1,3-butadiynes to give 1,2-diboryl enynes. The products were utilized to synthesize 1,1,2,4-tetraaryl enynes using a Suzuki-Miyaura protocol and can readily undergo proto-deborylation.

16.
Biosens Bioelectron ; 257: 116310, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643549

RESUMEN

Nanozymes have been widely used in the field of biosensing owing to their high stability, low cost, adjustable catalytic activity, and convenient modification. However, achieving high selectivity and sensitivity simultaneously in nanozyme-based colorimetric sensing remains a major challenge. Nanozymes are nanomaterials with enzyme-simulating activity that are often used as solid-phase adsorbents for sample pretreatment. Our design strategy integrated sample pretreatment function into the nanozyme through separation and enrichment, thereby improving the selectivity and sensitivity of nanozyme-based colorimetric biosensing. As a proof-of-concept, glucose was used as the model analyte in this study. A phenylboric acid-modified magnetic nanozyme (Cu/Fe3O4@BA) was rationally designed and synthesized. Selectivity was enhanced by boronate-affinity specific adsorption and the elimination of interference after magnetic separation. In addition, magnetic solid-phase extraction enrichment was used to improve the sensitivity. A recovery rate of more than 80% was reached when the enrichment factor was 50. The synthesized magnetic Cu/Fe3O4@BA was recyclable at least five times. The proposed method exhibited excellent selectivity and sensitivity, simple operation, and recyclability, providing a novel and practical strategy for designing multifunctional nanozymes for biosensing.


Asunto(s)
Técnicas Biosensibles , Colorimetría , Cobre , Glucosa , Técnicas Biosensibles/métodos , Colorimetría/métodos , Cobre/química , Glucosa/análisis , Glucosa/aislamiento & purificación , Glucosa/química , Nanoestructuras/química , Límite de Detección , Extracción en Fase Sólida/métodos , Ácidos Borónicos/química , Adsorción
17.
Int J Pharm ; 657: 124134, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38643810

RESUMEN

Long-term inflammation, including those induced by bacterial infections, contributes to the superfluous accumulation of reactive oxygen species (ROS), further aggravating this condition, decreasing the local pH, and adversely affecting bone defect healing. Conventional drug delivery scaffold materials struggle to meet the demands of this complex and dynamic microenvironment. In this work, a smart gelatin methacryloyl (GelMA) hydrogel was synthesized for the dual delivery of proanthocyanidin and amikacin based on the unique pH and ROS responsiveness of boronate complexes. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the co-crosslinking of two boronate complexes with GelMA. The addition of the boronate complexes improved the mechanical properties, swelling ratio, degradation kinetics and antioxidative properties of the hydrogel. The hydrogel exhibited pH and ROS responses and a synergistic control over the drug release. Proanthocyanidin was responsively released to protect mouse osteoblast precursor cells from oxidative stress and promote their osteogenic differentiation. The hydrogel responded to pH changes and released sufficient amikacin in a timely manner, thereby exerting an efficient antimicrobial effect. Overall, the hydrogel delivery system exhibited a promising strategy for solving infectious and inflammatory problems in bone defects and promoting early-stage bone healing.


Asunto(s)
Amicacina , Antioxidantes , Diferenciación Celular , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Gelatina , Hidrogeles , Osteogénesis , Proantocianidinas , Especies Reactivas de Oxígeno , Animales , Hidrogeles/química , Ratones , Osteogénesis/efectos de los fármacos , Proantocianidinas/administración & dosificación , Proantocianidinas/farmacología , Proantocianidinas/química , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/química , Concentración de Iones de Hidrógeno , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , Gelatina/química , Amicacina/administración & dosificación , Amicacina/química , Amicacina/farmacología , Metacrilatos/química , Osteoblastos/efectos de los fármacos , Línea Celular , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Estrés Oxidativo/efectos de los fármacos
18.
ACS Appl Bio Mater ; 7(4): 2499-2510, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38517141

RESUMEN

As important biomarkers of many diseases, glycoproteins are of great significance to biomedical science. It is essential to develop efficient glycoprotein enrichment platforms and investigate their adsorption mechanism. In this work, a conspicuous enrichment strategy for glycoproteins was developed by using an electrospun fiber membrane wrapped with polydopamine (PDA) and modified with 3-aminophenylboronic acid and nickel ions, named PAN/DA@PDA@APBA/Ni. The enrichment characteristics of PAN/DA@PDA@APBA/Ni toward glycoproteins were explored through adsorption behavior. Thanks to the existence of two sites of interaction (metal ion chelation and boronate affinity), PAN/DA@PDA@APBA/Ni exhibited significant enrichment capacity for glycoproteins, ovalbumin (604.6 mg/g), and human immunoglobulin G (331.0 mg/g). The adsorption kinetic results of glycoprotein ovalbumin on PAN/DA@PDA@APBA/Ni conform to the pseudo-first-order kinetic model in the first adsorption stage, while the second half adsorption stage is more in line with the pseudo-second-order kinetic model. Moreover, the physical characteristics of PAN/DA@PDA@APBA/Ni and subsequent adsorption experiments on electrospun fiber modified with only phenylboronic acid or nickel ions both confirmed two sites of interaction (metal ion chelation and boronate affinity, respectively). Furthermore, a stepwise elution method with dual-affinity interaction was designed and successfully applied to enrich glycoproteins in real biological samples. This work provides an idea for sample pretreatment, especially for the design of dual-affinity materials in glycoproteins enrichment.


Asunto(s)
Glicoproteínas , Níquel , Humanos , Ovalbúmina , Adsorción , Iones
19.
Talanta ; 274: 125990, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38552477

RESUMEN

As a product of nonenzymatic glycation, glycated albumin (GA) is a promising serum marker for the short-term glycemic monitoring in patients with diabetes. On the basis of the boronate crosslinking (BCL)-enabled direct labeling of ferrocene (Fc) tags to the nonenzymatically glycated (NEG) sites, we report herein a novel aptamer-based ratiometric electrochemical (apt-REC) platform for the point-of-care (POC) assay of GA. This apt-REC platform is based on the recognition of GA proteins by the methylene blue (MB)-modified aptamer receptors and the labeling of the Fc tags to the NEG sites via the BCL. Using MB as the reference tag and Fc as the quantification tag, the ratio of the oxidation currents (i.e., IFc/IMB) can serve as the yardstick for the ratiometric assay of GA. Due to the presence of tens of the NEG sites, each GA protein can be labeled with tens of quantification tags, permitting the amplified assay in a simple, time-saving, and low-cost manner. The ratiometric signal exhibited a good linear response over the range from 0.1 to 100 µg/mL, with a detection limit of 45.5 ng/mL. In addition to the superior reproducibility and robustness, this apt-REC platform is highly selective (capable of discriminating GA against human serum albumin (HSA)) and applicable to GA assay in serum samples. Due to its low cost, high reproducibility and robustness, simple operation, and high sensitivity and selectivity, this apt-REC platform holds great promise in the POC assay of GA for diabetes management.


Asunto(s)
Ácidos Borónicos , Técnicas Electroquímicas , Albúmina Sérica Glicada , Humanos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Ácidos Borónicos/química , Reactivos de Enlaces Cruzados/química , Técnicas Electroquímicas/métodos , Productos Finales de Glicación Avanzada/química , Límite de Detección , Albúmina Sérica/química , Albúmina Sérica/análisis , Albúmina Sérica Humana/química , Albúmina Sérica Humana/análisis
20.
Biosens Bioelectron ; 255: 116229, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554574

RESUMEN

Quantifying trace glycoproteins in biofluids requires ultrasensitive components, but feedback is not available in the current portable platforms of point-of-care (POC) diagnosis technologies. A compact and ultrasensitive bioelectrochemical patch was based on boronate-affinity amplified organic electrochemical transistors (BAAOECTs) for POC use was developed to overcome this dilemma. Benefit from the cascading signal enhancement deriving from boronate-affinity targeting multiple regions of glycoprotein and OECTs' inherent signal amplification capability, the BAAOECTs achieved a detection limit of 300 aM within 25 min, displaying about 3 orders of magnitude improvement in sensitivity compared with the commercial electrochemical luminescence (ECL) kit. By using a microfluidic chip, a microcontroller module, and a wireless sensing system, the testing workflows of the above patch was automated, allowing for running the sample-to-answer pipeline even in a resource-limited environment. The reliability of such portable biosensing platform is well recognized in clinical diagnostic applications of heart failure. Overall, the remarkable enhanced sensitivity and automated workflow of BAAOECTs biosensing platform provide a prospective and generalized design policy for expanding the POC diagnosis capabilities of glycoproteins.


Asunto(s)
Técnicas Biosensibles , Sistemas de Atención de Punto , Estudios Prospectivos , Reproducibilidad de los Resultados , Glicoproteínas , Técnicas Electroquímicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA