Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Genes (Basel) ; 15(9)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39336775

RESUMEN

BACKGROUND: The STAG1 gene encodes a component of the cohesin complex, involved in chromosome segregation and DNA repair. Variants in genes of the cohesin complex determine clinical conditions characterized by facial dysmorphisms, upper limb anomalies, intellectual disability, and other neurological deficits. However, to date, the STAG1-related clinical phenotype has been poorly investigated (around 20 cases reported). METHODS AND RESULTS: We report, for the first time, two twins affected by a syndromic neurodevelopmental disorder associated with a de novo variant in the STAG1 gene. Although both the twins showed a neurodevelopmental delay, one of them showed a more severe phenotype with greater behavioral problems, speech defects and limb apraxia. CGH array showed a 15q13.3 microduplication, inherited from an unaffected mother. CONCLUSIONS: We found different degrees of behavioral, speech and cognitive impairment in two twins affected by a neurodevelopmental disorder associated with a STAG1 variant. These findings highlight the variability of the STAG1-associated phenotype or a probable role of associated variants (like the discovered 15q13.3 microduplication) in modulating the clinical features.


Asunto(s)
Proteínas de Ciclo Celular , Trastornos del Neurodesarrollo , Gemelos Monocigóticos , Humanos , Proteínas de Ciclo Celular/genética , Gemelos Monocigóticos/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Masculino , Femenino , Fenotipo , Niño , Preescolar , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas Nucleares
2.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37774677

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Anciano , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Cognición , Disfunción Cognitiva/metabolismo , Neuronas/metabolismo
3.
Bioessays ; 45(10): e2200240, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37603403

RESUMEN

Recent advances in genomic and imaging techniques have revealed the complex manner of organizing billions of base pairs of DNA necessary for maintaining their functionality and ensuring the proper expression of genetic information. The SMC proteins and cohesin complex primarily contribute to forming higher-order chromatin structures, such as chromosomal territories, compartments, topologically associating domains (TADs) and chromatin loops anchored by CCCTC-binding factor (CTCF) protein or other genome organizers. Cohesin plays a fundamental role in chromatin organization, gene expression and regulation. This review aims to describe the current understanding of the dynamic nature of the cohesin-DNA complex and its dependence on cohesin for genome maintenance. We discuss the current 3C technique and numerous bioinformatics pipelines used to comprehend structural genomics and epigenetics focusing on the analysis of Cohesin-centred interactions. We also incorporate our present comprehension of Loop Extrusion (LE) and insights from stochastic modelling.


Asunto(s)
Proteínas Cromosómicas no Histona , Genoma Humano , Humanos , Proteínas Cromosómicas no Histona/genética , Proteínas de Ciclo Celular/genética , Cromatina/genética , Cohesinas
4.
Front Oncol ; 12: 989483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338673

RESUMEN

Genomic instability, microenvironmental aberrations, and somatic mutations contribute to the phenotype of myelodysplastic syndrome and the risk for transformation to AML. Genes involved in RNA splicing, DNA methylation, histone modification, the cohesin complex, transcription, DNA damage response pathway, signal transduction and other pathways constitute recurrent mutational targets in MDS. RNA-splicing and DNA methylation mutations seem to occur early and are reported as driver mutations in over 50% of MDS patients. The improved understanding of the molecular landscape of MDS has led to better disease and risk classification, leading to novel therapeutic opportunities. Based on these findings, novel agents are currently under preclinical and clinical development and expected to improve the clinical outcome of patients with MDS in the upcoming years. This review provides a comprehensive update of the normal gene function as well as the impact of mutations in the pathogenesis, deregulation, diagnosis, and prognosis of MDS, focuses on the most recent advances of the genetic basis of myelodysplastic syndromes and their clinical relevance, and the latest targeted therapeutic approaches including investigational and approved agents for MDS.

5.
Cancers (Basel) ; 14(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35954396

RESUMEN

Cell division cycle 20 (CDC20) functions as a critical cell cycle regulator. It plays an important role in cancer development and drug resistance. However, the molecular mechanisms by which CDC20 regulates cellular drug response remain poorly understood. Chromatin-associated CDC20 interactome in breast cancer cells was analyzed by using affinity purification coupled with mass spectrometry. hnRNPU as a CDC20 binding partner was validated by co-immunoprecipitation and immunostaining. The molecular domain, comprising amino acid residues 461-653, on hnRNPU required for its interaction with CDC20 was identified by mapping of interactions. Co-immunoprecipitation showed that CDC20-mediated hnRNPU ubiquitination promotes its interaction with the CTCF and cohesin complex. The effects of CDC20-hnRNPU on nuclear size and chromatin condensation were investigated by analyzing DAPI and H2B-mCherry staining, respectively. The role of CDC20-hnRNPU in tumor progression and drug resistance was examined by CCK-8 cell survival and clonogenic assays. Our study indicates that CDC20-mediated ubiquitination of hnRNPU modulates chromatin condensation by regulating the interaction between hnRNPU and the CTCF-cohesin complex. Dysregulation of the CDC20-hnRNPU axis contributes to tumor progression and drug resistance.

6.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563565

RESUMEN

Somatic loss of function mutations in cohesin genes are frequently associated with various cancer types, while cohesin disruption in the germline causes cohesinopathies such as Cornelia-de-Lange syndrome (CdLS). Here, we present the discovery of a recurrent heterozygous RAD21 germline aberration at amino acid position 298 (p.P298S/A) identified in three children with lymphoblastic leukemia or lymphoma in a total dataset of 482 pediatric cancer patients. While RAD21 p.P298S/A did not disrupt the formation of the cohesin complex, it altered RAD21 gene expression, DNA damage response and primary patient fibroblasts showed increased G2/M arrest after irradiation and Mitomycin-C treatment. Subsequent single-cell RNA-sequencing analysis of healthy human bone marrow confirmed the upregulation of distinct cohesin gene patterns during hematopoiesis, highlighting the importance of RAD21 expression within proliferating B- and T-cells. Our clinical and functional data therefore suggest that RAD21 germline variants can predispose to childhood lymphoblastic leukemia or lymphoma without displaying a CdLS phenotype.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Apoptosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Niño , Proteínas de Unión al ADN/genética , Síndrome de Cornelia de Lange/genética , Puntos de Control de la Fase G2 del Ciclo Celular , Células Germinativas/metabolismo , Humanos , Linfoma/genética , Mutación , Fenotipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
7.
Mol Cell ; 82(4): 833-851.e11, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35180428

RESUMEN

HOTTIP lncRNA is highly expressed in acute myeloid leukemia (AML) driven by MLL rearrangements or NPM1 mutations to mediate HOXA topologically associated domain (TAD) formation and drive aberrant transcription. However, the mechanism through which HOTTIP accesses CCCTC-binding factor (CTCF) chromatin boundaries and regulates CTCF-mediated genome topology remains unknown. Here, we show that HOTTIP directly interacts with and regulates a fraction of CTCF-binding sites (CBSs) in the AML genome by recruiting CTCF/cohesin complex and R-loop-associated regulators to form R-loops. HOTTIP-mediated R-loops reinforce the CTCF boundary and facilitate formation of TADs to drive gene transcription. Either deleting CBS or targeting RNase H to eliminate R-loops in the boundary CBS of ß-catenin TAD impaired CTCF boundary activity, inhibited promoter/enhancer interactions, reduced ß-catenin target expression, and mitigated leukemogenesis in xenograft mouse models with aberrant HOTTIP expression. Thus, HOTTIP-mediated R-loop formation directly reinforces CTCF chromatin boundary activity and TAD integrity to drive oncogene transcription and leukemia development.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Estructuras R-Loop , ARN Largo no Codificante/metabolismo , beta Catenina/metabolismo , Animales , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Regulación Leucémica de la Expresión Génica , Células HEK293 , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones Transgénicos , ARN Largo no Codificante/genética , Relación Estructura-Actividad , Transcripción Genética , Activación Transcripcional , beta Catenina/genética , Cohesinas
8.
Am J Med Genet A ; 188(3): 1005-1014, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34877788

RESUMEN

Cornelia de Lange syndrome (CdLS) is a spectrum disorder due to variants in genes of the cohesin protein complex. The following abstracts are from the Cornelia de Lange Syndrome Scientific and Educational Symposium held virtually in October 2020. Aspects of behavior, including autistic features, impulsivity, adaptive skills, executive function, and anxiety are described. Applied behavioral analysis is a promising approach for autism, and an N-acetylcysteine trial is proposed. Children below 6 years with CdLS have an increased number of and further travel to medical providers, with insurance type comprising a significant barrier. Speech, language, and feeding abilities fall significantly below expectations for age in CdLS. Augmentative alternative communication can yield potential barriers as well as interesting benefits. Developmentally, studies in animal models further elucidate the mechanisms and roles of cohesin: link with mediator transcriptional complex; facilitation of enhancer-promoter communication; regulation of gene expression; allocation of cells to germ layers; and repair of spontaneous DNA damage in placental cells. Genome and RNA sequencing can help identify the molecular cause in the 20% of individuals with suspected CdLS and negative testing. The phenotypes in individuals with variants in the SMC1A gene are distinct, and that with intractable seizures has been further evaluated. AMA CME credits provided by GBMC, Baltimore, MD. All studies approved by an ethics committee.

9.
Cells ; 10(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943967

RESUMEN

The cohesin complex facilitates faithful chromosome segregation by pairing the sister chromatids after DNA replication until mitosis. In addition, cohesin contributes to proficient and error-free DNA replication. Replisome progression and establishment of sister chromatid cohesion are intimately intertwined processes. Here, we review how the key factors in DNA replication and cohesion establishment cooperate in unperturbed conditions and during DNA replication stress. We discuss the detailed molecular mechanisms of cohesin recruitment and the entrapment of replicated sister chromatids at the replisome, the subsequent stabilization of sister chromatid cohesion via SMC3 acetylation, as well as the role and regulation of cohesin in the response to DNA replication stress.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromátides/genética , Proteínas Cromosómicas no Histona/genética , Replicación del ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetilación , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Mitosis/genética , Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas/genética , Cohesinas
10.
Rinsho Ketsueki ; 62(8): 883-891, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-34497227

RESUMEN

Almost all genetic abnormalities involved in the occurrence and progression of myelodysplastic syndromes (MDS) and acute myeloid leukemia have been reported within the last decade. The molecular mechanisms of these genetic changes involved in causing dysfunctions in hematopoietic cells have also been clarified in recent years. For MDS, gene mutations of RNA splicing factors and cohesin complex have been shown to trigger not only aberrant RNA splicing or decreased chromatin insulation but also DNA damage response and transcriptional dysregulation through inefficient interaction between promoters and enhancers. Consequently, these newly identified disease-causing mechanisms may be considered potential therapeutic targets.


Asunto(s)
Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Leucemia Mieloide Aguda/genética , Mutación , Síndromes Mielodisplásicos/genética , Empalme del ARN , Factores de Empalme de ARN/genética
11.
Cancer Lett ; 497: 112-122, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33039558

RESUMEN

Chromosome instability is one of the hallmarks of cancer. Stromal antigen (STAG) 3 is a core component of the meiosis-specific cohesin complex, which regulates sister chromatid cohesion. Although aberrantly activated genes encoding the cohesin complex have been identified in cancers, little is known about the role of STAG3 in colorectal cancer (CRC). Here, we evaluated the prognostic impact and role of STAG3 in CRC. Analysis of 172 CRC surgical specimens revealed that high STAG3 expression was associated with poor prognosis. STAG3 knockdown inhibited cell migration and increased drug sensitivity to oxaliplatin, 5-fluorouracil, irinotecan hydrochloride hydrate, and BRAF inhibitor in CRC cell lines. The enhanced drug sensitivity was also confirmed in a human organoid established from a CRC specimen. Moreover, suppression of STAG3 increased γH2AX foci. Particularly, in BRAF-mutant CRC cells, STAG3 silencing suppressed the expression of snail family transcriptional repressor 1 and phosphorylation of extracellular signal-regulated kinase via upregulation of dual-specificity phosphatase 6. Our findings suggest that STAG3 is related to poor clinical outcomes and promotes metastasis and chemotherapeutic resistance in CRC. STAG3 may be a novel prognostic marker and potential therapeutic target for CRC.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Recurrencia Local de Neoplasia/patología , Anciano , Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/metabolismo , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas
12.
Cell Cycle ; 18(21): 2828-2848, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31516082

RESUMEN

Preservation and development of life depend on the adequate segregation of sister chromatids during mitosis and meiosis. This process is ensured by the cohesin multi-subunit complex. Mutations in this complex have been associated with an increasing number of diseases, termed cohesinopathies. The best characterized cohesinopathy is Cornelia de Lange syndrome (CdLS), in which intellectual and growth retardations are the main phenotypic manifestations. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably. Novel roles of the cohesin complex have emerged during the past decades, suggesting that important cell cycle regulators exert important biological effects through non-cohesion-related functions and broadening the potential pathomechanisms involved in cohesinopathies. This review focuses on non-cohesion-related functions of the cohesin complex, gene dosage effect, epigenetic regulation and TGF-ß in cohesinopathy context, especially in comparison to Chronic Atrial and Intestinal Dysrhythmia (CAID) syndrome, a very distinct cohesinopathy caused by a homozygous Shugoshin-1 (SGO1) mutation (K23E) and characterized by pacemaker failure in both heart (sick sinus syndrome followed by atrial flutter) and gut (chronic intestinal pseudo-obstruction) with no intellectual or growth delay. We discuss the possible impact of SGO1 alterations in human pathologies and the potential impact of the SGO1 K23E mutation in the sinus node and gut development and functions. We suggest that the human phenotypes observed in CdLS, CAID syndrome and other cohesinopathies can inform future studies into the less well-known non-cohesion-related functions of cohesin complex genes. Abbreviations: AD: Alzheimer Disease; AFF4: AF4/FMR2 Family Member 4; ANKRD11: Ankyrin Repeat Domain 11; APC: Anaphase Promoter Complex; ASD: Atrial Septal Defect; ATRX: ATRX Chromatin Remodeler; ATRX: Alpha Thalassemia X-linked intellectual disability syndrome; BIRC5: Baculoviral IAP Repeat Containing 5; BMP: Bone Morphogenetic Protein; BRD4: Bromodomain Containing 4; BUB1: BUB1 Mitotic Checkpoint Serine/Threonine Kinase; CAID: Chronic Atrial and Intestinal Dysrhythmia; CDK1: Cyclin Dependent Kinase 1; CdLS: Cornelia de Lange Syndrome; CHD: Congenital Heart Disease; CHOPS: Cognitive impairment, coarse facies, Heart defects, Obesity, Pulmonary involvement, Short stature, and skeletal dysplasia; CIPO: Chronic Intestinal Pseudo-Obstruction; c-kit: KIT Proto-Oncogene Receptor Tyrosine Kinase; CoATs: Cohesin Acetyltransferases; CTCF: CCCTC-Binding Factor; DDX11: DEAD/H-Box Helicase 11; ERG: Transcriptional Regulator ERG; ESCO2: Establishment of Sister Chromatid Cohesion N-Acetyltransferase 2; GJC1: Gap Junction Protein Gamma 1; H2A: Histone H2A; H3K4: Histone H3 Lysine 4; H3K9: Histone H3 Lysine 9; HCN4: Hyperpolarization Activated Cyclic Nucleotide Gated Potassium and Sodium Channel 4;p HDAC8: Histone deacetylases 8; HP1: Heterochromatin Protein 1; ICC: Interstitial Cells of Cajal; ICC-MP: Myenteric Plexus Interstitial cells of Cajal; ICC-DMP: Deep Muscular Plexus Interstitial cells of Cajal; If: Pacemaker Funny Current; IP3: Inositol trisphosphate; JNK: C-Jun N-Terminal Kinase; LDS: Loeys-Dietz Syndrome; LOAD: Late-Onset Alzheimer Disease; MAPK: Mitogen-Activated Protein Kinase; MAU: MAU Sister Chromatid Cohesion Factor; MFS: Marfan Syndrome; NIPBL: NIPBL, Cohesin Loading Factor; OCT4: Octamer-Binding Protein 4; P38: P38 MAP Kinase; PDA: Patent Ductus Arteriosus; PDS5: PDS5 Cohesin Associated Factor; P-H3: Phospho Histone H3; PLK1: Polo Like Kinase 1; POPDC1: Popeye Domain Containing 1; POPDC2: Popeye Domain Containing 2; PP2A: Protein Phosphatase 2; RAD21: RAD21 Cohesin Complex Component; RBS: Roberts Syndrome; REC8: REC8 Meiotic Recombination Protein; RNAP2: RNA polymerase II; SAN: Sinoatrial node; SCN5A: Sodium Voltage-Gated Channel Alpha Subunit 5; SEC: Super Elongation Complex; SGO1: Shogoshin-1; SMAD: SMAD Family Member; SMC1A: Structural Maintenance of Chromosomes 1A; SMC3: Structural Maintenance of Chromosomes 3; SNV: Single Nucleotide Variant; SOX2: SRY-Box 2; SOX17: SRY-Box 17; SSS: Sick Sinus Syndrome; STAG2: Cohesin Subunit SA-2; TADs: Topology Associated Domains; TBX: T-box transcription factors; TGF-ß: Transforming Growth Factor ß; TGFBR: Transforming Growth Factor ß receptor; TOF: Tetralogy of Fallot; TREK1: TREK-1 K(+) Channel Subunit; VSD: Ventricular Septal Defect; WABS: Warsaw Breakage Syndrome; WAPL: WAPL Cohesin Release Factor.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Animales , Aleteo Atrial/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Humanos , Seudoobstrucción Intestinal/genética , Ratones , Ratones Endogámicos C57BL , Proto-Oncogenes Mas , Síndrome del Seno Enfermo/genética , Cohesinas
13.
Brain ; 142(9): 2631-2643, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31334757

RESUMEN

Marked by incomplete division of the embryonic forebrain, holoprosencephaly is one of the most common human developmental disorders. Despite decades of phenotype-driven research, 80-90% of aneuploidy-negative holoprosencephaly individuals with a probable genetic aetiology do not have a genetic diagnosis. Here we report holoprosencephaly associated with variants in the two X-linked cohesin complex genes, STAG2 and SMC1A, with loss-of-function variants in 10 individuals and a missense variant in one. Additionally, we report four individuals with variants in the cohesin complex genes that are not X-linked, SMC3 and RAD21. Using whole mount in situ hybridization, we show that STAG2 and SMC1A are expressed in the prosencephalic neural folds during primary neurulation in the mouse, consistent with forebrain morphogenesis and holoprosencephaly pathogenesis. Finally, we found that shRNA knockdown of STAG2 and SMC1A causes aberrant expression of HPE-associated genes ZIC2, GLI2, SMAD3 and FGFR1 in human neural stem cells. These findings show the cohesin complex as an important regulator of median forebrain development and X-linked inheritance patterns in holoprosencephaly.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Ratones Endogámicos C57BL , Cohesinas
14.
Oncol Lett ; 18(1): 518-528, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31289523

RESUMEN

Cancer is essentially a genetic disease. Accumulated gene mutations accelerate genome instability, which eventually leads to uncontrollable growth of the tumor. Bladder cancer is the most common form of urinary tract cancer. This form of cancer has a poor prognosis due to its clinical heterogeneity and molecular diversity. Despite recent scientific advances, the knowledge and treatment of bladder cancer still lags behind that of other types of solid tumor. In the present study, available large data portals and other studies were used to obtain clinically relevant information, and the data were systematically processed to decipher the genes associated with bladder cancer. Genes associated with the survival time of patients with bladder cancer were successfully identified. The genes were enriched in common biological processes and pathways, and upregulated in tumor samples from patients. Among the top genes identified as associated with good or poor survival in bladder cancer, DNA topoisomerase IIα (TOP2α) and RAD21 cohesin complex component (RAD21) were also increased in bladder cancer tissues and cell lines. Therefore, TOP2α and RAD21 could be used as potential therapeutic targets in bladder cancer.

15.
Am J Med Genet A ; 179(6): 1080-1090, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30874362

RESUMEN

Cornelia de Lange Syndrome (CdLS), due to mutations in genes of the cohesin protein complex, is described as a disorder of transcriptional regulation. Phenotypes in this expanding field include short stature, microcephaly, intellectual disability, variable facial features and organ involvement, resulting in overlapping presentations, including established syndromes and newly described conditions. Individuals with all forms of CdLS have multifaceted complications, including neurodevelopmental, feeding, craniofacial, and communication. Coping mechanisms and management of challenging behaviors in CdLS, disruption of normal behaviors, and how behavior molds the life of the individual within the family is now better understood. Some psychotropic medications are known to be effective for behavior. Other medications, for example, Indomethacin, are being investigated for effects on gene expression, fetal brain tissue, brain morphology and function in Drosophila, mice, and human fibroblasts containing CdLS-related mutations. Developmental studies have clarified the origin of cardiac defects and role of placenta in CdLS. Chromosome architecture and cohesin complex structure are elucidated, leading to a better understanding of regulatory aspects and controls. As examples, when mutations are present, the formation of loop domains by cohesin, facilitating enhancer-promotor interactions, can be eliminated, and embryologically, the nuclear structure of zygotes is disrupted. Several important genes are now known to interact with cohesin, including Brca2. The following abstracts are from the 8th Cornelia de Lange Syndrome Scientific and Educational Symposium, held in June 2018, Minneapolis, MN, before the CdLS Foundation National Meeting, AMA CME credits provided by GBMC, Baltimore, MD. All studies have been approved by an ethics committee.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Estudios de Asociación Genética/métodos , Humanos , Cohesinas
16.
Mol Genet Genomic Med ; 7(2): e00501, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30447054

RESUMEN

BACKGROUND: The cohesin complex is a multi-subunit protein complex which regulates sister chromatid cohesion and separation during cellular division. In addition, this evolutionarily conserved protein complex plays an integral role in DNA replication, DNA repair, and the regulation of transcription. The core complex is composed of four subunits: RAD21, SMC1A, SMC3, and STAG1/2. Mutations in these proteins have been implicated in human developmental disorders collectively termed "cohesinopathies." METHODS: Using clinical exome sequencing, we have previously identified three female cases with heterozygous STAG2 mutations and overlapping syndromic phenotypes. Subsequently, a familial missense variant was identified in five male family members. RESULTS: We now present the case of a 4-year-old male with developmental delay, failure to thrive, short stature, and polydactyly with a likely pathogenic STAG2 de novo missense hemizygous variant, c.3027A>T, p.Lys1009Asn. Furthermore, we compare the phenotypes of the four previously reported STAG2 variants with our case. CONCLUSION: We conclude that mutations in STAG2 cause a novel constellation of sex-specific cohesinopathy-related phenotypes and are furthermore, essential for neurodevelopment, human growth, and behavioral development.


Asunto(s)
Antígenos Nucleares/genética , Discapacidades del Desarrollo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Trastornos del Crecimiento/genética , Fenotipo , Polidactilia/genética , Proteínas de Ciclo Celular , Preescolar , Discapacidades del Desarrollo/patología , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Trastornos del Crecimiento/patología , Humanos , Masculino , Mutación Missense , Polidactilia/patología , Síndrome
17.
Eur J Med Genet ; 62(6): 103526, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30125677

RESUMEN

Cornelia de Lange syndrome (CdLS) is a heterogeneous developmental disorder where 70% of clinically diagnosed patients harbor a variant in one of five CdLS associated cohesin proteins. Around 500 variants have been identified to cause CdLS, however only eight different alterations have been identified in the RAD21 gene, encoding the RAD21 cohesin complex component protein that constitute the link between SMC1A and SMC3 within the cohesin ring. We report a 15-month-old boy presenting with developmental delay, distinct CdLS-like facial features, gastrointestinal reflux in early infancy, testis retention, prominent digit pads and diaphragmatic hernia. Exome sequencing revealed a novel RAD21 variant, c.1774_1776del, p.(Gln592del), suggestive of CdLS type 4. Segregation analysis of the two healthy parents confirmed the variant as de novo and bioinformatic analysis predicted the variant as disease-causing. Assessment by in silico structural model predicted that the p.Gln592del variant results in a discontinued contact between RAD21-Lys591 and the SMC1A residues Glu1191 and Glu1192, causing changes in the RAD21-SMC1A interface. In conclusion, we report a patient that expands the clinical description of CdLS type 4 and presents with a novel RAD21 p.(Glu592del) variant that causes a disturbed RAD21-SMC1A interface according to in silco structural modeling.


Asunto(s)
Síndrome de Cornelia de Lange/genética , Mutación Missense , Proteínas Nucleares/genética , Fenotipo , Fosfoproteínas/genética , Proteínas de Ciclo Celular , Proteínas de Unión al ADN , Síndrome de Cornelia de Lange/patología , Humanos , Lactante , Masculino , Proteínas Nucleares/química , Fosfoproteínas/química , Dominios Proteicos
18.
Am J Med Genet A ; 179(6): 1080-1090, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39070592

RESUMEN

Cornelia de Lange Syndrome (CdLS), due to mutations in genes of the cohesin protein complex, is described as a disorder of transcriptional regulation. Phenotypes in this expanding field include short stature, microcephaly, intellectual disability, variable facial features and organ involvement, resulting in overlapping presentations, including established syndromes and newly described conditions. Individuals with all forms of CdLS have multifaceted complications, including neurodevelopmental, feeding, craniofacial, and communication. Coping mechanisms and management of challenging behaviors in CdLS, disruption of normal behaviors, and how behavior molds the life of the individual within the family is now better understood. Some psychotropic medications are known to be effective for behavior. Other medications, for example, Indomethacin, are being investigated for effects on gene expression, fetal brain tissue, brain morphology and function in Drosophila, mice, and human fibroblasts containing CdLS-related mutations. Developmental studies have clarified the origin of cardiac defects and role of placenta in CdLS. Chromosome architecture and cohesin complex structure are elucidated, leading to a better understanding of regulatory aspects and controls. As examples, when mutations are present, the formation of loop domains by cohesin, facilitating enhancer-promotor interactions, can be eliminated, and embryologically, the nuclear structure of zygotes is disrupted. Several important genes are now known to interact with cohesin, including Brca2. The following abstracts are from the 8th Cornelia de Lange Syndrome Scientific and Educational Symposium, held in June 2018, Minneapolis, MN, before the CdLS Foundation National Meeting, AMA CME credits provided by GBMC, Baltimore, MD. All studies have been approved by an ethics committee.

19.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29389897

RESUMEN

Cohesin complex components exert fundamental roles in animal cells, both canonical in cell cycle and non-canonical in gene expression regulation. Germline mutations in genes coding for cohesins result in developmental disorders named cohesinopaties, of which Cornelia de Lange syndrome (CdLS) is the best-known entity. However, a basic description of mammalian expression pattern of cohesins in a physiologic condition is still needed. Hence, we report a detailed analysis of expression in murine and human tissues of cohesin genes defective in CdLS. Using both quantitative and qualitative methods in fetal and adult tissues, cohesin genes were found to be ubiquitously and differentially expressed in human tissues. In particular, abundant expression was observed in hematopoietic and central nervous system organs. Findings of the present study indicate tissues which should be particularly sensitive to mutations, germline and/or somatic, in cohesin genes. Hence, this expression analysis in physiological conditions may represent a first core reference for cohesinopathies.


Asunto(s)
Proteínas de Ciclo Celular/genética , Sistema Nervioso Central/metabolismo , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/genética , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis/genética , Animales , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas de Unión al ADN , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Histona Desacetilasas/genética , Humanos , Ratones , Mutación , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas/genética , Proteínas Represoras/genética , Cohesinas
20.
Oncotarget ; 8(23): 37619-37632, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28430577

RESUMEN

Cohesin is a multi-protein complex that tethers sister chromatids during mitosis and mediates DNA repair, genome compartmentalisation and regulation of gene expression. Cohesin subunits frequently acquire cancer loss-of-function alterations and act as tumour suppressors in several tumour types. This has led to increased interest in cohesin as potential target in anti-cancer therapy. Here we show that the loss-of-function of STAG2, a core component of cohesin and an emerging tumour suppressor, leads to synthetic dependency of mutated cancer cells on its paralog STAG1. STAG1 and STAG2 share high sequence identity, encode mutually exclusive cohesin subunits and retain partially overlapping functions. We inhibited STAG1 and STAG2 in several cancer cell lines where the two genes have variable mutation and copy number status. In all cases, we observed that the simultaneous blocking of STAG1 and STAG2 significantly reduces cell proliferation. We further confirmed the synthetic lethal interaction developing a vector-free CRISPR system to induce STAG1/STAG2 double gene knockout. We provide strong evidence that STAG1 is a promising therapeutic target in cancers with inactivating alterations of STAG2.


Asunto(s)
Antígenos Nucleares/genética , Proliferación Celular/genética , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Antígenos Nucleares/metabolismo , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Línea Celular Tumoral , Edición Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación con Pérdida de Función , Células MCF-7 , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/metabolismo , Unión Proteica , Interferencia de ARN , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA