Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
iScience ; 27(10): 110882, 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39351198

RESUMEN

P16INK4A expression is inversely associated with RB1 expression in cancer cells, and P16INK4A inhibits CDK4-catalyzed RB1 phosphorylation. How P16INK4A and RB1 coordinately express and regulate the cell cycle remains to be studied. In the present study, we found that P16INK4A upregulated the E3 ligase UTP14A, which led to the ubiquitination of RB1 at K810 and RB1 degradation. P16INK4A loss consistently disrupted the UTP14A-mediated degradation of RB1 and caused RB1 accumulation. Functionally, P16INK4A loss inhibited RB1 ubiquitination in a cell cycle progression-independent fashion and inhibited proteome-scale ubiquitination in a cell cycle progression-dependent manner. Our findings indicate that there is a negative feedback loop between P16INK4A and RB1 expression and that disruption of this loop may partially rescue the biological outcomes of P16INK4A loss. We also revealed a hitherto unknown function for P16 INK4A in regulating proteome-scale ubiquitination by inhibiting cell proliferation, which may be useful for the development of anticancer drugs.

2.
iScience ; 27(9): 110767, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39280605

RESUMEN

Intra-islet crosstalk has become a focus area to fully understand the regulation of insulin secretion and impaired ß-cell function in type 2 diabetes (T2D). Here, we put forward evidence for insulin-like growth factor binding protein 7 (IGFBP7) as a potential protein involved in autocrine and paracrine ß-cell regulation. We showed presence of IGFBP7 in granules of both human α- and ß-cells and measured elevated gene expression as well as IGFBP7 protein in T2D. Insulin secretion was reduced in human islets, and the human ß-cell line EndoC-ßH1, after 72-h incubation with IGFBP7. Mechanistically reduced insulin secretion by IGFBP7 is attributed to reduced p21-activated kinase 1 (PAK1) protein, and decreased oxygen consumption and ATP-production. Knockdown of IGFBP7 in EndoC-ßH1 cells verified reduced IGFBP7 levels in the medium, as well as improved insulin secretion. Finally, IGFBP7 knockdown in islets from T2D donors improved insulin secretion, making IGFBP7 a potential drug target in diabetes.

3.
iScience ; 27(9): 110604, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39252971

RESUMEN

Glioblastoma (GB) is the most common primary malignant brain tumor, characterized by resistance to therapy. Despite aggressive treatment options, GB remains an incurable disease. Invasiveness and heterogeneity are key GB features that cannot be studied in preclinical in vitro models. In this study, we investigated the effects of standard therapy using patient-derived GB organoids (GBOs). GBOs reflect the complexity and heterogeneity of the original tumor tissue. No significant effect on GBO viability or invasion was observed after irradiation and temozolomide treatment. E3 ubiquitin-protein ligase (MDM2), cyclin-dependent kinase inhibitor 1A (CDKN1A), and the serine/threonine kinases ATM and ATR were upregulated at the gene and protein levels after treatment. Our results show that the p53 pathway and DNA-damage response mechanisms were triggered, suggesting that GBOs recapitulate GB therapy resistance. GBOs thus provide a highly efficient platform to assess the specific responses of GB patients to therapy and to further explore therapy resistance.

4.
iScience ; 27(9): 110662, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39252969

RESUMEN

Airway epithelial cells represent the first line of defense against respiratory pathogens. Flagellin drives the motility of many mucosal pathogens and has been suggested as an immune enhancing adjunctive therapeutic in infections of the airways. This study leveraged single-cell RNA sequencing to determine cell-specific effects of flagellin in primary human bronchial epithelial cells growing in air-liquid interface. Seven cell clusters were identified, including ciliated cells, ionocytes, and several states of basal and secretory cells, of which only inflammatory basal cells and inflammatory secretory cells demonstrated a proportional increase in response to flagellin. Inflammatory secretory cells showed evidence of metabolic reprogramming toward aerobic glycolysis, while in inflammatory basal cells transcriptome profiles indicated enhanced oxidative phosphorylation. Inhibition of mTOR prevented the shift to glycolysis and reduced inflammatory gene transcription specifically in inflammatory secretory cells. These data demonstrate the functional heterogeneity of the human airway epithelium upon exposure to flagellin.

5.
Cell ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39260373

RESUMEN

Control of the electrochemical environment in living cells is typically attributed to ion channels. Here, we show that the formation of biomolecular condensates can modulate the electrochemical environment in bacterial cells, which affects cellular processes globally. Condensate formation generates an electric potential gradient, which directly affects the electrochemical properties of a cell, including cytoplasmic pH and membrane potential. Condensate formation also amplifies cell-cell variability of their electrochemical properties due to passive environmental effect. The modulation of the electrochemical equilibria further controls cell-environment interactions, thus directly influencing bacterial survival under antibiotic stress. The condensate-mediated shift in intracellular electrochemical equilibria drives a change of the global gene expression profile. Our work reveals the biochemical functions of condensates, which extend beyond the functions of biomolecules driving and participating in condensate formation, and uncovers a role of condensates in regulating global cellular physiology.

6.
iScience ; 27(9): 110651, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39262789

RESUMEN

Sterols from cholesterol synthesis are crucial for cholesterol production, but also have individual roles difficult to assess in vivo due to essentiality of cholesterol. We developed HepG2 cell models with knockouts (KOs) for three enzymes of cholesterol synthesis, each accumulating specific sterols. Surprisingly, KOs of CYP51, DHCR24, and SC5D shared only 9% of differentially expressed genes. The most striking was the phenotype of CYP51 KO with highly elevated lanosterol and 24,25-dihydrolanosterol, significant increase in G2+M phase and enhanced cancer and cell cycle pathways. Comparisons with mouse liver Cyp51 KO data suggest 24,25-dihydrolanosterol activates similar cell proliferation pathways, possibly via elevated LEF1 and WNT/NFKB signaling. In contrast, SC5D and DHCR24 KO cells with elevated lathosterol or desmosterol proliferated slowly, with downregulated E2F, mitosis, and enriched HNF1A. These findings demonstrate that increase of lanosterol and 24,25-dihydrolanosterol, but not other sterols, promotes cell proliferation in hepatocytes.

7.
iScience ; 27(9): 110702, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39262797

RESUMEN

Sex-specific metabolic characteristics emerge in the mouse germ line after reaching the genital ridges around embryonic day 10.5, coinciding with sexual differentiation. However, the impact of such metabolic characteristics on germ cell development remains unclear. In this study, we observed the specific upregulation in male fetal germ cells of D-3-phosphoglycerate dehydrogenase (PHGDH), the primary enzyme in the serine-glycine-one-carbon metabolism, along with an increase in a downstream metabolite, S-adenosylmethionine (SAM), crucial for protein and nucleic acid methylation. Inhibiting PHGDH in fetal testes resulted in reduced SAM levels in germ cells, accompanied by increases in the number of mouse vasa homolog (MVH/VASA)-positive germ cells and the promyelocytic leukemia zinc finger (PLZF)-positive undifferentiated spermatogonia ratio. Furthermore, PHGDH inhibition led to a decrease in the methylation of histone H3 and DNA, resulting in aberrations in gene expression profiles. In summary, our findings underscore the significant role of certain metabolic mechanisms in the development of male germ cells.

8.
J Agric Food Chem ; 72(33): 18321-18334, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39107094

RESUMEN

Recent advancements in biosensor technology have revolutionized the field of microbial engineering, enabling efficient and precise optimization of strains for the production of valuable chemicals. This review comprehensively explores the innovative integration of biosensors to enhance microbial cell factories, with a particular emphasis on the crucial role of high-throughput biosensor-assisted screening. Biosensor-assisted approaches have enabled the identification of novel transporters, the elucidation of underlying transport mechanisms, and the fine-tuning of metabolic pathways for enhanced production. Furthermore, this review illustrates the utilization of biosensors for manipulating cellular behaviors, including interactions with environmental factors, and the reduction of nongenetic cell-to-cell variations. This review highlights the indispensable role of biosensors in advancing the field of microbial engineering through the modulation and exploitation of diverse cellular physiological processes.


Asunto(s)
Bacterias , Técnicas Biosensibles , Ingeniería Metabólica , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos
9.
Cells ; 13(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38994971

RESUMEN

Despite constant achievements in treatment, acute kidney injury (AKI) remains a significant public health problem and a cause of mortality in the human population. In developed countries, AKI is a significant and frequent hospital complication, especially among patients admitted to intensive care units, where mortality rates can reach up to 50%. In addition, AKI has been implicated as an independent risk factor for the development of chronic kidney disease. Hyperbaric oxygenation (HBO) has been used as a primary or adjunctive therapy for the past 50 years, both in experimental and clinical studies. HBO is a treatment in which the patient is occasionally exposed to 100% oxygen at a pressure greater than atmospheric pressure at sea level. However, despite decades of extensive research, the potentially beneficial effects of this therapeutic approach are still not fully understood, although many potential mechanisms have been proposed, such as antioxidative, anti-inflammatory, anti-apoptotic, etc. Furthermore, the low cost and insignificant adverse events make HBO a potentially important strategy in the prevention and treatment of different diseases. Considering all of this, this review highlights the potential role of HBO in maintaining cellular homeostasis disrupted due to AKI, caused in different experimental models.


Asunto(s)
Lesión Renal Aguda , Oxigenoterapia Hiperbárica , Oxigenoterapia Hiperbárica/métodos , Lesión Renal Aguda/terapia , Humanos , Animales
10.
iScience ; 27(7): 110196, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38979013

RESUMEN

Stress granules (SGs) are membrane-less cellular compartments which are dynamically assembled via biomolecular condensation mechanism when eukaryotic cells encounter environmental stresses. SGs are important for gene expression and cell fate regulation. Dysregulation of SG homeostasis has been linked to human neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we report that the HRD1-SEL1L ubiquitin ligase complex specifically regulates the homeostasis of heat shock-induced SGs through the ubiquitin-proteasome system (UPS) and the UPS-associated ATPase p97. Mechanistically, the HRD1-SEL1L complex mediates SG homeostasis through the BiP-coupled PERK-eIF2α signaling axis of endoplasmic reticulum (ER) stress, thereby coordinating the unfolded protein response (UPR) with SG dynamics. Furthermore, we show that the distinctive branches of ER stress play differential roles in SG homeostasis. Our study indicates that the UPS and the UPR together via the HRD1-SEL1L ubiquitin ligase to maintain SG homeostasis in a stressor-dependent manner.

11.
iScience ; 27(7): 110306, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055915

RESUMEN

Hematopoietic aging is associated with decreased hematopoietic stem cell (HSC) self-renewal capacity and myeloid skewing. We report that culture of bone marrow (BM) HSCs from aged mice with epidermal growth factor (EGF) suppressed myeloid skewing, increased multipotent colony formation, and increased HSC repopulation in primary and secondary transplantation assays. Mice transplanted with aged, EGF-treated HSCs displayed increased donor cell engraftment within BM HSCs and systemic administration of EGF to aged mice increased HSC self-renewal capacity in primary and secondary transplantation assays. Expression of a dominant negative EGFR in Scl/Tal1+ hematopoietic cells caused increased myeloid skewing and depletion of long term-HSCs in 15-month-old mice. EGF treatment decreased DNA damage in aged HSCs and shifted the transcriptome of aged HSCs from genes regulating cell death to genes involved in HSC self-renewal and DNA repair but had no effect on HSC senescence. These data suggest that EGFR signaling regulates the repopulating capacity of aged HSCs.

12.
iScience ; 27(7): 110280, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055921

RESUMEN

Hepatic ischemia-reperfusion (IR) injury significantly impacts liver transplantation success, yet current treatments remain inadequate. This study explores the role of Proto-oncogene serine/threonine-protein kinase (Pim-1) in liver IR, an area previously unexplored. Utilizing a mouse liver IR in vivo model and a MIHA cell hypoxia-reoxygenation in vitro model, we observed that Pim-1 expression increases following IR, inversely correlating with serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Increased Pim-1 expression stabilizes mitochondrial membranes by modifying Drp1 phosphorylation, reducing mitochondrial fission and apoptosis, thereby mitigating liver damage. Additionally, we discovered that elevated Pim-1 expression is dependent on the trimethylation of histone H3 lysine 9 during liver IR. These findings underscore the importance and potential clinical application of targeting Pim-1 in treating hepatic IR, presenting a novel therapeutic avenue.

13.
iScience ; 27(7): 110286, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055952

RESUMEN

NME1 is a metastatic suppressor inconsistently reported to have multiple roles as both a promoter and inhibitor of cancer metastasis. Nevertheless, the specific mechanism behind these results is still unclear. We observed that A549 cells with stable transfer of NME1 into the nucleus (A549-nNm23-H1) exhibited significantly increased migration and invasion activity compared to vector control cells, which was further enhanced by over-expressing CYP24A1 (p < 0.001). NME1 demonstrated the ability to safely attach to and amplify the transcription activation of JUN, consequently leading to the up-regulation of CYP24A1. Analysis of clinical data showed a positive relationship between nuclear NME1 levels and CYP24A1 expression. Furthermore, they were positively associated with postoperative distant metastasis and negatively correlated with prognosis in those with early stage lung adenocarcinoma. In conclusion, the data presented provides a new understanding of the probable pathways by which nuclear NME1 facilitates tumor metastasis, establishing the groundwork for future prediction and treatment of tumor metastasis.

14.
iScience ; 27(6): 109796, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38832016

RESUMEN

Metabolic diseases such as obesity and diabetes induce lipotoxic cardiomyopathy, which is characterized by myocardial lipid accumulation, dysfunction, hypertrophy, fibrosis and mitochondrial dysfunction. Here, we identify that mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is a pivotal regulator of cardiac fatty acid metabolism and function in the setting of lipotoxic cardiomyopathy. Cardiomyocyte-specific deletion of mGPDH promotes high-fat diet induced cardiac dysfunction, pathological hypertrophy, myocardial fibrosis, and lipid accumulation. Mechanically, mGPDH deficiency inhibits the expression of desuccinylase SIRT5, and in turn, the hypersuccinylates majority of enzymes in the fatty acid oxidation (FAO) cycle and promotes the degradation of these enzymes. Moreover, manipulating SIRT5 abolishes the effects of mGPDH ablation or overexpression on cardiac function. Finally, restoration of mGPDH improves lipid accumulation and cardiomyopathy in both diet-induced and genetic obese mouse models. Thus, our study indicates that targeting mGPDH could be a promising strategy for lipotoxic cardiomyopathy in the context of obesity and diabetes.

15.
iScience ; 27(5): 109735, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38706843

RESUMEN

Lysosomes, the hub of metabolic signaling, are associated with various diseases and participate in autophagy by supplying nutrients to cells under nutrient starvation. However, their function and regulation under glucose starvation remain unclear and are studied herein. Under glucose starvation, lysosomal protein expression decreased, leading to the accumulation of damaged lysosomes. Subsequently, cell death occurred via ferroptosis and iron accumulation due to DMT1 degradation. GPX4, a key factor in ferroptosis inhibition located on the outer membrane of lysosomes, accumulated in lysosomes, especially under glucose starvation, to protect cells from ferroptosis. ALDOA, GAPDH, NAMPT, and PGK1 are also located on the outer membrane of lysosomes and participate in lysosomal function. These enzymes did not function effectively under glucose starvation, leading to lysosomal dysfunction and ferroptosis. These findings may facilitate the treatment of lysosomal-related diseases.

16.
iScience ; 27(6): 109949, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799567

RESUMEN

As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.

17.
iScience ; 27(5): 109791, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38736548

RESUMEN

The insufficiency of natural regeneration processes in higher organisms, including humans, underlies myocardial infarction (MI), which is one of the main causes of disability and mortality in the population of developed countries. The solution to this problem lies in the field of revealing the mechanisms of regeneration and creating on this basis new technologies for stimulating endogenous regenerative processes or replacing lost parts of tissues and organs with transplanted cells. Of great interest is the use of the so-called stromal vascular fraction (SVF), derived from autologous adipose tissue. It is known that the main functions of SVF are angiogenetic, antiapoptotic, antifibrotic, immune regulation, anti-inflammatory, and trophic. This study presents data on the possibility of using SVF, targeted regulation of its properties and reparative potential, as well as the results of research studies on its use for the restoration of damaged ischemic tissue after MI.

18.
iScience ; 27(6): 109830, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770137

RESUMEN

The liver X receptor (LXR) is considered a therapeutic target for atherosclerosis treatment, but synthetic LXR agonists generally also cause hepatic steatosis and hypertriglyceridemia. Desmosterol, a final intermediate in cholesterol biosynthesis, has been identified as a selective LXR ligand that suppresses inflammation without inducing lipogenesis. Δ24-Dehydrocholesterol reductase (DHCR24) converts desmosterol into cholesterol, and we previously showed that the DHCR24 inhibitor SH42 increases desmosterol to activate LXR and attenuate experimental peritonitis and metabolic dysfunction-associated steatotic liver disease. Here, we aimed to evaluate the effect of SH42 on atherosclerosis development in APOE∗3-Leiden.CETP mice and low-density lipoproteins (LDL) receptor knockout mice, models for lipid- and inflammation-driven atherosclerosis, respectively. In both models, SH42 increased desmosterol without affecting plasma lipids. While reducing liver lipids in APOE∗3-Leiden.CETP mice, and regulating populations of circulating monocytes in LDL receptor knockout mice, SH42 did not attenuate atherosclerosis in either model.

19.
iScience ; 27(6): 109788, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770140

RESUMEN

Postoperative adhesions show a higher occurrence in females aged 16-60, especially after pelvic surgeries. This study explores the role of ovulation in adhesion formation in mice. Ovarian surgery in mice with normal- or super-ovulation led to pronounced adhesions, whereas ovulation-defective Pgr-KO mice showed minimal adhesions. Specifically, exposure to ovulatory follicular fluid (FF) markedly increased the adhesion. The hazardous exposure time window was one day before to 2.5 days after the surgery. Mechanistically, early FF exposure triggered adhesions via the blood coagulation cascade, while later exposure relied on the HGF/cMET signaling pathway. Prophylactic administration of a thrombin inhibitor pre-operatively or a cMET inhibitor postoperatively effectively mitigated FF-induced adhesions, while COX inhibitor treatment exhibited no discernible effect. These findings underscore ovulation as a pivotal factor in the development of pelvic wound adhesions and advocate for targeted preventive strategies such as c-MET inhibition, scheduling surgeries outside the ovulatory period, or employing oral contraceptive measures.

20.
iScience ; 27(5): 109665, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646167

RESUMEN

Glucagon is secreted by pancreatic α-cells to counteract hypoglycaemia. How glucose regulates glucagon secretion remains unclear. Here, using mouse islets, we studied the role of transmembrane and endoplasmic reticulum (ER) Ca2+ on intrinsic α-cell glucagon secretion. Blocking isradipine-sensitive L-type voltage-gated Ca2+ (Cav) channels abolished α-cell electrical activity but had little impact on its cytosolic Ca2+ oscillations or low-glucose-stimulated glucagon secretion. In contrast, depleting ER Ca2+ with cyclopiazonic acid or blocking ER Ca2+-releasing ryanodine receptors abolished α-cell glucose sensitivity and low-glucose-stimulated glucagon secretion. ER Ca2+ mobilization in α-cells is regulated by intracellular ATP and likely to be coupled to Ca2+ influx through P/Q-type Cav channels. ω-Agatoxin IVA blocked α-cell ER Ca2+ release and cell exocytosis, but had no additive effect on glucagon secretion when combined with ryanodine. We conclude that glucose regulates glucagon secretion through the control of ER Ca2+ mobilization, a mechanism that can be independent of α-cell electrical activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA