Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202414005, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39290051

RESUMEN

A desymmetrizing 1,2-addition of silicon nucleophiles to biaryl derivatives containing an 2,6-dicarbaldehyde-1-yl unit is reported. The reaction is catalyzed by copper with a triazolium-derived N-heterocyclic carbene as the chiral ligand and an Si-B reagent as the silicon pronucleophile. The practical methodology furnishes axially chiral aromatic carbaldehydes decorated with a centrally chiral α-hydroxysilane moiety in moderate to high yields and with high enantio- as well as excellent diastereoselectivities. The silicon nucleophile always attacks at either carbonyl group away from the ortho substituent on the phenyl ring at C1 of the 2,6-dicarbaldehyde-1-yl fragment. The resulting axially and centrally chiral products can be further converted into valuable biaryl compounds with hardly any erosion of the enantiomeric excess.

2.
Angew Chem Int Ed Engl ; : e202416569, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271458

RESUMEN

The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this work, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors. Further protein engineering enabled the identification of variants (IR189 M8-M9 and IR189 M13-M14) that are able to catalyze the formation of both (R) and (S) atropisomers in excellent yields and atroposelectivities for up to 24 examples (up to 99% ee and yield). The absolute configuration and rotational barriers were confirmed, and the reactions were readily enlarged to allow isolation of the atropisomeric products in 99% ee and 82% isolated yields. The optically pure biaryl amines were further derivatized into various synthetically useful atropisomers. To shed light on the molecular recognition mechanisms, molecular dynamics (MD) simulations were performed, offering plausible explanations for the improved atroposelectivities and enzymatic activities. The current strategy expands the scope of IRED-catalyzed synthesis of axially chiral biaryl amines, contributing significantly to the field of atroposelective biocatalysis.

3.
Angew Chem Int Ed Engl ; 63(38): e202409125, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39115054

RESUMEN

Coordination engineering strategy for optimizing the catalytic performance of single-atom catalysts (SACs) has been rapidly developed over the last decade. However, previous reports on copper SACs for nitrate reduction reactions (NO3RR) have mostly focused on symmetric coordination configurations such as Cu-N4 and Cu-N3. In addition, the mechanism in terms of the regulation of coordination environment and catalytic properties of SACs has not been well demonstrated. Herein, we disrupted the local symmetric structure of copper atoms by introducing unsaturated heteroatomic coordination of Cu-O and Cu-N to achieve the coordination desymmetrization of Cu-N1O2 SACs. The Cu-N1O2 SACs exhibit an efficient nitrate-to-ammonia conversion with a high FE of ~96.5 % and a yield rate of 3120 µg NH3 h-1 cm-2 at -0.60 V vs RHE. As indicated by in situ Raman spectra, the catalysts facilitate the accumulation of NO3 - and the selective adsorption of *NO2, which were further confirmed by the theoretical study of surface dipole moment and orbital hybridization. Our work illustrated the correlation between the coordination desymmetrization and the catalytic performance of copper SACs for NO3RR.

4.
Angew Chem Int Ed Engl ; : e202411889, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086010

RESUMEN

The stereochemistry of shape-persistent molecular cages, particularly those resembling prisms, exerts significant influence on their application-specific functionalities. Although methods exist for fabricating inherently chiral prism-like cages, strategies for catalytic asymmetric synthesis of these structures in a diversity-oriented fashion remain unexplored. Herein, we introduce an unprecedented organocatalytic desymmetrization approach for the generation of inherently chiral prism-like cages via phosphonium-containing foldamer-catalyzed SNAr reactions. This methodology establishes a topological connection, enabling the facile assembly of a wide range of versatile stereogenic-at-cage building blocks possessing two highly modifiable groups. Furthermore, subsequent stereospecific transformations of the remaining chlorides and/or ethers afford convenient access to numerous functionally relevant chiral-at-cage molecules.

5.
Sci Bull (Beijing) ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39183108

RESUMEN

Morpholines are widespread in many biologically and catalytically active agents, thus being an important aim of pharmaceutical and synthetic chemists. However, efficient strategies for the catalytic asymmetric synthesis of chiral morpholines bearing crowded stereogenic centers still remain elusive. Herein, we disclose a Cu-catalyzed asymmetric propargylic amination/desymmetrization strategy to help resolve this challenge. As a result, two kinds of structurally various chiral morpholines bearing rich functional groups and N-α-quaternary stereocenters were produced with high efficiency and selectivity (42 examples, up to 91 % yield, 97:3 er and > 19:1 dr). In addition, a series of transformations were performed to demonstrate the synthetic utility of this methodology. In particular, a hit compound for new antitumor drugs was identified through cellular evaluation. Furthermore, mechanistic investigations reveal that, hydrogen bonding in the key copper-allenylidene intermediate together with π-π stacking aids remote enantioinduction.

6.
Adv Sci (Weinh) ; 11(35): e2403125, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014550

RESUMEN

Axially chiral diaryl ethers represent a distinct class of atropisomers, characterized by a unique dual C─O axes system, which have been found in a variety of natural products, pharmaceuticals, and ligands. However, the catalytic enantioselective synthesis of these atropoisomers poses significant challenges, due to the difficulty in controlling both chiral C─O axes, and their more flexible conformations. Herein, an efficient protocol for catalytic enantioselective synthesis of axially chiral diaryl ethers is presented using organocatalyzed asymmetric Povarov reaction-enabled desymmetrization, followed by aromatizations. This method yields a wide range of novel quinoline-based diaryl ether atropoisomers in good yields and high enantioselectivities. Notably, various aromatization protocols are developed, resulting in a diverse set of polysubstituted quinoline-containing diaryl ether atropisomers. Thermal racemization studies suggested excellent configurational stabilities for these novel diaryl ether atropisomers (with racemization barriers up to 38.1 kcal mol-1). Moreover, this research demonstrates for the first time that diaryl ether atropisomers lacking the bulky t-Bu group can still maintain a stable configuration, challenging the prior knowledge in the field. The fruitful derivatizations of the functional group-rich chiral products further underscore the value of this method.

7.
Angew Chem Int Ed Engl ; : e202411232, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39056890

RESUMEN

Cu-catalyzed asymmetric allylic borylation of 3,3'-disubstituted 1-vinylcyclobutan-1-ols renders axially chiral allylborane systems, with high asymmetric induction for both enantiomers, by precise selection of the cis or trans substrate. The enantioenriched alkylidenecyclobutanes served as chiral platform to prove the conceptually challenging transference of the axial-to-point chirality through two new stereocenters and one pseudoasymmetric carbon generated via diastereoconvergent allylation of aldehydes, without enantioselective erosion.

8.
Angew Chem Int Ed Engl ; : e202410628, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973580

RESUMEN

Inherently chiral calix[4]arenes represent a unique type of chiral molecules with significant applications, yet their catalytic enantioselective synthesis remains largely underexplored. We report herein the catalytic enantioselective synthesis of inherently chiral calix[4]arenes through the sequential organocatalyzed enantioselective Povarov reaction and aromatizations. The chiral phosphoric acid catalyzed three-component Povarov reaction involving amino group-substituted calix[4]arenes, aldehydes and (di)enamides desymmetrized the prochiral calix[4]arene substrates, which was followed by various aromatization methods, resulting in a diverse array of novel quinoline-containing calix[4]arenes with good yields and high enantioselectivities (up to 75 % yield, 99 % ee). The large-scale enantioselective synthesis and diverse derivatizations of the chiral calix[4]arene products highlight the value of this method. Furthermore, preliminary exploration into their photophysical and chiroptical properties demonstrate the potential applications of these novel calix[4]arene molecules.

9.
Beilstein J Org Chem ; 20: 1376-1395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919603

RESUMEN

The Cannizzaro reaction has emerged as a versatile synthetic tool for the construction of functionalized molecules. Dating back to the 19th century, this reaction, though initially used for the synthesis of an alcohol and acid functionality from aldehydes, has henceforth proven useful to generate diverse molecular entities using both intermolecular and intramolecular synthetic strategies. Immense applications in the synthesis of hydroxy acids and esters, heterocycles, fused carbocycles, natural products, and others with broad substrate scope have raised profound interest from methodological and synthetic standpoints. The ongoing development of reagents, solvents, and technologies for the Cannizzaro reaction reflects the broader trend in organic synthesis towards more sustainable and efficient practices. The focus of this review is to highlight some recent advances in synthetic strategies and applications of the Cannizzaro reaction towards the synthesis of potentially useful molecules.

10.
Angew Chem Int Ed Engl ; 63(34): e202407127, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-38818628

RESUMEN

A highly effective enantioselective monobenzoylation of 1,3-diols has been developed for the synthesis of 1,1-disubstituted tetrahydro-ß-carbolines. The chemistry has been successfully applied to the asymmetric total synthesis of (+)-alstrostine G, which also features a cascade Heck/hemiamination reaction enabling facile construction of the pivotal pentacyclic core.

11.
Angew Chem Int Ed Engl ; 63(31): e202404979, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38745374

RESUMEN

The control of noncarbon stereogenic centers is of profound importance owing to their enormous interest in bioactive compounds and chiral catalyst or ligand design for enantioselective synthesis. Despite various elegant approaches have been achieved for construction of S-, P-, Si- and B-stereocenters over the past decades, the catalyst-controlled strategies to govern the formation of N-stereogenic compounds have garnered less attention. Here, we disclose the first organocatalytic approach for efficient access to a wide range of nitrogen-stereogenic compounds through a desymmetrization approach. Intriguingly, the pro-chiral remote diols, which are previously not well addressed with enantiocontrol, are well differentiated by potent chiral carbene-bound acyl azolium intermediates. Preliminary studies shed insights on the critical importance of the ionic hydrogen bond (IHB) formed between the dimer aggregate of diols to afford the chiral N-oxide products that feature a tetrahedral nitrogen as the sole stereogenic element with good yields and excellent enantioselectivities. Notably, the chiral N-oxide products could offer an attractive strategy for chiral ligand design and discovery of potential antibacterial agrochemicals.

12.
Nat Prod Res ; : 1-11, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712549

RESUMEN

Herein, the manuscript presents a chemoenzymatic formal synthetic route of (+)-brazilin, a homoisoflavonoid natural product with a chroman skeleton cis-fused with a 2,3-dihydro-1H-indene unit, which is isolated from the traditional Chinese medicine, Caesalpinia sappan L. The key feature of the synthetic strategy includes an enzyme-mediated desymmetrization by employing lipase from Candida antarctica type B (CALB) and a one-pot SN2/hydrolysis reaction.

13.
Beilstein J Org Chem ; 20: 940-949, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711594

RESUMEN

We report herein an enantioselective palladium-catalyzed Heck-Matsuda reaction for the desymmetrization of N-protected 2,5-dihydro-1H-pyrroles with aryldiazonium salts, using the chiral N,N-ligand (S)-PyraBox. This strategy has allowed straightforward access to a diversity of 4-aryl-γ-lactams via Heck arylation followed by a sequential Jones oxidation. The overall method displays a broad scope and good enantioselectivity, favoring the (R) enantiomer. The applicability of the protocol is highlighted by the efficient enantioselective syntheses of the selective phosphodiesterase-4-inhibitor rolipram and the commercial drug baclofen as hydrochloride.

14.
Angew Chem Int Ed Engl ; 63(18): e202400673, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38381534

RESUMEN

A broadly improved second generation catalytic two-phase strategy for the enantioselective synthesis of stereogenic at phosphorus (V) compounds is described. This protocol, consisting of a bifunctional iminophosphorane (BIMP) catalyzed nucleophilic desymmetrization of prochiral, bench stable P(V) precursors and subsequent enantiospecific substitution allows for divergent access to a wide range of C-, N-, O- and S- substituted P(V) containing compounds from a handful of enantioenriched intermediates. A new ureidopeptide BIMP catalyst/thiaziolidinone leaving group combination allowed for a far wider substrate scope and increased reaction efficiency and practicality over previously established protocols. The resulting enantioenriched intermediates could then be transformed into an even greater range of distinct classes of P(V) compounds by displacement of the remaining leaving group as well as allowing for even further diversification downstream. Density functional theory (DFT) calculations were performed to pinpoint the origin of enantioselectivity for the BIMP-catalyzed desymmetrization, to rationalize how a superior catalyst/leaving group combination leads to increased generality in our second-generation catalytic system, as well as shed light onto observed stereochemical retention and inversion pathways when performing late-stage enantiospecific SN2@P reactions with Grignard reagents.

15.
Chemistry ; 30(20): e202304078, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311856

RESUMEN

An asymmetric double desymmetrization methodology has been developed for synthesizing densely functionalized chiral cyclopentylcyclohexane scaffolds. We have constructed four chiral centers, including an all-carbon quaternary stereocenter in a single C-C bond formation event. The methodology has high functional-group tolerance and delivers a broad range of enantioenriched products. This vinylogous Michael addition reaction of prochiral α,α-dicyanocyclohexane to 2,2-disubstituted cyclopentene-1,3-dione is catalyzed by a chiral Ag-(R)-DTBM-SEGPHOS catalyst.

16.
Angew Chem Int Ed Engl ; 63(5): e202318475, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078602

RESUMEN

The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.

17.
Angew Chem Int Ed Engl ; 63(4): e202314228, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38019184

RESUMEN

Axially chiral diaryl ethers are present in numerous natural products and bioactive molecules. However, only few catalytic enantioselective approaches have been established to access diaryl ether atropisomers. Herein, we report the N-heterocyclic carbene-catalyzed enantioselective synthesis of axially chiral diaryl ethers via desymmetrization of prochiral 2-aryloxyisophthalaldehydes with aliphatic alcohols, phenol derivatives, and heteroaromatic amines. This reaction features mild reaction conditions, good functional group tolerance, broad substrate scope and excellent enantioselectivity. The utility of this methodology is illustrated by late-stage functionalization, gram-scale synthesis, and diverse enantioretentive transformations. Control experiments and DFT calculations support the association of NHC-catalyzed desymmetrization with following kinetic resolution to enhance the enantioselectivity.

18.
Angew Chem Int Ed Engl ; 63(1): e202315092, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37943545

RESUMEN

A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.

19.
Angew Chem Int Ed Engl ; 62(52): e202311709, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37986240

RESUMEN

Axially chiral diaryl ethers, a distinguished class of atropisomers possessing unique dual C-O axis, hold immense potential for diverse research domains. In contrast to the catalytic enantioselective synthesis of conventional single axis bearing atropisomers, the atroposelective synthesis of axially chiral ethers containing flexible C-O axis remains a significant challenge. Herein, we demonstrate the first N-heterocyclic carbene (NHC)-catalyzed synthesis of axially chiral diaryl ethers via atroposelective esterification of dialdehyde-containing diaryl ethers. Mechanistically, the reaction proceeds via NHC-catalyzed desymmetrization strategy to afford the corresponding axially chiral diaryl ether atropisomers in good yields and high enantioselectivities under mild conditions. The derivatization of the synthesized product expands the utility of present strategy via access to a library of C-O axially chiral compounds. The temperature dependency and preliminary investigations on the racemization barrier of C-O bonds are also presented.

20.
ChemMedChem ; 18(22): e202300399, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37788979

RESUMEN

Mycobacterium tuberculosis (Mtb) causes tuberculosis as one major threat to human health, which has been deteriorated owing to the emerging multidrug resistance. Mtb contains a complex lipophilic cell wall structure that is important for bacterial persistence. Among the lipid components, sulfoglycolipids (SGLs), known to induce immune cell responses, are composed of a trehalose core attached with a conserved sulfate group and 1-4 fatty acyl chains in an asymmetric pattern. At least one of these acyl chains is polymethylated with 3-12 methyl branches. Although Mtb SGL can be isolated from bacterial culture, resulting SGL is still a homologous mixture, impeding accurate research studies. This up-to-date review covers the chemical synthesis and immunological studies of Mtb SGLs and structural analogues, with an emphasis on the development of new glycosylation methods and the asymmetric synthesis of polymethylated scaffolds. Both are critical to advance further research on biological functions of these complicated SGLs.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Glucolípidos/química , Tuberculosis/tratamiento farmacológico , Glicosilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA