RESUMEN
PREMISE: The evolution of carnivorous pitcher traps across multiple angiosperm lineages represents a classic example of morphological convergence. Nevertheless, no comparative study to-date has examined pitcher evolution from a quantitative morphometric perspective. METHODS: In the present study, we used comparative morphometric approaches to quantify the shape space occupied by Heliamphora pitchers and to trace evolutionary trajectories through this space to examine patterns of divergence and convergence within the genus. We also investigated pitcher development, and, how the packing of pitchers is affected by crowding, a common condition in their natural environments. RESULTS: Our results showed that Heliamphora pitchers have diverged along three main axes in morphospace: (1) pitcher curvature; (2) nectar spoon elaboration; and (3) pitcher stoutness. Both curvature and stoutness are correlated with pitcher size, suggesting structural constraints in pitcher morphological evolution. Among the four traits (curvature, spoon elaboration, stoutness, and size), all but curvature lacked phylogenetic signal and showed marked convergence across the phylogeny. We also observed tighter packing of pitchers in crowded conditions, and this effect was most pronounced in curved, slender pitchers. CONCLUSIONS: Overall, our study demonstrates that diversification and convergent evolution of carnivory-related traits extends to finer evolutionary timescales, reinforcing the notion that ecological specialization may not necessarily be an evolutionary dead end.
Asunto(s)
Magnoliopsida , Sarraceniaceae , Filogenia , Humedales , Carnivoría , Magnoliopsida/genética , América del SurRESUMEN
Central American and Mexican Pinguicula species are characterized by enormous divergence in size and color of flowers and are pollinated by butterflies, flies, bees, and hummingbirds. It is known that floral trichomes are key characters in plant-pollinator interaction. The main aim of our study was to verify our hypothesis that the distribution and diversity of non-glandular and glandular trichomes are related to the pollinator syndromes rather than the phylogenetic relationships. The studied sample consisted of Central American and Mexican species. In our study, we relied on light microscopy and scanning electron microscopy with a phylogenetic perspective based on ITS DNA sequences. The flower morphology of species pollinated by butterflies and hummingbirds was similar in contrast to species pollinated by flies and bees. Species pollinated by butterflies and hummingbirds contained low diversity of non-glandular trichomes, which occurred mostly in the tube and basal part of the spur. Surprisingly, in P. esseriana and P. mesophytica, non-glandular trichomes also occurred at the base of lower lip petals. In the case of species pollinated by flies/bees, we observed a high variety of non-glandular trichomes, which occurred on the surface of corolla petals, in the tube, and at the entrance to the spur. Furthermore, we did not identify any non-glandular trichomes in the spur. The capitate glandular trichomes were of similar morphology in all examined species. There were minor differences in the shape of the trichome head, as well as the length and the number of stalk cells. The distribution and the diversity of non-glandular and glandular trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. Most micromorphological characters appear to be associated more with floral adaptation to pollinators and less with phylogeny.
Asunto(s)
Mariposas Diurnas , Lamiales , Abejas/genética , Animales , Polinización , Tricomas/genética , Filogenia , Flores/genética , Flores/anatomía & histología , América CentralRESUMEN
The genus Utricularia includes around 250 species of carnivorous plants, commonly known as bladderworts. The generic name Utricularia was coined by Carolus Linnaeus in reference to the carnivorous organs (Utriculus in Latin) present in all species of the genus. Since the formal proposition by Linnaeus, many species of Utricularia were described, but only scarce information about the biology for most species is known. All Utricularia species are herbs with vegetative organs that do not follow traditional models of morphological classification. Since the formal description of Utricularia in the 18th century, the trap function has intrigued naturalists. Historically, the traps were regarded as floating organs, a common hypothesis that was maintained by different botanists. However, Charles Darwin was most likely the first naturalist to refute this idea, since even with the removal of all traps, the plants continued to float. More recently, due mainly to methodological advances, detailed studies on the trap function and mechanisms could be investigated. This review shows a historical perspective on Utricularia studies which focuses on the traps and body organization.
RESUMEN
Heliamphora is a genus of carnivorous pitcher plants endemic to the Guiana Highlands with fragmented distributions. We present a well resolved, time-calibrated, and comprehensive Heliamphora phylogeny estimated using Bayesian inference and maximum likelihood based on nuclear genes (26S, ITS, and PHYC) and secondary calibration. We used stochastic mapping to infer ancestral states of morphological characters and ecological traits. Our ancestral state estimations revealed that the pitcher drainage structures characteristic of the genus transformed from a hole to a slit in single clade, while other features (scape pubescence and hammock-like growth) have been gained and lost multiple times. Habitat was similarly labile in Heliamphora, with multiple transitions from the ancestral highland habitats into the lowlands. Using a Mantel test, we found closely related species tend to be geographically closely distributed. Placing our phylogeny in a historical context, major clades likely emerged through both vicariance and dispersal during the Miocene with more recent diversification driven by vertical displacement during the Pleistocene glacial-interglacial thermal oscillations. Despite the dynamic climatic history experienced by Heliamphora, the temperature changes brought by global warming pose a significant threat, particularly for those species at the highest elevations.
Asunto(s)
Filogenia , Filogeografía , Sarraceniaceae/clasificación , Humedales , Teorema de Bayes , Funciones de Verosimilitud , Modelos Biológicos , Nucleótidos/genética , Fenotipo , América del SurRESUMEN
As deforestation and fire move forward over pristine vegetation in the Amazon, many species remain undiscovered and may be threatened with extinction before being described. Here, we describe two new species of Utricularia (Lentibulariaceae) collected during recent fieldwork in an area of white-sand vegetation in the eastern Amazon Basin named Campos do Ariramba. Further herbarium revision revealed that both species were first collected over 60 years ago in the same area, remaining unnamed until now. The new species, named U. ariramba sp. nov. and U. jaramacaru sp. nov., are placed in U. sect. Aranella and U. sect. Setiscapella, respectively. We provide full descriptions, illustrations, photographs, a distribution map, and taxonomic discussion for both species. Additionally, we provide a preliminary list of Lentibulariaceae from the Campos do Ariramba. Both new species are assessed as Vulnerable, however, yet known only from a few collections each, highlighting the urgency and importance of fieldwork and taxonomic revisions in the Amazon biogeographic region in order to provide essential data for the conservation of both known and still unknown biodiversity.
RESUMEN
BACKGROUND AND AIMS: Floral food bodies (including edible trichomes) are a form of floral reward for pollinators. This type of nutritive reward has been recorded in several angiosperm families: Annonaceae, Araceae, Calycanthaceae, Eupomatiaceae, Himantandraceae, Nymphaeaceae, Orchidaceae, Pandanaceae and Winteraceae. Although these bodies are very diverse in their structure, their cells contain food material: starch grains, protein bodies or lipid droplets. In Pinguicula flowers, there are numerous multicellular clavate trichomes. Previous authors have proposed that these trichomes in the Pinguicula flower play the role of 'futterhaare' ('feeding hairs') and are eaten by pollinators. The main aim of this study was to investigate whether the floral non-glandular trichomes of Pinguicula contain food reserves and thus are a reward for pollinators. The trichomes from the Pinguicula groups, which differ in their taxonomy (species from the subgenera: Temnoceras, Pinguicula and Isoloba) as well as the types of their pollinators (butterflies/flies and bees/hummingbirds), were examined. Thus, it was determined whether there are any connections between the occurrence of food trichomes and phylogeny position or pollination biology. Additionally, we determined the phylogenetic history of edible trichomes and pollinator evolution in the Pinguicula species. METHODS: The species that were sampled were: Pinguicula moctezumae, P. esseriana, P. moranensis, P. emarginata, P. rectifolia, P. mesophytica, P. hemiepiphytica, P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia, P. gigantea, P. lusitanica, P. alpina and P. vulgaris. Light microscopy, histochemistry, and scanning and transmission electron microscopy were used to address our aims with a phylogenetic perspective based on matK/trnK DNA sequences. KEY RESULTS: No accumulation of protein bodies or lipid droplets was recorded in the floral non-glandular trichomes of any of the analysed species. Starch grains occurred in the cells of the trichomes of the bee-/fly-pollinated species: P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea, but not in P. alpina or P. vulgaris. Moreover, starch grains were not recorded in the cells of the trichomes of the Pinguicula species that have long spurs, which are pollinated by Lepidoptera (P. moctezumae, P. esseriana, P. moranensis, P. emarginata and P. rectifolia) or birds (P. mesophytica and P. hemiepihytica), or in species with a small and whitish corolla that self-pollinate (P. lusitanica). The results on the occurrence of edible trichomes and pollinator syndromes were mapped onto a phylogenetic reconstruction of the genus. CONCLUSION: Floral non-glandular trichomes play the role of edible trichomes in some Pinguicula species (P. agnata, P. albida, P. ibarrae, P. martinezii, P. filifolia and P. gigantea), which are mainly classified as bee-pollinated species that had originated from Central and South America. It seems that in the Pinguicula that are pollinated by other pollinator groups (Lepidoptera and hummingbirds), the non-glandular trichomes in the flowers play a role other than that of a floral reward for their pollinators. Edible trichomes are symplesiomorphic for the Pinguicula species, and thus do not support a monophyletic group such as a synapomorphy. Nevertheless, edible trichomes are derived and are possibly a specialization for fly and bee pollinators by acting as a food reward for these visitors.
Asunto(s)
Flores , Tricomas , Animales , Abejas , Filogenia , Polinización , América del SurRESUMEN
Utricularia amethystina Salzm. ex A.St.-Hil. & Girard (Lentibulariaceae) is a highly polymorphic carnivorous plant taxonomically rearranged many times throughout history. Herein, the complete chloroplast genomes (cpDNA) of three U. amethystina morphotypes: purple-, white-, and yellow-flowered, were sequenced, compared, and putative markers for systematic, populations, and evolutionary studies were uncovered. In addition, RNA-Seq and RNA-editing analysis were employed for functional cpDNA evaluation. The cpDNA of three U. amethystina morphotypes exhibits typical quadripartite structure. Fine-grained sequence comparison revealed a high degree of intraspecific genetic variability in all morphotypes, including an exclusive inversion in the psbM and petN genes in U. amethystina yellow. Phylogenetic analyses indicate that U. amethystina morphotypes are monophyletic. Furthermore, in contrast to the terrestrial Utricularia reniformis cpDNA, the U. amethystina morphotypes retain all the plastid NAD(P)H-dehydrogenase (ndh) complex genes. This observation supports the hypothesis that the ndhs in terrestrial Utricularia were independently lost and regained, also suggesting that different habitats (aquatic and terrestrial) are not related to the absence of Utricularia ndhs gene repertoire as previously assumed. Moreover, RNA-Seq analyses recovered similar patterns, including nonsynonymous RNA-editing sites (e.g., rps14 and petB). Collectively, our results bring new insights into the chloroplast genome architecture and evolution of the photosynthesis machinery in the Lentibulariaceae.
Asunto(s)
ADN de Cloroplastos/genética , Evolución Molecular , Genoma del Cloroplasto , Lamiales/genética , Fotosíntesis/genética , Edición de ARNRESUMEN
Label-free quantitative proteome analysis of extrafloral (EFN) and floral nectar (FN) from castor (Ricinus communis) plants resulted in the identification of 72 and 37 proteins, respectively. Thirty proteins were differentially accumulated between EFN and FN, and 24 of these were more abundant in the EFN. In addition to proteins involved in maintaining the nectar pathogen free such as chitinases and glucan 1,3-beta-glucosidase, both proteomes share an array of peptidases, lipases, carbohydrases, and nucleases. A total of 39 of the identified proteins, comprising different classes of hydrolases, were found to have biochemical matching partners in the exudates of at least five genera of carnivorous plants, indicating the EFN and FN possess a potential to digest biological material from microbial, animal or plant origin equivalent to the exudates of carnivorous plants.
RESUMEN
The aim of this study was the study of the abiotic environment of the carnivorous pitcher plant Heliamphora nutans (Sarraceniaceae), including the microclimate and the geochemistry of the soil of the growing sites on Roraima Tepui and discuss their relevance within the recent model of carnivorous plant ecology. The soil was peaty and low in nutrients. The microclimate on the site was very balanced, with moderately cool temperatures, a constant high humidity and very low wind speed. Heliamphora was not exposed to any recognizable climatic stress. Previous macroclimatic measurements reflected the growth conditions of Heliamphora only incorrectly, since humidity decreased drastically with height. The apparent conflict with the common model of carnivorous plant ecology was caused by the dense surrounding vegetation. However, the leaf coverage of these non carnivorous plants was too low to cause significant insolation decrease for Heliamphora. Furthermore, the temperature regime of the pitcher fluid was more balanced than the temperature of the leaf. This may improve conditions for the growth of microorganisms in the pitcher fluid that contribute to the degredation of the plant's prey.