Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.380
Filtrar
1.
CNS Neurosci Ther ; 30(9): e70017, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39218810

RESUMEN

OBJECTIVE: The E3 ubiquitin ligase is well recognized as a significant contributor to glioblastoma (GBM) progression and has promise as a prospective therapeutic target. This study explores the contribution of E3 ubiquitin ligase RNF122 in the GBM progression and the related molecular mechanisms. METHODS: RNF122 expression levels were evaluated using qRT-PCR, WB, and IHC, while functional assays besides animal experiments were used to assess RNF122's effect on GBM progression. We also tested the RNF122 impact on JAK2/STAT3/c-Myc signaling using WB. RESULTS: RNF122 was upregulated in GBM and correlated to the advanced stage and poor clinical outcomes, representing an independent prognostic factor. Based on functional assays, RNF122 promotes GBM growth and cell cycle, which was validated further in subsequent analyses by JAK2/STAT3/c-Myc pathway activation. Moreover, JAK2/STAT3 signaling pathway inhibitor WP1066 can weaken the effect of overexpression RNF122 on promoting GBM progression. CONCLUSION: Our results revealed that RNF122 caused an aggressive phenotype to GBM and was a poor prognosticator; thus, targeting RNF122 may be effectual in GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Janus Quinasa 2 , Proteínas Proto-Oncogénicas c-myc , Factor de Transcripción STAT3 , Transducción de Señal , Ubiquitina-Proteína Ligasas , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/fisiología , Transducción de Señal/efectos de los fármacos , Masculino , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Femenino , Animales , Línea Celular Tumoral , Ratones Desnudos , Persona de Mediana Edad , Ratones , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Ratones Endogámicos BALB C , Péptidos y Proteínas de Señalización Intracelular
2.
Apoptosis ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222275

RESUMEN

Lung cancer is one of the most common malignant tumors. Despite decades of research, the treatment of lung cancer remains challenging. Non-small cell lung cancer (NSCLC) is the primary type of lung cancer and is a significant focus of research in lung cancer treatment. The deubiquitinase ubiquitin-specific protease 28 (USP28) plays a role in the progression of various tumors and serves as a potential therapeutic target. This study aims to determine the role of USP28 in the progression of NSCLC. We examined the impact of the USP28 inhibitor AZ1 on the cell cycle, apoptosis, DNA damage response, and cellular immunogenicity in non-small cell lung cancer. We observed that AZ1 and siUSP28 induce DNA damage, leading to the activation of Noxa-mediated mitochondrial apoptosis. The dsDNA and mtDNA released from DNA damage and mitochondrial apoptosis activate tumor cell immunogenicity through the cGAS-STING signaling pathway. Simultaneously, targeting USP28 promotes the degradation of c-MYC, resulting in cell cycle arrest and inhibition of DNA repair. This further promotes DNA damage-induced cell apoptosis mediated by the Noxa protein, thereby enhancing tumor cell immunogenicity mediated by dsDNA and mtDNA. Moreover, we found that the combination of AZ1 and cisplatin (DDP) can enhance therapeutic efficacy, thereby providing a new strategy to overcome cisplatin resistance in NSCLC. These findings suggest that targeting USP28 and combining it with cisplatin are feasible strategies for treating NSCLC.

3.
Sci Rep ; 14(1): 20045, 2024 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209915

RESUMEN

In the present study, we prepared new sixteen different derivatives. The first series were prepared (methylene)bis(2-(thiophen-2-yl)-1H-indole) derivatives which have (indole and thiophene rings) by excellent yield from the reaction (2 mmol) 2-(thiophen-2-yl)-1H-indole and (1 mmol) from aldehyde. The second series were synthesized (2-(thiophen-2-yl)-1H-indol-3-yl) methyl) aniline derivatives at a relatively low yield from multicomponent reaction of three components 2-(thiophen-2-yl)-1H-indole, N-methylaniline and desired aldehydes. The anticancer effect of the newly synthesized derivatives was determined against different cancers, colon, lung, breast and skin. The counter screening was done against normal Epithelial cells (RPE-1). The effect on cell cycle and mechanisms underlying of the antitumor effect were also studied. All new compounds were initially tested at a single dose of 100 µg/ml against this panel of 5 human tumor cell lines indicated that the compounds under investigation exhibit selective cytotoxicity against HCT-116 cell line and compounds (4g, 4a, 4c) showed potent anticancer activity against HCT-116 cell line with the inhibitory concentration IC50 values were, 7.1±0.07, 10.5± 0.07 and 11.9± 0.05 µΜ/ml respectively. Also, the active derivatives caused cell cycle arrest at the S and G2/M phase with significant(p < 0.0001) increase in the expression levels of tumor suppressors miR-30C, and miR-107 and a tremendous decrease in oncogenic miR-25, IL-6 and C-Myc levels. It is to conclude that the anticancer activity could be through direct interaction with tumor cell DNA like S-phase-dependent chemotherapy drugs. Which can interact with DNA or block DNA synthesis such as doxorubicin, cisplatin, or 5-fluorouracil and which were highly effective in killing the cancer cells. This data ensures the efficiency of the 3 analogues on inducing cell cycle arrest and preventing cancer cell growth. The altered expressions explained the molecular mechanisms through which the newly synthesized analogues exert their anticancer action.


Asunto(s)
Antineoplásicos , Puntos de Control del Ciclo Celular , Proliferación Celular , Indoles , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Células HCT116 , Puntos de Control del Ciclo Celular/efectos de los fármacos , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Regulación hacia Abajo/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales
4.
Biomolecules ; 14(8)2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39199410

RESUMEN

Nonsense-mediated mRNA decay (NMD) is a highly conserved post-transcriptional gene expression regulatory mechanism in eukaryotic cells. NMD eliminates aberrant mRNAs with premature termination codons to surveil transcriptome integrity. Furthermore, NMD fine-tunes gene expression by destabilizing RNAs with specific NMD features. Thus, by controlling the quality and quantity of the transcriptome, NMD plays a vital role in mammalian development, stress response, and tumorigenesis. Deficiencies of NMD factors result in early embryonic lethality, while the underlying mechanisms are poorly understood. SMG5 is a key NMD factor. In this study, we generated an Smg5 conditional knockout mouse model and found that Smg5-null results in early embryonic lethality before E13.5. Furthermore, we produced multiple lines of Smg5 knockout mouse embryonic stem cells (mESCs) and found that the deletion of Smg5 in mESCs does not compromise cell viability. Smg5-null delays differentiation of mESCs. Mechanistically, our study reveals that the c-MYC protein, but not c-Myc mRNA, is upregulated in SMG5-deficient mESCs. The overproduction of c-MYC protein could be caused by enhanced protein synthesis upon SMG5 loss. Furthermore, SMG5-null results in dysregulation of alternative splicing on multiple stem cell differentiation regulators. Overall, our findings underscore the importance of SMG5-NMD in regulating mESC cell-state transition.


Asunto(s)
Diferenciación Celular , Ratones Noqueados , Células Madre Embrionarias de Ratones , Degradación de ARNm Mediada por Codón sin Sentido , Animales , Ratones , Diferenciación Celular/genética , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/citología , Degradación de ARNm Mediada por Codón sin Sentido/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
5.
Int J Mol Med ; 54(4)2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39092569

RESUMEN

Non­SMC condensin I complex subunit D2 (NCAPD2) is a newly identified oncogene; however, the specific biological function and molecular mechanism of NCAPD2 in liver cancer progression remain unknown. In the present study, the aberrant expression of NCAPD2 in liver cancer was investigated using public tumor databases, including TNMplot, The Cancer Genome Atlas and the International Cancer Genome Consortium based on bioinformatics analyses, and it was validated using a clinical cohort. It was revealed that NCAPD2 was significantly upregulated in liver cancer tissues compared with in control liver tissues, and NCAPD2 served as an independent prognostic factor and predicted poor prognosis in liver cancer. In addition, the expression of NCAPD2 was positively correlated with the percentage of Ki67+ cells. Finally, single­cell sequencing data, gene­set enrichment analyses and in vitro investigations, including cell proliferation assay, Transwell assay, wound healing assay, cell cycle experiments, cell apoptosis assay and western blotting, were carried out in human liver cancer cell lines to assess the biological mechanisms of NCAPD2 in patients with liver cancer. The results revealed that the upregulation of NCAPD2 enhanced tumor cell proliferation, invasion and cell cycle progression at the G2/M­phase transition, and inhibited apoptosis in liver cancer cells. Furthermore, NCAPD2 overexpression was closely associated with the phosphatidylinositol 3­kinase (PI3K)­Akt­mammalian target of rapamycin (mTOR)/c­Myc signaling pathway and epithelial­mesenchymal transition (EMT) progression in HepG2 and Huh7 cells. In addition, upregulated NCAPD2 was shown to have adverse effects on overall survival and disease­specific survival in liver cancer. In conclusion, the overexpression of NCAPD2 was shown to lead to cell cycle progression at the G2/M­phase transition, activation of the PI3K­Akt­mTOR/c­Myc signaling pathway and EMT progression in human liver cancer cells.


Asunto(s)
Proliferación Celular , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Transducción de Señal/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Masculino , Femenino , Proliferación Celular/genética , Carcinogénesis/genética , Carcinogénesis/patología , Carcinogénesis/metabolismo , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Progresión de la Enfermedad , Línea Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Transición Epitelial-Mesenquimal/genética , Apoptosis/genética , Movimiento Celular/genética , Pronóstico
6.
Biochem Biophys Res Commun ; 736: 150503, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121669

RESUMEN

BACKGROUND: Psoriasis is a chronic inflammatory skin disease characterized by a complex pathogenesis involving various types of cells and cytokines. Among those, the pro-inflammatory cytokine IL-23/IL-17A axis plays a crucial role in the development and rapid progression of psoriasis. Phenformin, a derivative of metformin and a member of the biguanide class of drugs, exhibits superior anti-inflammatory and anti-tumor efficacy compared to metformin. However, the potential role of phenformin in anti-psoriatic skin inflammation has not been explored. METHODS: In this study, we utilized a mouse model of psoriasis and an in vitro model using human keratinocytes to investigate whether phenformin can suppress psoriasis-like inflammatory responses. RESULTS: Our results demonstrate that the topical application of phenformin significantly inhibited acute skin inflammatory responses in the psoriasis mouse model induced by imiquimod (IMQ). Additionally, phenformin suppressed the expression of psoriasis-related cytokines IL-17, IL-23, IL-8, and S100A8/S100A9 in an in vitro psoriatic keratinocyte model induced by IMQ. Furthermore, we found that IMQ-induced psoriatic skin and IMQ-treated keratinocytes exhibited high expression of the c-Myc gene, which was downregulated by phenformin. The c-Myc inhibitor JQ1 similarly inhibited the psoriatic inflammatory response and the expression of psoriasis-related cytokines in both in vitro and in vivo models. CONCLUSION: phenformin ameliorates the psoriasis-like inflammatory response by inhibiting c-Myc expression in keratinocytes, suggesting its potential as a topical drug for the treatment of psoriasis.

7.
J Biol Chem ; : 107642, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122009

RESUMEN

Our previous studies determined that elevating SOX2 in a wide range of tumor cells leads to a reversible state of tumor growth arrest. Efforts to understand how tumor cell growth is inhibited led to the discovery of a SOX2:MYC axis that is responsible for downregulating c-MYC (MYC) when SOX2 is elevated. Although we had determined that elevating SOX2 downregulates MYC transcription, the mechanism responsible was not determined. Given the challenges of targeting MYC clinically, we set out to identify how elevating SOX2 downregulates MYC transcription. In this study, we focused on the MYC promoter region and an upstream region of the MYC locus that contains a MYC super-enhancer encompassing five MYC enhancers and which is associated with several cancers. Here we report that BRD4 and p300 associate with each of the MYC enhancers in the upstream MYC super-enhancer as well as the MYC promoter region and that elevating SOX2 decreases the recruitment of BRD4 and p300 to these sites. Additionally, we determined that elevating SOX2 leads to increases in the association of SOX2 and H3K27me3 within the MYC super-enhancer and the promoter region of MYC. Importantly, we conclude that the increases in SOX2 within the MYC super-enhancer precipitate a cascade of events that culminates in the repression of MYC transcription. Together, our studies identify a novel molecular mechanism able to regulate MYC transcription in two distinctly different tumor types and provide new mechanistic insights into the molecular interrelationships between two master regulators, SOX2 and MYC, widely involved in multiple cancers.

8.
Cell Metab ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142286

RESUMEN

The complex etiological factors associated with metabolic dysfunction-associated fatty liver disease (MAFLD), including perturbed iron homeostasis, and the unclear nature by which they contribute to disease progression have resulted in a limited number of effective therapeutic interventions. Here, we report that patients with metabolic dysfunction-associated steatohepatitis (MASH), a pathological subtype of MAFLD, exhibit excess hepatic iron and that it has a strong positive correlation with disease progression. FerroTerminator1 (FOT1) effectively reverses liver injury across multiple MASH models without notable toxic side effects compared with clinically approved iron chelators. Mechanistically, our multi-omics analyses reveal that FOT1 concurrently inhibits hepatic iron accumulation and c-Myc-Acsl4-triggered ferroptosis in various MASH models. Furthermore, MAFLD cohort studies suggest that serum ferritin levels might serve as a predictive biomarker for FOT1-based therapy in MASH. These findings provide compelling evidence to support FOT1 as a promising novel therapeutic option for all stages of MAFLD and for future clinical trials.

9.
Biomed Pharmacother ; 179: 117315, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153434

RESUMEN

Lung cancer represents one of the most prevalent malignant neoplasms, commanding an alarming incidence and mortality rate globally. Non-small cell lung cancer (NSCLC), constituting approximately 80 %-90 % of all lung cancer cases, is the predominant pathological manifestation of this disease, with a disconcerting 5-year survival rate scarcely reaching 10 %. Extensive prior investigations have elucidated that the aberrant expression of X-ray repair cross-complementing gene 2 (XRCC2), a critical meiotic gene intricately involved in the DNA damage repair process, is intimately associated with tumorigenesis. Nevertheless, the precise roles and underlying mechanistic pathways of XRCC2 in NSCLC remain largely elusive. In the present study, we discerned an overexpression of XRCC2 within NSCLC patient tissues, particularly in high-grade samples, when juxtaposed with normal tissues. Targeted knockdown of XRCC2 notably impeded the proliferation of NSCLC both in vitro and in vivo. Comprehensive RNA sequencing and flow rescue assays unveiled that XRCC2 augments the proliferation of NSCLC cells through the down-regulation of FOS expression. Moreover, the c-Myc gene was definitively identified as an XRCC2 transcriptional factor by means of chromatin immunoprecipitation (ChIP) and luciferase reporter assays, whereby pharmacological attenuation of c-Myc expression, in conjunction with Doxorubicin, synergistically curtailed NSCLC cell growth both in vitro and in vivo. Collectively, our findings proffer critical insights into the novel c-Myc-XRCC2-FOS axis in promoting both proliferation and resistance to Doxorubicin in NSCLC cells, thereby extending a promising avenue for potential new diagnostic strategies and therapeutic interventions in NSCLC.

10.
Bioorg Chem ; 151: 107690, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39098087

RESUMEN

c-MYC is one of the most important oncogenes, which is overexpressed in many cancers, and is highly related to development, metastasis, and drug resistance of cancers. The G4 structure in the promoter of c-MYC oncogene contributes a lot to the gene transcriptional mechanism. Small-molecule ligands binding to the c-MYC G4 appear to be a new class of anticancer agents. However, selective ligands for the c-MYC G4 over other G4s have been rarely reported. In this study, we reported a novel fluorescent ligand by migrating the benzene group on a carbazole-benzothiazolium scaffold, which was demonstrated to exhibit considerable specificity to the c-MYC G4, which was distinguished from other small-molecule ligands. The further cellular experiments suggested that this ligand may indeed target the promoter G4 and cause apparent transcriptional inhibition of the c-MYC oncogene instead of other G4-mediated oncogenes, which thereby resulted in cancer cell growth inhibition. Collectively, this study provided a good example for developing specific c-MYC G4 ligands, which may further develop into an effective anticancer agent that inhibit the c-MYC expression.


Asunto(s)
Antineoplásicos , Benzotiazoles , Carbazoles , Proliferación Celular , Colorantes Fluorescentes , G-Cuádruplex , Proteínas Proto-Oncogénicas c-myc , Carbazoles/química , Carbazoles/farmacología , G-Cuádruplex/efectos de los fármacos , Humanos , Ligandos , Benzotiazoles/química , Benzotiazoles/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/genética , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Estructura Molecular , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Benceno/química , Benceno/farmacología , Línea Celular Tumoral
11.
Mol Cell Biochem ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179754

RESUMEN

The number of breast cancer (BC) patients is increasing year by year, which is severely endangering to human life and health. c-Myc is a transcription factor, studies have shown that it is a very significant factor in tumor progression, but how it is regulated in BC is still not well understood. Here, we used the RIP microarray sequencing to confirm circXPO6, which had a high affinity with c-Myc and highly expressed in triple-negative breast cancer (TNBC) tissues and cells. CircXPO6 overexpression promoted tumor growth in vivo and in vitro. Furthermore, circXPO6 largely promoted the expression of genes related to glucose metabolism, such as GLUT1, HK2, and MCT4 in TNBC cells. Finally, high levels of circXPO6 expression were found to be closely associated with malignant pathological factors, such as tumor size, lymph node metastasis, TNM staging, and histopathological grading of TNBC. Mechanistically, circXPO6 interacted with c-Myc to prevent speckle-type POZ-mediated c-Myc ubiquitination and degradation, thus promoting TNBC progression. Through the regulation of c-Myc-mediated signal transduction, circXPO6 plays a key role in TNBC progresses. This discovery can provide new ideas for TNBC molecular targeted therapy.

12.
Neurol Res ; : 1-8, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39193894

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a brain tumor with poor prognosis. Dexmedetomidine (Dex) regulates the biological behaviors of tumor cells to accelerate or decelerate cancer progression. OBJECTIVE: We investigated the effects of Dex on the migration, invasion, and glycolysis in GBM. METHODS: The concentration of Dex was determined using the cell counting kit-8 assay. The impacts of Dex on biological behaviors of GBM cells were assessed using Transwell assay, XF96 extracellular flux analysis, and western blot. The expression of c-Myc was examined using reverse transcription-quantitative polymerase chain reaction. The lactylation or stability of c-Myc was measured by western blot after immunoprecipitation or cycloheximide treatment. RESULTS: We found that Dex (200 nM) inhibited GBM cell viability, migration, invasion, and glycolysis. C-Myc was highly expressed in GBM cells and was decreased by Dex treatment. Moreover, Dex suppressed lactylated c-Myc levels via suppressing glycolysis, thereby reducing the protein stability of c-Myc. Sodium lactate treatment abrogated the effects of Dex on the biological behaviors of GBM cells. CONCLUSION: Dex suppressed the migration, invasion, and glycolysis of GBM cells via inhibiting lactylation of c-Myc and suppressing the c-Myc stability, suggesting that Dex may be a novel therapeutic drug for GBM treatment.

13.
Cell Commun Signal ; 22(1): 415, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192247

RESUMEN

The antiapoptotic protein BCL2A1 is highly, but very heterogeneously expressed in Diffuse Large B-cell Lymphoma (DLBCL). Particularly in the context of resistance to current therapies, BCL2A1 appears to play an important role in protecting cancer cells from the induction of cell death. Reducing BCL2A1 levels may have therapeutic potential, however, no specific inhibitor is currently available. In this study, we hypothesized that the signaling network regulated by epigenetic readers may regulate the transcription of BCL2A1 and hence that inhibition of Bromodomain and Extra-Terminal (BET) proteins may reduce BCL2A1 expression thus leading to cell death in DLBCL cell lines. We found that the mechanisms of action of acetyl-lysine competitive BET inhibitors are different from those of proteolysis targeting chimeras (PROTACs) that induce the degradation of BET proteins. Both classes of BETi reduced the expression of BCL2A1 which coincided with a marked downregulation of c-MYC. Mechanistically, BET inhibition attenuated the constitutively active canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway and inhibited p65 activation. Furthermore, signal transducer of activated transcription (STAT) signaling was reduced by inhibiting BET proteins, targeting another pathway that is often constitutively active in DLBCL. Both pathways were also inhibited by the IκB kinase inhibitor TPCA-1, resulting in decreased BCL2A1 and c-MYC expression. Taken together, our study highlights a novel complex regulatory network that links BET proteins to both NFκB and STAT survival signaling pathways controlling both BCL2A1 and c-MYC expression in DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , FN-kappa B , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Proto-Oncogénicas c-myc , Transducción de Señal , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Línea Celular Tumoral , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteínas que Contienen Bromodominio , Proteínas , Antígenos de Histocompatibilidad Menor
14.
Cancers (Basel) ; 16(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123391

RESUMEN

c-MYC is overexpressed in 70% of human cancers, including triple-negative breast cancer (TNBC), yet there is no clinically approved drug that directly targets it. Here, we engineered the mRNA-stabilizing poly U sequences within the 3'UTR of c-MYC to specifically destabilize and promote the degradation of c-MYC transcripts. Interestingly, the engineered derivative outcompetes the endogenous overexpressed c-MYC mRNA, leading to reduced c-MYC mRNA and protein levels. The iron oxide nanocages (IO-nanocages) complexed with MYC-destabilizing constructs inhibited primary and metastatic tumors in mice bearing TNBC and significantly prolonged survival by degrading the c-MYC-STAT5A/B-PD-L1 complexes that drive c-MYC-positive TNBC. Taken together, we have described a novel therapy for c-MYC-driven TNBC and uncovered c-MYC-STAT5A/B-PD-L1 interaction as the target.

15.
BMC Cancer ; 24(1): 1049, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187747

RESUMEN

Hepatocellular carcinoma (HCC) is the primary malignant tumor of the liver. c-Myc is one of the most common oncogenes in clinical settings, and amplified levels of c-Myc are frequently found in HCC. Histone deacetylase inhibitors (HDACi), such as Trichostatin A (TSA), hold enormous promise for the treatment of HCC. However, the potential and mechanism of TSA in the treatment of c-Myc-induced HCC are unclear. In this study, we investigated the effects of TSA treatment on a c-Myc-induced HCC model in mice. TSA treatment delayed the development of HCC, and liver function indicators such as ALT, AST, liver weight ratio, and spleen weight ratio demonstrated the effectiveness of TSA treatment. Oil red staining further demonstrated that TSA attenuated lipid accumulation in the HCC tissues of mice. Through mRNA sequencing, we identified that TSA mainly affected cell cycle and fatty acid degradation genes, with alcohol dehydrogenase 4 (ADH4) potentially being the core molecular downstream target. QPCR, immunohistochemistry, and western blot analysis revealed that ADH4 expression was repressed by c-Myc and restored after TSA treatment both in vitro and in vivo. Furthermore, we observed that the levels of total NAD+ and NADH, NAD+, NAD+/NADH, and ATP concentration increased after c-Myc transfection in liver cells but decreased after TSA intervention. The levels of phosphorylated protein kinase B (p-AKT) and p-mTOR were identified as targets regulated by TSA, and they governed the ADH4 expression and the downstream regulation of total NAD+ and NADH, NAD+, NAD+/NADH, and ATP concentration. Overall, our study suggests that TSA has a therapeutic effect on c-Myc-induced HCC through the AKT-mTOR-ADH4 pathway. These findings provide valuable insights into the potential treatment of HCC using TSA and shed light on the underlying molecular mechanisms involved.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Hidroxámicos , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-myc , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Transducción de Señal/efectos de los fármacos , Alcohol Deshidrogenasa/metabolismo , Alcohol Deshidrogenasa/genética , Masculino , Progresión de la Enfermedad , Carcinogénesis/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
16.
Biochim Biophys Acta Gen Subj ; 1868(10): 130683, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39089637

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is characterized by a poor prognosis and limited treatment options. Ferroptosis plays an important role in cancer, SET and MYND domain-containing protein 2 (SMYD2) is widely expressed in various cancers. However, the role of SMYD2 in regulating ferroptosis in PC remains unexplored. This study aimed to investigate the role of SMYD2 in mediating ferroptosis and its mechanistic implications in PC progression. METHODS: The levels of SMYD2, c-Myc, and NCOA4 were assessed in PC tissues, and peritumoral tissues. SMYD2 expression was further analyzed in human PC cell lines. In BxPC3 cells, the expression of c-Myc, NCOA4, autophagy-related proteins, and mitochondrial morphology, was evaluated following transfection with si-SMYD2 and treatment with autophagy inhibitors and ferroptosis inhibitors. Ferroptosis levels were quantified using flow cytometry and ELISA assays. RNA immunoprecipitation was conducted to elucidate the interaction between c-Myc and NCOA4 mRNA. A xenograft mouse model was constructed to validate the impact of SMYD2 knockdown on PC growth. RESULTS: SMYD2 and c-Myc were found to be highly expressed in PC tissues, while NCOA4 showed reduced expression. Among the PC cell lines studied, BxPC3 cells exhibited the highest SMYD2 expression. SMYD2 knockdown led to decreased c-Myc levels, increased NCOA4 expression, reduced autophagy-related protein expression, mitochondrial shrinkage, and heightened ferroptosis levels. Additionally, an interaction between c-Myc and NCOA4 was identified. In vivo, SMYD2 knockdown inhibited tumor growth. CONCLUSIONS: Targeting SMYD2 inhibits PC progression by promoting ferritinophagy-dependent ferroptosis through the c-Myc/NCOA4 axis. These findings provide insights into potential diagnostic and therapeutic strategies for PC.


Asunto(s)
Autofagia , Ferroptosis , N-Metiltransferasa de Histona-Lisina , Coactivadores de Receptor Nuclear , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-myc , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Humanos , Ferroptosis/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Ratones , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Ferritinas/metabolismo , Ferritinas/genética , Regulación Neoplásica de la Expresión Génica , Masculino
17.
Cancer Lett ; 598: 217105, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38971490

RESUMEN

Immune therapy has significantly improved the prognosis of hepatocellular carcinoma (HCC) patients, yet its efficacy remains limited, underscoring the urgency to identify new therapeutic targets and biomarkers. Here, we investigated the pathological and physiological roles of KIF20A and assess its potential in enhancing HCC treatment efficacy when combined with PD-1 inhibitors. We initially assess KIF20A's oncogenic function using liver-specific KIF20A knockout (Kif20a CKO) mouse models and orthotopic xenografts. Subsequently, we establish a regulatory axis involving KIF20A, FBXW7, and c-Myc, validated through construction of c-Myc splicing mutants. Large-scale clinical immunohistochemistry (IHC) analyses confirm the pathological relevance of the KIF20A-FBXW7-c-Myc axis in HCC. We demonstrate that KIF20A overexpression correlates with poor prognosis in HCC by competitively inhibiting FBXW7-mediated degradation of c-Myc, thereby promoting glycolysis and enhancing tumor proliferation. Conversely, KIF20A downregulation suppresses these effects, impairing tumor growth through c-Myc downregulation. Notably, KIF20A inhibition attenuates c-Myc-induced MMR expression, associated with improved prognosis in HCC patients receiving PD-1 inhibitor therapy. Furthermore, in Kif20a CKO HCC mouse models, we observe synergistic effects between Kif20a knockout and anti-PD-1 antibodies, significantly enhancing immunotherapeutic efficacy against HCC. Our findings suggest that targeting the KIF20A-c-Myc axis could identify HCC patients likely to benefit from anti-PD-1 therapy. In conclusion, we propose that combining KIF20A inhibitors with anti-PD-1 treatment represents a promising therapeutic strategy for HCC, offering new avenues for clinical development and patient stratification.


Asunto(s)
Carcinoma Hepatocelular , Proteína 7 que Contiene Repeticiones F-Box-WD , Cinesinas , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-myc , Ubiquitinación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Animales , Humanos , Ratones , Cinesinas/genética , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Línea Celular Tumoral , Ratones Noqueados , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , Inmunoterapia/métodos , Masculino , Pronóstico , Regulación Neoplásica de la Expresión Génica
18.
Phytomedicine ; 132: 155833, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39008915

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and is characterised by extensive invasive and metastatic potential. Previous studies have shown that vitexicarpin extracted from the fruits of Vitex rotundifolia can impede tumour progression. However, the molecular mechanisms involved in CRC treatment are still not fully established. PURPOSE: Our study aimed to investigate the anticancer activity, targets, and molecular mechanisms of vitexicarpin in CRC hoping to provide novel therapies for patients with CRC. STUDY DESIGN/METHODS: The impact of vitexicarpin on CRC was assessed through various experiments including MTT, clone formation, EDU, cell cycle, and apoptosis assays, as well as a tumour xenograft model. CETSA, label-free quantitative proteomics, and Biacore were used to identify the vitexicarpin targets. WB, Co-IP, Ubiquitination assay, IF, molecular docking, MST, and cell transfection were used to investigate the mechanism of action of vitexicarpin in CRC cells. Furthermore, we analysed the expression patterns and correlation of target proteins in TCGA and GEPIA datasets and clinical samples. Finally, wound healing, Transwell, tail vein injection model, and tissue section staining were used to demonstrate the antimetastatic effect of vitexicarpin on CRC in vitro and in vivo. RESULTS: Our findings demonstrated that vitexicarpin exhibits anticancer activity by directly binding to inosine monophosphate dehydrogenase 2 (IMPDH2) and that it promotes c-Myc ubiquitination by disrupting the interaction between IMPDH2 and c-Myc, leading to epithelial-mesenchymal transition (EMT) inhibition. Vitexicarpin hinders the migration and invasion of CRC cells by reversing EMT both in vitro and in vivo. Additionally, these results were validated by the overexpression and knockdown of IMPDH2 in CRC cells. CONCLUSION: These results demonstrated that vitexicarpin regulates the interaction between IMPDH2 and c-Myc to inhibit CRC proliferation and metastasis both in vitro and in vivo. These discoveries introduce potential molecular targets for CRC treatment and shed light on new mechanisms for c-Myc regulation in tumours.


Asunto(s)
Neoplasias Colorrectales , Flavonoides , Ubiquitinación , Vitex , Animales , Humanos , Masculino , Ratones , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/antagonistas & inhibidores , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ubiquitinación/efectos de los fármacos , Vitex/química , Ensayos Antitumor por Modelo de Xenoinjerto , Flavonoides/farmacología
19.
Biochim Biophys Acta Gen Subj ; 1868(10): 130669, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38996990

RESUMEN

BACKGROUND: Dysregulation of Rho-associated coiled coil-containing protein kinases (ROCKs) is involved in the metastasis and progression of various malignant tumors. However, how one of the isomers, ROCK1, regulates glycolysis in tumor cells is incompletely understood. Here, we attempted to elucidate how ROCK1 influences pancreatic cancer (PC) progression by regulating glycolytic activity. METHODS: The biological function of ROCK1 was analyzed in vitro by establishing a silenced cell model. Coimmunoprecipitation confirmed the direct binding between ROCK1 and c-MYC, and a luciferase reporter assay revealed the binding of c-MYC to the promoter of the PFKFB3 gene. These results were verified in animal experiments. RESULTS: ROCK1 was highly expressed in PC tissues and enriched in the cytoplasm, and its high expression was associated with a poor prognosis. Silencing ROCK1 inhibited the proliferation and migration of PC cells and promoted their apoptosis. Mechanistically, ROCK1 directly interacted with c-MYC, promoted its phosphorylation (Ser 62) and suppressed its degradation, thereby increasing the transcription of the key glycolysis regulatory factor PFKFB3, enhancing glycolytic activity and promoting PC growth. Silencing ROCK1 increased gemcitabine (GEM) sensitivity in vivo and in vitro. CONCLUSIONS: ROCK1 promotes glycolytic activity in PC cells and promotes PC tumor growth through the c-MYC/PFKFB3 signaling pathway. ROCK1 knockdown can inhibit PC tumor growth in vivo and increase the GEM sensitivity of PC tumors, providing a crucial clinical therapeutic strategy for PC.


Asunto(s)
Proliferación Celular , Glucólisis , Neoplasias Pancreáticas , Fosfofructoquinasa-2 , Proteínas Proto-Oncogénicas c-myc , Quinasas Asociadas a rho , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Quinasas Asociadas a rho/metabolismo , Quinasas Asociadas a rho/genética , Fosfofructoquinasa-2/metabolismo , Fosfofructoquinasa-2/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Línea Celular Tumoral , Ratones , Transducción de Señal , Apoptosis , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Movimiento Celular , Gemcitabina , Masculino
20.
Mol Cancer ; 23(1): 151, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085875

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the second most common malignant tumor worldwide, and its incidence rate increases annually. Early diagnosis and treatment are crucial for improving the prognosis of patients with colorectal cancer. Circular RNAs are noncoding RNAs with a closed-loop structure that play a significant role in tumor development. However, the role of circular RNAs in CRC is poorly understood. METHODS: The circular RNA hsa_circ_0000467 was screened in CRC circRNA microarrays using a bioinformatics analysis, and the expression of hsa_circ_0000467 in CRC tissues was determined by in situ hybridization. The associations between the expression level of hsa_circ_0000467 and the clinical characteristics of CRC patients were evaluated. Then, the role of hsa_circ_0000467 in CRC growth and metastasis was assessed by CCK8 assay, EdU assay, plate colony formation assay, wound healing assay, and Transwell assay in vitro and in a mouse model of CRC in vivo. Proteomic analysis and western blotting were performed to investigate the effect of hsa_circ_0000467 on c-Myc signaling. Polysome profiling, RT‒qPCR and dual-luciferase reporter assays were performed to determine the effect of hsa_circ_0000467 on c-Myc translation. RNA pull-down, RNA immunoprecipitation (RIP) and immunofluorescence staining were performed to assess the effect of hsa_circ_0000467 on eIF4A3 distribution. RESULTS: In this study, we found that the circular RNA hsa_circ_0000467 is highly expressed in colorectal cancer and is significantly correlated with poor prognosis in CRC patients. In vitro and in vivo experiments revealed that hsa_circ_0000467 promotes the growth and metastasis of colorectal cancer cells. Mechanistically, hsa_circ_0000467 binds eIF4A3 to suppress its nuclear translocation. In addition, it can also act as a scaffold molecule that binds eIF4A3 and c-Myc mRNA to form complexes in the cytoplasm, thereby promoting the translation of c-Myc. In turn, c-Myc upregulates its downstream targets, including the cell cycle-related factors cyclin D2 and CDK4 and the tight junction-related factor ZEB1, and downregulates E-cadherin, which ultimately promotes the growth and metastasis of CRC. CONCLUSIONS: Our findings revealed that hsa_circRNA_0000467 plays a role in the progression of CRC by promoting eIF4A3-mediated c-Myc translation. This study provides a theoretical basis and molecular target for the diagnosis and treatment of CRC.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Factor 4A Eucariótico de Iniciación , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc , ARN Circular , ARN Circular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Humanos , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/genética , Animales , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Progresión de la Enfermedad , Línea Celular Tumoral , Masculino , Pronóstico , Femenino , Biosíntesis de Proteínas , Movimiento Celular/genética , Biomarcadores de Tumor/genética , ARN Helicasas DEAD-box
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA