RESUMEN
Capsaicin analogs, whether sourced from natural origins or synthesized de novo, have garnered significant attention across diverse scientific disciplines. This comprehensive investigation explores the expansive domain of medicinal chemistry and pharmacology, focusing on capsaicin and its analogs. Notably, these analogs exhibit a wideranging pharmacological spectrum, with a particular emphasis on their potent antitumor properties. Researchers frequently explore structural modifications, particularly in region C, consistently enhancing their pharmacological activities. A highlighted finding is that analogs with alterations in both regions A and C manifest a diverse array of effects, spanning from anti-obesity to protection against ischemia. They also demonstrate anti- Alzheimer's, anti-fibrotic, anti-inflammatory, anti-diabetic, antimalarial, and anti-epileptic properties. This underscores the potential of structural adaptations in these regions, expanding the therapeutic applications of capsaicin-like compounds. Additionally, manipulations in regions B and C result in compounds that possess antioxidant and anti-obesity properties, providing valuable insights for the development of novel compounds. The therapeutic potential of capsaicin analogs opens innovative avenues for drug design and development, promising to address a broad spectrum of diseases and enhance global quality of life. Moreover, this article meticulously examines various synthetic methodologies for synthesizing capsaicin analogs, complementing the main review. These methodologies distinguish themselves through their simplicity, mild reaction conditions, and reliance on readily available commercial reagents. The accessible synthesis pathways enable researchers from diverse backgrounds to explore these compounds, fostering investigations and potential therapeutic applications.
RESUMEN
Capsaicin, carotenoids, and phenolic compounds from cumari-do-Pará peppers (Capsicum chinense Jacq.) harvested from two different locations in Pará, Brazil, and at different ripening stages were extracted by employing green methodologies as an alternative to organic solvents. Edible vegetable oils from soybeans (Glycine max), Brazilian nuts (Bertholettia excelsa H.B.), and palm olein were used in combination with ultrasonic-assisted extraction (UAE). The proximate composition of the pepper extracts and vitamin C were determined through AOAC methods, total phenolics and carotenoids were assessed by UV/Vis spectrophotometry, and capsaicin by high-performance liquid chromatography. Antioxidant cumari-do-Pará extract activities were evaluated by the ABTS radical scavenging and ß-carotene/linoleic acid assays. The vegetable oils were suitable for extracting and preserving bioactive pepper compounds, especially mature ones harvested from Igarapé-Açu. Bioactive compound content and antioxidant activity varied with harvesting location and ripening stage. Soybean oil was the most effective in extracting bioactive pepper compounds, particularly carotenoids, with 69% recovery. Soybean oil extracts enriched in capsaicin, carotenoids, and phenolics obtained from cumari-do-Pará can be used as spices in foodstuffs and/or as additives in pharmaceutical and nutraceutical formulations. Edible vegetable oils combined with UAE are promising for bioactive compound extraction, representing an environmentally friendly, safe, low-cost, versatile, and fast alternative.
RESUMEN
BACKGROUND: Capsaicin, a bioactive compound found in peppers, is recognized for its anti-inflammatory, antioxidant, and anti-lipidemic properties. This study aimed to evaluate the effects of capsaicin on atherosclerosis progression. METHODS: Apolipoprotein E knockout mice and their C57BL/6 controls were utilized to assess blood lipid profile, inflammatory status, and atherosclerotic lesions. We also examined the influence of capsaicin on cholesterol influx and efflux, and the role of TRPV1 and PPARγ signaling pathways in bone marrow-derived macrophages. RESULTS: Capsaicin treatment reduced weight gain, visceral adiposity, blood triglycerides, and total and non-HDL cholesterol. These improvements were associated with a reduction in atherosclerotic lesions in the aorta and carotid. Capsaicin also improved hepatic oxidative and inflammatory status. Systemic inflammation was also reduced, as indicated by reduced leukocyte rolling and adhesion on the mesenteric plexus. Capsaicin decreased foam cell formation by reducing cholesterol influx through scavenger receptor A and increasing cholesterol efflux via ATP-binding cassette transporter A1, an effect primarily linked to TRPV1 activation. CONCLUSIONS: These findings underscore the potential of capsaicin as a promising agent for atherosclerosis prevention, highlighting its comprehensive role in modulating lipid metabolism, foam cell formation, and inflammatory responses.
Asunto(s)
Aterosclerosis , Capsaicina , Células Espumosas , Inflamación , PPAR gamma , Canales Catiónicos TRPV , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Aterosclerosis/prevención & control , Aterosclerosis/tratamiento farmacológico , Transportador 1 de Casete de Unión a ATP/metabolismo , Capsaicina/farmacología , Colesterol/sangre , Colesterol/metabolismo , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Inflamación/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Noqueados para ApoE , PPAR gamma/metabolismo , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPV/metabolismoRESUMEN
Although TRPV1 receptors play an essential role in the adverse effects on the airways following captopril treatment, there is no available evidence of their involvement in treatment regimens involving repeated doses of captopril. Comparing the difference in these two treatment regimens is essential since captopril is a continuous-use medication. Thus, this study explored the role of the transient receptor potential vanilloid 1 (TRPV1) in the effects of captopril on rat airways using two treatment regimens. Airway resistance, bronchoalveolar lavage (BAL), and histological and immunohistochemical analyses were conducted in rats administered with single or repeated doses of captopril. This study showed that the hyperresponsiveness to bradykinin and capsaicin in captopril-treated rats was acute. Treatment with the selective B2 antagonist, HOE140 reduced bradykinin hyperresponsiveness and abolished capsaicin exacerbation in single-dose captopril-treated rats. Likewise, degeneration of TRPV1-positive neurones also reduced hyperresponsiveness to bradykinin. Single-dose captopril treatment increased leukocyte infiltration in the BAL when compared with the vehicle and this increase was reduced by TRPV1-positive neurone degeneration. However, when compared with the vehicle treatment, animals treated with repeated doses of captopril showed an increase in leukocyte influx as early as 1 h after the last captopril treatment, but this effect disappeared after 24 h. Additionally, an increase in TRPV1 expression occurred only in animals who received repeated captopril doses and the degeneration of TRPV1-positive neurones attenuated TRPV1 upregulation. In conclusion, these data strongly indicate that a treatment regimen involving multiple doses of captopril not only enhances sensitisation but also upregulates TRPV1 expression. Consequently, targeting TRPV1 could serve as a promising strategy to reduce the negative impact of captopril on the airways.
Asunto(s)
Bradiquinina , Líquido del Lavado Bronquioalveolar , Capsaicina , Captopril , Canales Catiónicos TRPV , Animales , Captopril/farmacología , Canales Catiónicos TRPV/metabolismo , Ratas , Masculino , Bradiquinina/farmacología , Capsaicina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Ratas Sprague-Dawley , Resistencia de las Vías Respiratorias/efectos de los fármacos , Antagonistas del Receptor de Bradiquinina B2/farmacología , Relación Dosis-Respuesta a Droga , Hiperreactividad Bronquial/inducido químicamente , Hiperreactividad Bronquial/tratamiento farmacológico , Neuronas/efectos de los fármacos , Neuronas/metabolismoRESUMEN
INTRODUCTION: It has been suggested that capsaicin (CAP), a major pungent component in chili peppers, can be used as an anti-obesity ingredient due to effects on energy metabolism, but evidence is not consistent. Genetics may account for differences in CAP tolerance and its impact on adiposity status. The aim of this study was to systematically review current evidence concerning the role of genetic polymorphisms influencing CAP tolerance. METHODS: The present systematic review analyzed and synthesized available evidence concerning associations between genetic polymorphisms and CAP tolerance following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) guidelines. Databases such as PubMed/MEDLINE, Cochrane, Scopus, Google Scholar, SciELO, and LILACS were screened. Out of 228 publications identified, only 6 meet inclusion criteria and were finally included in the final report. RESULTS: Overall, a total of 28 single nucleotide polymorphisms were associated with several CAP tolerance traits including sensitivity to burning/stinging, heat pain, and cough reactions, and detection of bitter taste thresholds. These genetic variants were located within 6 genes involved in key physiological processes such synthesis of tetrahydrobiopterin and nitric oxide production (GCH1), CAP uptake and transduction of thermal stimuli (TRPV1), and bitter taste perception (TAS2R38, TAS2R3, TAS2R4, and TAS2R5). CONCLUSION: There is evidence about the influence of genetic polymorphisms on CAP tolerance by affecting nociceptive signaling, CAP binding, and bitter tasting. This knowledge may facilitate the design and implementation of innovative CAP-based nutrigenetic strategies for a more precise clinical management of obesity.
Asunto(s)
Capsaicina , Obesidad , Polimorfismo de Nucleótido Simple , Humanos , Capsaicina/farmacología , Obesidad/genética , Capsicum/genética , Gusto/genética , Percepción del Gusto/genética , Canales Catiónicos TRPV/genética , Medicina de PrecisiónRESUMEN
BACKGROUND: Pannexin1 (Panx1) is a membrane channel expressed in different cells of the nervous system and is involved in several pathological conditions, including pain and inflammation. At the central nervous system, the role of Panx1 is already well-established. However, in the periphery, there is a lack of information regarding the participation of Panx1 in neuronal sensitization. The dorsal root ganglion (DRG) is a critical structure for pain processing and modulation. For this reason, understanding the molecular mechanism in the DRG associated with neuronal hypersensitivity has become highly relevant to discovering new possibilities for pain treatment. Here, we aimed to investigate the role of Panx1 in acute nociception and peripheral inflammatory and neuropathic pain by using two different approaches. METHODS: Rats were treated with a selective Panx1 blocker peptide (10Panx) into L5-DRG, followed by ipsilateral intraplantar injection of carrageenan, formalin, or capsaicin. DRG neuronal cells were pre-treated with 10Panx and stimulated by capsaicin to evaluate calcium influx. Panx1 knockout mice (Panx1-KO) received carrageenan or capsaicin into the paw and paclitaxel intraperitoneally. The von Frey test was performed to measure the mechanical threshold of rats' and mice's paws before and after each treatment. RESULTS: Pharmacological blockade of Panx1 in the DRG of rats resulted in a dose-dependent decrease of mechanical allodynia triggered by carrageenan, and nociception decreased in the second phase of formalin. Nociceptive behavior response induced by capsaicin was significantly lower in rats treated with Panx1 blockade into DRG. Neuronal cells with Panx1 blockage showed lower intracellular calcium response than untreated cells after capsaicin administration. Accordingly, Panx1-KO mice showed a robust reduction in mechanical allodynia after carrageenan and a lower nociceptive response to capsaicin. A single dose of paclitaxel promoted acute mechanical pain in wildtype (WT) but not in Panx1-KO mice. Four doses of chemotherapy promoted chronic mechanical allodynia in both genotypes, although Panx1-KO mice had significant ablation in the first eight days. CONCLUSION: Our findings suggest that Panx1 is critical for developing peripheral inflammatory pain and acute nociception involving transient receptor potential vanilloid subtype 1 (TRPV1) but is not essential for neuropathic pain chronicity.
Asunto(s)
Hiperalgesia , Neuralgia , Ratas , Ratones , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/patología , Capsaicina/farmacología , Capsaicina/uso terapéutico , Paclitaxel/efectos adversos , Carragenina/efectos adversos , Calcio , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Formaldehído/efectos adversos , Ganglios Espinales , Proteínas del Tejido Nervioso , Conexinas/genética , Conexinas/uso terapéuticoRESUMEN
Antifouling coatings containing biocidal agents can be used to prevent the accumulation of biotic deposits on submerged surfaces; however, several commercial biocides can negatively affect the ecosystem. In this study, various formulations of a potential biocide product comprising copper nanoparticles and capsaicin supported on zeolite ZSM-5 were analyzed to determine the influence of the concentration of each component. The incorporation of copper was evidenced by scanning electron microscopy and energy dispersive spectroscopy. Similarly, Fourier-transform infrared spectroscopy confirmed that capsaicin was supported on the zeolite surface. The presence of capsaicin on the external zeolite surface significantly reduced the surface area of the zeolite. Finally, bacterial growth inhibition analysis showed that copper nanoparticles inhibited the growth of strains Idiomarina loihiensis UCO25, Pseudoalteromonas sp. UCO92, and Halomonas boliviensis UCO24 while the organic component acted as a reinforcing biocide.
RESUMEN
Glioblastoma is one of the most lethal tumors, displaying striking cellular heterogeneity and drug resistance. The prognosis of patients suffering from glioblastoma after 5 years is only 5%. In the present work, capsaicin analogues bearing modifications on the acyl chain with long-chain fatty acids showed promising anti-tumoral activity by its cytotoxicity on U-87 and U-138 glioblastoma multiforme cells. The capsaicin analogues were enzymatically synthetized with cross-linked enzyme aggregates of lipase B from Candida antarctica (CALB). The catalytic performance of recombinant CALB-CLEAs was compared to their immobilized form on a hydrophobic support. After 72 h of reaction, the synthesis of capsaicin analogues from linoleic acid, docosahexaenoic acid, and punicic acid achieved a maximum conversion of 69.7, 8.3 and 30.3% with CALB-CLEAs, respectively. Similar values were obtained with commercial CALB, with conversion yields of 58.3, 24.2 and 22% for capsaicin analogues from linoleic acid, DHA and punicic acid, respectively. Olvanil and dohevanil had a significant cytotoxic effect on both U-87 and U-138 glioblastoma cells. Irrespective of the immobilization form, CALB is an efficient biocatalyst for the synthesis of anti-tumoral capsaicin derivatives. KEY POINTS: ⢠This is the first report concerning the enzymatic synthesis of capsaicin analogues from docosahexaenoic acid and punicic acid with CALB-CLEAs. ⢠The viability U-87 and U-138 glioblastoma cells was significantly affected after incubation with olvanil and dohevanil. ⢠Capsaicin analogues from fatty acids obtained by CALB-CLEAs are promising candidates for therapeutic use as cytotoxic agents in glioblastoma cancer cells.
Asunto(s)
Capsaicina , Glioblastoma , Humanos , Capsaicina/farmacología , Enzimas Inmovilizadas/metabolismo , Glioblastoma/tratamiento farmacológico , Proteínas Fúngicas/metabolismoRESUMEN
Descending control of nociception (DCN), a measure of efficiency of descending pain inhibition, can be assessed in animals by the combined application of test and conditioning noxious stimuli. Evidence from pre-clinical and clinical studies indicates that this mechanism of pain control may differ between sexes and might be impaired in many chronic pain states. However, little is known about sex differences in DCN efficiency in models of acute and chronic orofacial pain. Herein, we first evaluated DCN responses in male and female rats by the applying formalin into the upper lip or capsaicin into the forepaw as the conditioning stimulus, followed by mechanical stimulation (Randall-Selitto) of the hind paw as the test stimulus. The same protocol (i.e., capsaicin in the forepaw followed by mechanical stimulation of the hind paw) was evaluated in male and female rats on day 3 after intraoral incision and on day 15 and 30 after chronic constriction injury of the infraorbital nerve (CCI-ION). Additionally, we assessed the effect of the kappa opioid receptor (KOR) antagonist Norbinaltorphimine (nor-BNI) on DCN responses of female nerve-injured rats. This study shows that naïve female rats exhibit less efficient DCN compared to males. Postoperative pain did not alter DCN responses in female and male rats, but CCI-ION induced loss of DCN responses in females but not in males. Systemic pretreatment with nor-BNI prevented the loss of DCN induced by CCI-ION in female rats. The results reveal sex differences in DCN responses and female-specific impairment of DCN following chronic orofacial pain. Moreover, the findings suggest that, at least for females, blocking KOR could be a promising therapeutic approach to prevent maladaptive changes in chronic orofacial pain.
Asunto(s)
Dolor Crónico , Neuralgia , Femenino , Ratas , Masculino , Animales , Dolor Crónico/tratamiento farmacológico , Receptores Opioides kappa , Neuralgia/tratamiento farmacológico , Capsaicina/farmacología , Capsaicina/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Caracteres Sexuales , Nocicepción , Ratas Sprague-Dawley , Dolor Facial/tratamiento farmacológico , Antagonistas de Narcóticos/farmacología , Antagonistas de Narcóticos/uso terapéuticoRESUMEN
Capsiate (CAP) is a nonpungent capsaicin analog (Capsicum annuum L. extract) that has been studied as a potential antiobesity agent. However, the interaction between chronic CAP supplementation and resistance training is not clear. The purpose of this study was to examine the changes in adipose tissue-derived hormones, body composition, appetite, and muscle strength after 10 weeks of resistance training, combined with chronic CAP supplementation in healthy untrained men. We hypothesized that CAP could induce higher benefits when combined with resistance training after 10 weeks of intervention compared to resistance training alone. Twenty-four young men (age, 22.0 ± 2.9) were randomized to either capsiate supplementation (CAP = 12 mg/day) or placebo (PL), and both groups were assigned to resistance training. Body composition, leptin and adiponectin concentrations, subjective ratings of appetite, energy intake, and exercise performance were assessed at before and after 10 weeks of progressive resistance training. There was a significant increase in body mass (P < .001), fat-free mass (CAP: 58.0 ± 7.1 vs. post, 59.7 ± 7.1 kg; PL: pre, 58.4 ± 7.3 vs. post, 59.8 ± 7.1 kg; P < .001), resting metabolic rate (CAP: pre, 1782.9 ± 160.6 vs. post, 1796.3 ± 162.0 kcal; PL: pre, 1733.0 ± 148.9 vs. post, 1750.5 ± 149.8 kcal; P < .001), maximal strength at 45 leg press (P < .001) and bench press (P < .001) in both groups, but no significant (P > .05) supplementation by training period interaction nor fat mass was observed. For subjective ratings of appetite, energy intake, leptin, and adiponectin, no significant effect of supplementation by training period interaction was observed (P > .05). In conclusion, 10 weeks of resistance training increased total body weight, muscle mass, and maximum strength in healthy untrained men; however, CAP supplementation (12 mg, 7 days per week) failed to change adipose tissue-derived hormones, appetite, body composition and muscle strength in this population. Registered under Brazilian Registry of Clinical Trials (RBR-8cz9kfq).
Asunto(s)
Capsaicina/análogos & derivados , Capsicum , Entrenamiento de Fuerza , Masculino , Humanos , Adulto Joven , Adulto , Leptina/metabolismo , Suplementos Dietéticos , Apetito , Adiponectina , Tejido Adiposo/metabolismo , Composición Corporal , Fuerza Muscular , Método Doble Ciego , Alcanfor/metabolismo , Alcanfor/farmacología , Mentol/metabolismo , Mentol/farmacología , Extractos Vegetales/farmacología , Músculo EsqueléticoRESUMEN
Background: Capsaicin (CAP) is the main chemical component responsible for the pungency (burning pain) of the chili plant (capsicum spp.), whose metabolic functions include energy balance and fatty acid oxidation. The aim of this study is to analyze the association of dietary capsaicin consumption with markers of adiposity and fatty liver in a Mexican adult population. Methods: This cross-sectional/analytical study recruited 221 subjects aged 18 to 65 years who were resident in the city of Tijuana, Baja California, Mexico. The daily CAP intake was analyzed through a validated chili/CAP consumption questionnaire. Anthropometric and biochemical measurements were performed following standardized protocols. Adjusted Pearson's correlations were applied to analyze the association of CAP with adiposity and fatty liver markers. Results: In this study, the daily average consumption of CAP was 152.44 mg. The dietary CAP consumption positively correlated with BMI (r = 0.179, p = 0.003), hip circumference (r = 0.176, p = 0.004) and body adiposity index (r = 0.181, p = 0.001. Likewise, the daily CAP intake positively correlated with hepatic steatosis index (r = 0.158, p = 0.004), fatty liver index (r = 0.141, p = 0.003) and lactate dehydrogenase (r = 0.194, p = 0.016) after statistical settings. Conclusions: The results of this study suggest positive associations between dietary CAP consumption and the markers of body adiposity and fatty liver in a Mexican adult population.
RESUMEN
Capsaicin, a lipophilic, volatile compound, is responsible for the pungent properties of chili peppers. In recent years, a significant increase in investigations into its properties has allowed the production of new formulations and the development of tools with biotechnological, diagnostic, and potential therapeutic applications. Most of these studies show beneficial effects, improving antioxidant and anti-inflammatory status, inducing thermogenesis, and reducing white adipose tissue. Other mechanisms, including reducing food intake and improving intestinal dysbiosis, are also described. In this way, the possible clinical application of such compound is expanding every year. This opinion article aims to provide a synthesis of recent findings regarding the mechanisms by which capsaicin participates in the control of non-communicable diseases such as obesity, diabetes, and dyslipidemia.
Asunto(s)
Capsicum , Neuralgia , Capsaicina/uso terapéutico , Capsaicina/farmacología , Neuralgia/tratamiento farmacológico , Obesidad/tratamiento farmacológicoRESUMEN
Electrospun chitosan nanofibers (QSNFs) enhance the healing process by mimicking skin structure and function. The aim of this study was to analyze the therapeutic effects of QSNFs application on animal skin wounds to identify a potential direction for translational research in dermatology. The PRISMA methodology and the PICO scheme were used. A random effects model and mean difference analysis were applied for the meta-analysis. A meta-regression model was constructed, risk of bias was determined, and methodological quality assessment was performed. Of the 2370 articles collected, 54 studies were selected based on the inclusion and exclusion criteria. The wound healing area was used for building models on the 3rd, 7th, and 14th days of follow-up; the results were - 10.4% (95% CI, -18.2% to -2.6%, p = 0.001), -21.0% (95% CI, -27.3% to -14.7%, p = 0.001), and - 14.0% (95% CI, -19.1 to -8.8%, p = 0.001), respectively. Antioxidants and synthetic polymers combined with QSNFs further reduced skin wound areas (p < 0.05). The results show a more efficient reduction in wound area percentages in experimental groups than in control groups, so QSNFs could potentially be applied in translational human medicine research.
RESUMEN
Dairy bulls in feedlots have been a viable alternative for dairy producers to reinforce the family's income. Aspects such as balanced diets and proper management are essential for these animals to develop and allow an economic return fully. Plant extracts are performance enhancers and ruminal and intestinal health promoters. Therefore, this study aims to evaluate whether the addition of encapsulated pepper (EP) blend (Capsicum annuum, Capsicum frutescens, and Capsicum chinense - rich in capsaicin) interferes with the volatile fatty acid profile in the rumen and enhances the growth performance of Holstein bullocks in a feedlot. For the experiment, 24 whole bullocks were used, distributed into three treatments, with eight replicates per treatment (one animal as an experimental unit, kept in an individual stall): groups T0, T200, and T400, receiving 0 mg, 200 mg, and 400 mg EP/kg of concentrate, respectively. Knowing the intake of concentrate and the average body weight during the experiment, we calculated the dose in mg/kg/day of the EP; that is, the T200 animals consumed 2.45 mg EP/kg (body weight -BW)/day; and T400 consumed 4.9 mg EP/kg BW/day. The animals from T400 presented a more significant weight gain between days 15 and 45 of confinement compared to T0 (P=0.05). This same treatment (T400) had a trend of lower weight gain between days 46 and 90 (P=0.09). Likewise, the T400 group had higher feed efficiency than T0 between days 15 and 45. Furthermore, the treatments affected the white blood cell count, with the T400 bullocks showing a higher number of neutrophils and lymphocytes. Higher levels of C-reactive protein (CRP) were measured in the serum of steers from both groups that consumed pepper (P<0.01). Interaction between treatment × day was observed for the activity of glutathione enzymes (GST and GPx) and levels of lipoperoxidation (LPO) (characterized by antioxidant stimulation) associated with the reduction in serum LPO; similar antioxidant enzymes behavior was observed in the liver. In the small intestine (jejunum), the activities of antioxidant enzymes (GST and GPx) were lower in the two groups of cattle that consumed EP, and LPO was lower. The treatments affected the concentration of acetic acid in the rumen fluid, presenting lower levels in T400 compared to T200 and similar T0 (P≤0.05). There was an interaction of day vs. treatment for propionic acid, presenting a higher concentration on day 45 at T400 than T0. These results, therefore, allow us to conclude that adding 400 mg of pepper extract can be an excellent additive for weight gain at the beginning of the experiment; however, over time, this dose of additive negatively affects weight gain. Both EP doses stimulated serum and tissue antioxidant responses, reducing lipoperoxidation. However, the 400 mg EP/kg concentrate suggests a pro-inflammatory response (leukocytosis and elevated CRP), s probably related to the high dose (i.e., between 1.7 and 2.4 g/animal/day).
Asunto(s)
Alimentación Animal , Antioxidantes , Capsicum , Suplementos Dietéticos , Animales , Bovinos , Masculino , Alimentación Animal/análisis , Antioxidantes/metabolismo , Peso Corporal , Dieta/veterinaria , Ácidos Grasos Volátiles/metabolismo , Fermentación , Rumen/metabolismo , Aumento de Peso , Capsicum/químicaRESUMEN
Objectives: Dental pain, which is the main reason for patients consulting dentists, is classified as a public health concern. The study of cellular and molecular mechanisms contributing to pain is a fundamental element for developing new analgesics. By using a selective antagonist in an in vitro model, this study aimed to establish the role of TRPV-1 in human odontoblast-like cells (OLCs) as a therapeutic target for dental pain mediated by noxious thermal and osmotic stimuli. Methods: OLCs were differentiated from dental pulp mesenchymal cells and TRPV1 expression was evaluated. Activation of TRPV-1 was determined by evaluating changes in calcium concentration after stimulation with mannitol and xylitol hyperosmotic solutions or DMEM heated at 45 °C, using the fluorescent calcium probe Fluo-4 AM. In addition, changes in fluorescence (F/F0) due to calcium flux were evaluated using fluorometry and flow cytometry. Simultaneously, the cells were co-stimulated with the selective antagonist capsazepine (CZP). Results: OLCs expressed DSPP and DMP-1, confirming their cellular phenotype. TRPV1 was expressed, and its activation by different stimuli produced an increase in cytosolic Ca2+ which was reduced by the antagonist. Both methods used to evaluate TRPV1 activation through the measurement of calcium probe fluorescence showed similar patterns. Conclusions: These results suggest that TRPV-1 modulation using an antagonist can be implemented as a pharmacological strategy for managing dental pain mediated by hyperosmotic and thermal stimuli.
RESUMEN
The aim of this study was to explore the effect of capsaicin and particular phenolic compounds profile from cellulase assisted extracts of Habanero (Capsicum chinense) chili pepper seeds (CPS) on the concentration of cytokines (IL-2, IL-6, TNF-α, IL-1ß) in murine macrophages (RAW 264.7) stimulated with lipopolysaccharides (LPS). Capsaicin was quantified by HPLC-DAD, and the phenolic profile was determined by UPLC-MS-QqQ. Anti-inflammatory activity was evaluated by Mouse Cytokine/Chemokine Magnetic Bead Panel 96-well plate assay. Among the 15 different phenolics found in CPS extracts obtained at 120 or 150 min of maceration with 2,500 UI/L at 30 ºC or 45 ºC in a 1:15 (w:v) proportion, the most abundant was vanillic acid (7.97-12.66 µg/g). The extract obtained at 30 ºC and 120 min, showed similar effects than the observed for synthetic anti-inflammatory drugs indomethacin and dexamethasone, and capsaicin standard. Beyond capsaicin, salicylic, protocatechuic and trans-cinnamic acids as well as vanillin in CPS extracts were correlated with the anti-inflammatory effect. On the other hand, capsaicin and chlorogenic acid contents were potential immunostimulants whose concentration varied depending on the cellulase treatment time.
Asunto(s)
Capsicum , Celulasas , Ratones , Animales , Capsaicina , Cromatografía Liquida , Frutas/química , Espectrometría de Masas en Tándem , Semillas/química , Antiinflamatorios , Extractos Vegetales , Alcanfor , Mentol , FenolesRESUMEN
Capsaicin (CAP) is the compound responsible for pungency in chili peppers, presenting several biological properties. But its general safety and effectiveness in the context of carcinogenesis has not been fully clarified. Thus, the present study evaluated whether dietary CAP modifies the development of urothelial lesions induced by the carcinogen N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in male Sprague-Dawley rats. Animals were randomly allocated into 6 groups: G1 - treated with 0.05% BBN in drinking water (weeks 1-12) and received a balanced diet (weeks 1-20); G2 and G3-treated with BBN (weeks 1-12) and received a balanced diet with 0.01 or 0.02% CAP (weeks 1-20), respectively; G4 and G5- only received a balanced diet with 0.01 or 0.02% CAP (weeks 1-20), respectively; G6 - only received a balanced diet (weeks 1-20). At the end of week 20, the incidence and types of urothelial lesions, proliferating cell nuclear antigen (PCNA) labeling index, and matrix metalloproteinases (MMP) 2 and 9 activities were analyzed. A significant reduction was observed in the incidence and multiplicity of simple (p = 0.020 and p = 0.011) and nodular/papillary (p = 0.030 and p = 0.003) hyperplasias and papillomas/carcinomas (p = 0.023 and p = 0.020), epithelial proliferation (p = 0.007) and in the activity of the intermediate form of MMP-2 (p < 0.001) and pro-MMP-9 activities (p < 0.002), in BBN + 0.02% CAP (G3) group in comparison to BBN (G1) group. Capsaicin intake per se did not alter body weight, liver and kidney weights, urothelial histology or serum biochemical parameters. Thus, dietary CAP was safe and showed a protective effect against rat BBN-induced urothelial carcinogenesis.
Asunto(s)
Neoplasias de la Vejiga Urinaria , Ratas , Animales , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/patología , Vejiga Urinaria/patología , Capsaicina/farmacología , Ratas Sprague-Dawley , Carcinógenos/farmacología , Carcinogénesis/patología , DietaRESUMEN
Iron overload (IOL) increases the risk of diabetes mellitus (DM). Capsaicin (CAP), an agonist of transient receptor potential vanilloid-1 (TRPV1), reduces the effects of IOL. We evaluated the effects of chronic CAP administration on hepcidin expression, kidney iron deposits, and urinary biomarkers in a male Wistar rat model with IOL and DM (DM-IOL). IOL was induced with oral administration of iron for 12 weeks and DM was induced with streptozotocin. Four groups were studied: Healthy, DM, DM-IOL, and DM-IOL + CAP (1 mg·kg-1·day-1 for 12 weeks). Iron deposits were visualized with Perls tissue staining and a colorimetric assay. Serum hepcidin levels were measured with an enzyme-linked immunosorbent assay. Kidney biomarkers were assayed in 24 h urine samples. In the DM-IOL + CAP group, the total area of iron deposits and the total iron content in kidneys were smaller than those observed in both untreated DM groups. CAP administration significantly increased hepcidin levels in the DM-IOL group. Urinary levels of albumin, cystatin C, and beta-2-microglobulin were similar in all three experimental groups. In conclusion, we showed that in a DM-IOL animal model, CAP reduced renal iron deposits and increased the level of circulating hepcidin.
Asunto(s)
Diabetes Mellitus Experimental , Sobrecarga de Hierro , Ratas , Masculino , Animales , Hepcidinas/metabolismo , Hierro/metabolismo , Capsaicina/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas Wistar , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Riñón/metabolismo , BiomarcadoresRESUMEN
Bacterial, fungal, and parasitic infections increase morbimortality rates and hospital costs. This study aimed to assess the antimicrobial and antiparasitic activities of the crude extract from the seeds and peel of the pepper Capsicum chinense Jacq. and of the isolated compound capsaicin and to evaluate their ability to inhibit biofilm formation, eradicate biofilm, and reduce hemolysin production by Candida species. The crude ethanolic and hexane extracts were obtained by maceration at room temperature, and their chemical compositions were analyzed by liquid chromatography coupled to mass spectrometry (LC-MS). The antimicrobial activity of the samples was evaluated by determining the minimum inhibitory concentration. Inhibition of biofilm formation and biofilm eradication by the samples were evaluated based on biomass and cell viability. Reduction of Candida spp. hemolytic activity by the samples was determined on sheep blood agar plates. The antiparasitic action of the samples was evaluated by determining their ability to inhibit Toxoplasma gondii intracellular proliferation. LC-MS-ESI analyses helped to identify organic and phenolic acids, flavonoids, capsaicinoids, and fatty acids in the ethanolic extracts, as well as capsaicinoids and fatty acids in the hexane extracts. Antifungal action was more evident against C. glabrata and C. tropicalis. The samples inhibited biofilm formation and eradicated the biofilm formed by C. tropicalis more effectively. Sub-inhibitory concentrations of the samples significantly reduced the C. glabrata and C. tropicalis hemolytic activity. The samples only altered host cell viability when tested at higher concentrations; however, at non-toxic concentrations, they reduced T. gondii growth. In association with gold standard drugs used to treat toxoplasmosis, capsaicin improved their antiparasitic activity. These results are unprecedented and encouraging, indicating the Capsicum chinense Jacq. peel and seed extracts and capsaicin display antifungal and antiparasitic activities.
RESUMEN
Capsaicinoids are the main bioactive compounds extracted from chili pepper seeds (CPSs) but other bioactive compounds such as phenolic compounds may be found. Enzyme-assisted extraction (EAE) improves the extraction of bioactive compounds from fruits and seeds. The aim of this study was to establish the cellulase-assisted extraction conditions of capsaicinoids and phenolic compounds from Habanero CPSs (Capsicum chinense) and to evaluate the anti-inflammatory activity of the obtained extracts on murine macrophages. EAE was performed using different temperatures (T1 = 30°C, T2 = 45°C and T3 = 60°C), enzyme concentrations (E1 = 2,500 UI/L and E2 = 250 UI/L), and extraction time periods (0-150 min). Total phenolic compounds were quantified using the Folin-Ciocalteu assay, capsaicin (CAP) and dihydrocapsaicin (DHC) contents were evaluated by HPLC, and anti-inflammatory activity was performed with Griess assay on murine macrophage RAW 264.7 cell culture. The highest phenolic compound content (337.96 mg GAE/L) was achieved at 30°C, 2,500 UI/L, and 150 min of extraction. The highest CAP content (310.23 µg/ml) was obtained at 45°C with 250 UI/L for 150 min, while for DHC (167.72 µg/ml), the conditions were 60°C, 2,500 UI/L, and 120 min. The highest anti-inflammatory response was obtained when 60°C, E2, and 150 min were used for the extraction, and nitric oxide (NO) production was reduced to 22.56%. Based on the results obtained in this research, EAE allowed the recovery of compounds with anti-inflammatory activity from CPS using water as a solvent. There was a correlation between the extraction of CAP and DHC. But although a moderate direct correlation between the concentration of capsaicinoids and total phenolic compounds (TPCs) and an inverse correlation of the presence of the bioactive compounds (TPC, CAP, and DHC) with the NO synthesis, these were not statistically significant. We demonstrated that Habanero seeds are an important raw material to recover anti-inflammatory compounds beyond capsaicinoids using water in EAE.