Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biotechnol Bioeng ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961714

RESUMEN

Mechanical vibration has been shown to regulate cell proliferation and differentiation in vitro and in vivo. However, the mechanism of its cellular mechanotransduction remains unclear. Although the measurement of intracellular deformation dynamics under mechanical vibration could reveal more detailed mechanisms, corroborating experimental evidence is lacking due to technical difficulties. In this study, we aimed to propose a real-time imaging method of intracellular structure deformation dynamics in vibrated adherent cell cultures and investigate whether organelles such as actin filaments connected to a nucleus and the nucleus itself show deformation under horizontal mechanical vibration. The proposed real-time imaging was achieved by conducting vibration isolation and making design improvements to the experimental setup; using a high-speed and high-sensitivity camera with a global shutter; and reducing image blur using a stroboscope technique. Using our system, we successfully produced the first experimental report on the existence of the deformation of organelles connected to a nucleus and the nucleus itself under horizontal mechanical vibration. Furthermore, the intracellular deformation difference between HeLa and MC3T3-E1 cells measured under horizontal mechanical vibration agrees with the prediction of their intracellular structure based on the mechanical vibration theory. These results provide new findings about the cellular mechanotransduction mechanism under mechanical vibration.

2.
Ann Biomed Eng ; 52(5): 1213-1221, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38324074

RESUMEN

Cell's shape is dependent on the cytoskeleton mechanical properties. Hybrid models were developed that combine the discrete structure for the cytoskeleton and continuum parts for other cell organelles. Tensegrity-based structures that consist of tensile and compression elements are useful models to understand the cytoskeleton mechanical behavior. In this study, we are looking to examine the reaction of the cell to a variety of substrate stiffnesses and explain the relationship between cell behavior and substrate mechanical properties. However, which tensegrity structure is appropriate for modeling a living cell? Is the structure's complexity play a major role? We used two spherical tensegrities with different complexities to assess the impact of the structure on the cell's mechanical response versus substrate's stiffness. Six- and twelve-strut tensegrities together with membrane, cytoplasm, nucleoskeleton, and nucleus envelope were assembled in Abaqus package to create a hybrid cell model. A compressive load was applied to the cell model and the reaction forces versus deflection curves were analyzed for number of substrate stiffness values. By analyzing the difference due to two different tensegrities it became clear that the lower density structure is a better choice for modeling stiffer cells. It was also found that the six-strut tensegrity is sensitive to higher range of substrate stiffness.


Asunto(s)
Citoesqueleto , Modelos Biológicos , Microtúbulos , Estrés Mecánico
3.
Acta Biomater ; 166: 317-325, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37137402

RESUMEN

Microrheology, the study of fluids on micron length-scales, promises to reveal insights into cellular biology, including mechanical biomarkers of disease and the interplay between biomechanics and cellular function. Here a minimally-invasive passive microrheology technique is applied to individual living cells by chemically binding a bead to the surface of a cell, and observing the mean squared displacement of the bead at timescales ranging from milliseconds to 100s of seconds. Measurements are repeated over the course of hours, and presented alongside analysis to quantify changes in the cells' low-frequency elastic modulus, G0', and the cell's dynamics over the time window ∼10-2 s to 10 s. An analogy to optical trapping allows verification of the invariant viscosity of HeLa S3 cells under control conditions and after cytoskeletal disruption. Stiffening of the cell is observed during cytoskeletal rearrangement in the control case, and cell softening when the actin cytoskeleton is disrupted by Latrunculin B. These data correlate with conventional understanding that integrin binding and recruitment triggers cytoskeletal rearrangement. This is, to our knowledge, the first time that cell stiffening has been measured during focal adhesion maturation, and the longest time over which such stiffening has been quantified by any means. STATEMENT OF SIGNIFICANCE: Here, we present an approach for studying mechanical properties of live cells without applying external forces or inserting tracers. Regulation of cellular biomechanics is crucial to healthy cell function. For the first time in literature, we can non-invasively and passively quantify cell mechanics during interactions with functionalised surface. Our method can monitor the maturation of adhesion sites on the surface of individual live cells without disrupting the cell mechanics by applying forces to the cell. We observe a stiffening response in cells over tens of minutes after a bead chemically binds. This stiffening reduces the deformation rate of the cytoskeleton, although the internal force generation increases. Our method has potential for applications to study mechanics during cell-surface and cell-vesicle interactions.


Asunto(s)
Citoesqueleto , Pinzas Ópticas , Citoesqueleto/metabolismo , Membrana Celular/metabolismo , Módulo de Elasticidad , Citoesqueleto de Actina
4.
Zhongguo Zhong Yao Za Zhi ; 48(2): 390-398, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725229

RESUMEN

This study aimed to investigate the effects of nanoparticles PLGA-NPs and mesoporous silicon nanoparticles(MSNs) of different stiffness before and after combination with menthol or curcumol on the mechanical properties of bEnd.3 cells. The particle size distributions of PLGA-NPs and MSNs were measured by Malvern particle size analyzer, and the stiffness of the two nanoparticles was quantified by atomic force microscopy(AFM). The bEnd.3 cells were cultured in vitro, and the cell surface morphology, roughness, and Young's modulus were examined to characterize the roughness and stiffness of the cell surface. The changes in the mechanical properties of the cells were observed by AFM, and the structure and expression of cytoskeletal F-actin were observed by a laser-scanning confocal microscope. The results showed that both nanoparticles had good dispersion. The particle size of PLGA-NPs was(98.77±2.04) nm, the PDI was(0.140±0.030), and Young's modulus value was(104.717±8.475) MPa. The particle size of MSNs was(97.47±3.92) nm, the PDI was(0.380±0.016), and Young's modulus value was(306.019±8.822) MPa. The stiffness of PLGA-NPs was significantly lower than that of MSNs. After bEnd.3 cells were treated by PLGA-NPs and MSNs separately, the cells showed fine pores on the cell surface, increased roughness, decreased Young's modulus, blurred and broken F-actin bands, and reduced mean gray value. Compared with PLGA-NPs alone, PLGA-NPs combined with menthol or curcumol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value. Compared with MSNs alone, MSNs combined with menthol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value, while no significant difference was observed in combination with curcumol. Therefore, it is inferred that the aromatic components can increase the intracellular uptake and transport of nanoparticles by altering the biomechanical properties of bEnd.3 cells.


Asunto(s)
Mentol , Nanopartículas , Animales , Ratones , Mentol/farmacología , Actinas/metabolismo , Células Endoteliales/metabolismo , Nanopartículas/química
5.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-970476

RESUMEN

This study aimed to investigate the effects of nanoparticles PLGA-NPs and mesoporous silicon nanoparticles(MSNs) of different stiffness before and after combination with menthol or curcumol on the mechanical properties of bEnd.3 cells. The particle size distributions of PLGA-NPs and MSNs were measured by Malvern particle size analyzer, and the stiffness of the two nanoparticles was quantified by atomic force microscopy(AFM). The bEnd.3 cells were cultured in vitro, and the cell surface morphology, roughness, and Young's modulus were examined to characterize the roughness and stiffness of the cell surface. The changes in the mechanical properties of the cells were observed by AFM, and the structure and expression of cytoskeletal F-actin were observed by a laser-scanning confocal microscope. The results showed that both nanoparticles had good dispersion. The particle size of PLGA-NPs was(98.77±2.04) nm, the PDI was(0.140±0.030), and Young's modulus value was(104.717±8.475) MPa. The particle size of MSNs was(97.47±3.92) nm, the PDI was(0.380±0.016), and Young's modulus value was(306.019±8.822) MPa. The stiffness of PLGA-NPs was significantly lower than that of MSNs. After bEnd.3 cells were treated by PLGA-NPs and MSNs separately, the cells showed fine pores on the cell surface, increased roughness, decreased Young's modulus, blurred and broken F-actin bands, and reduced mean gray value. Compared with PLGA-NPs alone, PLGA-NPs combined with menthol or curcumol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value. Compared with MSNs alone, MSNs combined with menthol could allow deepened and densely distributed surface pores of bEnd.3 cells, increase roughness, reduce Young's modulus, aggravate F-actin band breakage, and diminish mean gray value, while no significant difference was observed in combination with curcumol. Therefore, it is inferred that the aromatic components can increase the intracellular uptake and transport of nanoparticles by altering the biomechanical properties of bEnd.3 cells.


Asunto(s)
Animales , Ratones , Mentol/farmacología , Actinas/metabolismo , Células Endoteliales/metabolismo , Nanopartículas/química
6.
J Mech Behav Biomed Mater ; 138: 105630, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36565693

RESUMEN

Osteogenic differentiation has been reportedly regulated by various mechanical stresses, including fluid shear stress and tensile and compressive loading. The promotion of osteoblastic differentiation by these mechanical stresses is accompanied by reorganization of the F-actin cytoskeleton, which is deeply involved in intracellular forces and the mechanical environment. However, there is limited information about the effect on the mechanical environment of the intracellular nucleus, such as the mechanical properties of the nucleus and intracellular forces exerted on the nucleus, which have recently been found to be directly involved in various cellular functions. Here, we investigated the changes in the intracellular force applied to the nucleus and the effect on nuclear morphology and mechanical properties during osteogenic differentiation in human osteoblast-like cells (Saos-2). We carried out cell morphological analyses with confocal fluorescence microscopy, nuclear indentation test with atomic force microscopy (AFM), and fluorescence recovery after photobleaching (FRAP) for intranuclear DNA. The results revealed that a significant reorganization of the F-actin cytoskeleton from the nuclear surfaces to the cell periphery occurred in the osteogenic differentiation processes, simultaneously with the reduction of compressive forces to the nucleus. Such changes also facilitated nuclear shrinkage and stiffening, and further intranuclear chromatin compaction. The results indicate that the reduction of the intracellular compressive force due to reorganization of the F-actin cytoskeleton affects the intra- and extra-mechanical environment of the nucleus, and this change may affect gene expression and DNA replication in the osteogenic differentiation process.


Asunto(s)
Núcleo Celular , Osteogénesis , Humanos , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Diferenciación Celular , Actinas/metabolismo , Estrés Mecánico , Mecanotransducción Celular
7.
Patterns (N Y) ; 3(12): 100627, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36569557

RESUMEN

Automating the three-dimensional (3D) segmentation of stomatal guard cells and other confocal microscopy data is extremely challenging due to hardware limitations, hard-to-localize regions, and limited optical resolution. We present a memory-efficient, attention-based, one-stage segmentation neural network for 3D images of stomatal guard cells. Our model is trained end to end and achieved expert-level accuracy while leveraging only eight human-labeled volume images. As a proof of concept, we applied our model to 3D confocal data from a cell ablation experiment that tests the "polar stiffening" model of stomatal biomechanics. The resulting data allow us to refine this polar stiffening model. This work presents a comprehensive, automated, computer-based volumetric analysis of fluorescent guard cell images. We anticipate that our model will allow biologists to rapidly test cell mechanics and dynamics and help them identify plants that more efficiently use water, a major limiting factor in global agricultural production and an area of critical concern during climate change.

8.
Front Oncol ; 12: 1005069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36276147

RESUMEN

Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.

9.
Microbiol Mol Biol Rev ; 86(2): e0009420, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35285720

RESUMEN

To combat infectious diseases, it is important to understand how host cells interact with bacterial pathogens. Signals conveyed from pathogen to host, and vice versa, may be either chemical or mechanical. While the molecular and biochemical basis of host-pathogen interactions has been extensively explored, relatively less is known about mechanical signals and responses in the context of those interactions. Nevertheless, a wide variety of bacterial pathogens appear to have developed mechanisms to alter the cellular biomechanics of their hosts in order to promote their survival and dissemination, and in turn many host responses to infection rely on mechanical alterations in host cells and tissues to limit the spread of infection. In this review, we present recent findings on how mechanical forces generated by host cells can promote or obstruct the dissemination of intracellular bacterial pathogens. In addition, we discuss how in vivo extracellular mechanical signals influence interactions between host cells and intracellular bacterial pathogens. Examples of such signals include shear stresses caused by fluid flow over the surface of cells and variable stiffness of the extracellular matrix on which cells are anchored. We highlight bioengineering-inspired tools and techniques that can be used to measure host cell mechanics during infection. These allow for the interrogation of how mechanical signals can modulate infection alongside biochemical signals. We hope that this review will inspire the microbiology community to embrace those tools in future studies so that host cell biomechanics can be more readily explored in the context of infection studies.


Asunto(s)
Matriz Extracelular , Interacciones Huésped-Patógeno , Bacterias
10.
Cell Mol Bioeng ; 14(6): 569-581, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34900011

RESUMEN

INTRODUCTION: Mechanical forces regulate many facets of cell and tissue biology. Studying the effects of forces on cells requires real-time observations of single- and multi-cell dynamics in tissue models during controlled external mechanical input. Many of the existing devices used to conduct these studies are costly and complicated to fabricate, which reduces the availability of these devices to many laboratories. METHODS: We show how to fabricate a simple, low-cost, uniaxial stretching device, with readily available materials and instruments that is compatible with high-resolution time-lapse microscopy of adherent cell monolayers. In addition, we show how to construct a pressure controller that induces a repeatable degree of stretch in monolayers, as well as a custom MATLAB code to quantify individual cell strains. RESULTS: As an application note using this device, we show that uniaxial stretch slows down cellular movements in a mammalian epithelial monolayer in a cell density-dependent manner. We demonstrate that the effect on cell movement involves the relocalization of myosin downstream of Rho-associated protein kinase (ROCK). CONCLUSIONS: This mechanical device provides a platform for broader involvement of engineers and biologists in this important area of cell and tissue biology. We used this device to demonstrate the mechanical regulation of collective cell movements in epithelia. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00689-6.

11.
Polymers (Basel) ; 13(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34451211

RESUMEN

Soft polymers have emerged as a vital type of material adopted in biomedical engineering to perform various biomechanical characterisations such as sensing cellular forces. Distinct advantages of these materials used in cellular force sensing include maintaining normal functions of cells, resembling in vivo mechanical characteristics, and adapting to the customised functionality demanded in individual applications. A wide range of techniques has been developed with various designs and fabrication processes for the desired soft polymeric structures, as well as measurement methodologies in sensing cellular forces. This review highlights the merits and demerits of these soft polymer-based techniques for measuring cellular contraction force with emphasis on their quantitativeness and cell-friendliness. Moreover, how the viscoelastic properties of soft polymers influence the force measurement is addressed. More importantly, the future trends and advancements of soft polymer-based techniques, such as new designs and fabrication processes for cellular force sensing, are also addressed in this review.

12.
Materials (Basel) ; 14(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34361325

RESUMEN

We have developed a novel experimental set-up that simultaneously, (i) applies static and dynamic deformations to adherent cells in culture, (ii) allows the visualization of cells under fluorescence microscopy, and (iii) allows atomic force microscopy nanoindentation measurements of the mechanical properties of the cells. The cell stretcher device relies on a dielectric elastomer film that can be electro-actuated and acts as the cell culture substrate. The shape and position of the electrodes actuating the film can be controlled by design in order to obtain specific deformations across the cell culture chamber. By using optical markers we characterized the strain fields under different electrode configurations and applied potentials. The combined setup, which includes the cell stretcher device, an atomic force microscope, and an inverted optical microscope, can assess in situ and with sub-micron spatial resolution single cell topography and elasticity, as well as ion fluxes, during the application of static deformations. Proof of performance on fibroblasts shows a reproducible increase in the average cell elastic modulus as a response to applied uniaxial stretch of just 4%. Additionally, high resolution topography and elasticity maps on a single fibroblast can be acquired while the cell is deformed, providing evidence of long-term instrumental stability. This study provides a proof-of-concept of a novel platform that allows in situ and real time investigation of single cell mechano-transduction phenomena with sub-cellular spatial resolution.

13.
Biofabrication ; 13(3)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34107453

RESUMEN

Human mesenchymal stem cells (hMSCs) are one of the most promising candidates for cell-based therapeutic products. Nonetheless, their biomechanical phenotype afterin vitroexpansion is still unsatisfactory, for example, restricting the efficiency of microcirculation of delivered hMSCs for further cell therapies. Here, we propose a scheme using maleimide-dextran hydrogel with locally varied stiffness in microscale to modify the biomechanical properties of hMSCs in three-dimensional (3D) niches. We show that spatial micro-variation of stiffness can be controllably generated in the hydrogel with heterogeneously cross-linking via atomic force microscopy measurements. The result of 3D cell culture experiment demonstrates the hydrogels trigger the formation of multicellular spheroids, and the derived hMSCs could be rationally softened via adjustment of the stiffness variation (SV) degree. Importantly,in vitro, the hMSCs modified with the higher SV degree can pass easier through capillary-shaped micro-channels. Further, we discuss the underlying mechanics of the increased cellular elasticity by focusing on the effect of rearranged actin networks, via the proposed microscopic model of biomechanically modified cells. Overall, this work highlights the effectiveness of SV-hydrogels in reprogramming and manufacturing hMSCs with designed biomechanical properties for improved therapeutic potential.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos , Esferoides Celulares
14.
Cell Biol Toxicol ; 37(6): 915-933, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33420657

RESUMEN

Mesenchymal stem cells represent an important resource, for bone regenerative medicine and therapeutic applications. This review focuses on new advancements and biophysical tools which exploit different physical and chemical markers of mesenchymal stem cell populations, to finely characterize phenotype changes along their osteogenic differentiation process. Special attention is paid to recently developed label-free methods, which allow monitoring cell populations with minimal invasiveness. Among them, quantitative phase imaging, suitable for single-cell morphometric analysis, and nanoindentation, functional to cellular biomechanics investigation. Moreover, the pool of ion channels expressed in cells during differentiation is discussed, with particular interest for calcium homoeostasis.Altogether, a biophysical perspective of osteogenesis is proposed, offering a valuable tool for the assessment of the cell stage, but also suggesting potential physiological links between apparently independent phenomena.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Biomarcadores , Diferenciación Celular , Células Cultivadas
15.
Proc Math Phys Eng Sci ; 476(2237): 20190716, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32518502

RESUMEN

The vertex model is a popular framework for modelling tightly packed biological cells, such as confluent epithelia. Cells are described by convex polygons tiling the plane and their equilibrium is found by minimizing a global mechanical energy, with vertex locations treated as degrees of freedom. Drawing on analogies with granular materials, we describe the force network for a localized monolayer and derive the corresponding discrete Airy stress function, expressed for each N-sided cell as N scalars defined over kites covering the cell. We show how a torque balance (commonly overlooked in implementations of the vertex model) requires each internal vertex to lie at the orthocentre of the triangle formed by neighbouring edge centroids. Torque balance also places a geometric constraint on the stress in the neighbourhood of cellular trijunctions, and requires cell edges to be orthogonal to the links of a dual network that connect neighbouring cell centres and thereby triangulate the monolayer. We show how the Airy stress function depends on cell shape when a standard energy functional is adopted, and discuss implications for computational implementations of the model.

16.
Cells ; 9(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111018

RESUMEN

Optical tweezers (OTs) are innovative instruments utilized for the manipulation of microscopic biological objects of interest. Rapid improvements in precision and degree of freedom of multichannel and multifunctional OTs have ushered in a new era of studies in basic physical and chemical properties of living tissues and unknown biomechanics in biological processes. Nowadays, OTs are used extensively for studying living cells and have initiated far-reaching influence in various fundamental studies in life sciences. There is also a high potential for using OTs in haemorheology, investigations of blood microcirculation and the mutual interplay of blood cells. In fact, in spite of their great promise in the application of OTs-based approaches for the study of blood, cell formation and maturation in erythropoiesis have not been fully explored. In this review, the background of OTs, their state-of-the-art applications in exploring single-cell level characteristics and bio-rheological properties of mature red blood cells (RBCs) as well as the OTs-assisted studies on erythropoiesis are summarized and presented. The advance developments and future perspectives of the OTs' application in haemorheology both for fundamental and practical in-depth studies of RBCs formation, functional diagnostics and therapeutic needs are highlighted.


Asunto(s)
Eritrocitos/metabolismo , Pinzas Ópticas , Animales , Calibración , Comunicación Celular , Membrana Eritrocítica/patología , Eritrocitos/parasitología , Humanos , Espectrometría Raman
17.
J Cell Sci ; 132(9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040223

RESUMEN

The field of mechanobiology studies how mechanical properties of the extracellular matrix (ECM), such as stiffness, and other mechanical stimuli regulate cell behaviour. Recent advancements in the field and the development of novel biomaterials and nanofabrication techniques have enabled researchers to recapitulate the mechanical properties of the microenvironment with an increasing degree of complexity on more biologically relevant dimensions and time scales. In this Review, we discuss different strategies to engineer substrates that mimic the mechanical properties of the ECM and outline how these substrates have been applied to gain further insight into the biomechanical interaction between the cell and its microenvironment.


Asunto(s)
Materiales Biocompatibles/química , Bioingeniería , Biofisica , Bioingeniería/métodos , Bioingeniería/tendencias , Biofisica/métodos , Biofisica/tendencias , Microambiente Celular , Matriz Extracelular/química , Hidrogeles , Nanotecnología , Propiedades de Superficie , Sustancias Viscoelásticas
18.
ACS Biomater Sci Eng ; 5(8): 3703-3719, 2019 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-33405886

RESUMEN

Physical forces and other mechanical stimuli are fundamental regulators of cell behavior and function. Cells are also biomechanically competent: they generate forces to migrate, contract, remodel, and sense their environment. As the knowledge of the mechanisms of mechanobiology increases, the need to resolve and probe increasingly small scales calls for novel technologies to mechanically manipulate cells, examine forces exerted by cells, and characterize cellular biomechanics. Here, we review novel methods to quantify cellular force generation, measure cell mechanical properties, and exert localized piconewton and nanonewton forces on cells, receptors, and proteins. The combination of these technologies will provide further insight on the effect of mechanical stimuli on cells and the mechanisms that convert these stimuli into biochemical and biomechanical activity.

19.
Micron ; 106: 27-33, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29291530

RESUMEN

In a tissue continuously challenged by mechanical stresses, such as the skin or the heart, cells perceive information about their microenvironment through several adhesive protein complexes and activate cell-signaling events to maintain tissue cohesion. Consequently, alteration of cell adhesion components leads to aberrant assembly of the associated cytoplasmic scaffolding and signaling pathways, which may reflect changes to the tissue physiology and mechanical resistance. Desmoplakin is an essential component of the cell-cell junction, anchoring the desmosomal protein complex to the intermediate filaments (IFs). Inherited mutations in desmoplakin are associated with both heart and skin disease (cardiocutaneous syndrome). In this study, we investigated the mechanical properties of human keratinocytes harboring a cardiocutaneous-associated homozygous C-terminal truncation in desmoplakin (JD-1) compared to a control keratinocyte line (K1). Using Single Cell Force Spectroscopy (SCFS) AFM-based measurements, JD-1 keratinocytes displayed an overall alteration in morphology, elasticity, adhesion capabilities and viscoelastic properties, highlighting the profound interconnection between the adhesome pathways and the IF scaffold.


Asunto(s)
Adhesión Celular/fisiología , Desmoplaquinas/genética , Elasticidad/fisiología , Filamentos Intermedios/fisiología , Queratinocitos/metabolismo , Fenómenos Fisiológicos de la Piel/genética , Adhesión Celular/genética , Células Cultivadas , Humanos , Uniones Intercelulares/fisiología , Microscopía de Fuerza Atómica , Análisis de la Célula Individual/métodos , Piel/citología , Piel/metabolismo
20.
Trends Biotechnol ; 34(2): 171-186, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26708959

RESUMEN

Recent advances in bioengineering have enabled the development of biomedical tools with modifiable surface features (small-scale architecture) to mimic extracellular matrices and aid in the development of well-controlled platforms that allow for the application of mechanical stimulation for studying cellular biomechanics. An overview of recent developments in common biomaterials that can be manufactured using integrated circuit-based biofabrication is presented. Integrated circuit-based biofabrication possesses advantages including mass and diverse production capacities for fabricating in vitro biomedical devices. This review highlights the use of common biomaterials that have been most frequently used to study cellular biomechanics. In addition, the influence of various small-scale characteristics on common biomaterial surfaces for a range of different cell types is discussed.


Asunto(s)
Materiales Biocompatibles , Bioingeniería/métodos , Fenómenos Biomecánicos , Fenómenos Fisiológicos Celulares , Animales , Humanos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA