Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Chemosphere ; 363: 142923, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059642

RESUMEN

Biobeds are presented as an alternative for good pesticide wastewater management on farms. This work proposes a new test for in-situ biomonitoring of pesticide detoxification in biobeds. It is based on the assessment of visually appreciable injuries to Eisenia fetida. The severity of the injury to each exposed individual is assessed from the morphological changes observed in comparison with the patterns established in seven categories and, an injury index is calculated. A linear relationship between the proposed injury index and the pesticide concentration was determined for each pesticide sprayed individually in the biomixture. The five pesticides used were atrazine, prometryn, clethodim, haloxyfop-P-methyl and dicamba. In addition, a multiple linear regression model (i.e., a multivariate response surface) was fitted, which showed a good generalization capacity. The sensitivity range of the injury test was tested from 0.01 to 630 mg kg-1 as the total pesticide concentration. This index is then used to monitor the detoxification of these pesticides in a biomixture (composed of wheat stubble, river waste, and soil, 50:25:25% by volume) over 210 days. The results are compared with standardized tests (Eisenia fetida avoidance test and Lactuca sativa seed germination test) carried out on the same biomixture. The results are also compared with data on the removal of pesticides. The injury test showed a better correlation with the removal of pesticides than the avoidance test and seed germination test. This simple and inexpensive test has proved to be useful for decontamination in-situ monitoring in biobeds.


Asunto(s)
Monitoreo Biológico , Oligoquetos , Plaguicidas , Plaguicidas/análisis , Plaguicidas/metabolismo , Oligoquetos/metabolismo , Monitoreo Biológico/métodos , Animales , Atrazina/toxicidad , Atrazina/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Monitoreo del Ambiente/métodos , Aguas Residuales/química , Prometrina/toxicidad , Dicamba
2.
J Photochem Photobiol B ; 257: 112965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955078

RESUMEN

This research aimed to develop natural plant systems to serve as biological sentinels for the detection of organophosphate pesticides in the environment. The working hypothesis was that the presence of the pesticide in the environment caused changes in the content of pigments and in the photosynthetic functioning of the plant, which could be evaluated non-destructively through the analysis of reflected light and emitted fluorescence. The objective of the research was to furnish in vivo indicators derived from spectroscopic parameters, serving as early alert signals for the presence of organophosphates in the environment. In this context, the effects of two pesticides, Chlorpyrifos and Dimethoate, on the spectroscopic properties of aquatic plants (Vallisneria nana and Spathyfillum wallisii) were studied. Chlorophyll-a variable fluorescence allowed monitoring both pesticides' presence before any damage was observed at the naked eye, with the analysis of the fast transient (OJIP curve) proving more responsive than Kautsky kinetics, steady-state fluorescence, or reflectance measurements. Pesticides produced a decrease in the maximum quantum yield of PSII photochemistry, in the proportion of PSII photochemical deexcitation relative to PSII non photochemical decay and in the probability that trapped excitons moved electrons into the photosynthetic transport chain beyond QA-. Additionally, an increase in the proportion of absorbed energy being dissipated as heat rather than being utilized in the photosynthetic process, was notorious. The pesticides induced a higher deactivation of chlorophyll excited states by photophysical pathways (including fluorescence) with a decrease in the quantum yields of photosystem II and heat dissipation by non-photochemical quenching. The investigated aquatic plants served as sentinels for the presence of pesticides in the environment, with the alert signal starting within the first milliseconds of electronic transport in the photosynthetic chain. Organophosphates damage animals' central nervous systems similarly to certain compounds found in chemical weapons, thus raising the possibility that sentinel plants could potentially signal the presence of such weapons.


Asunto(s)
Clorofila , Cloropirifos , Clorofila/metabolismo , Clorofila/química , Cloropirifos/metabolismo , Cloropirifos/toxicidad , Fluorescencia , Plaguicidas/toxicidad , Plaguicidas/metabolismo , Fotosíntesis/efectos de los fármacos , Dimetoato/toxicidad , Dimetoato/metabolismo , Espectrometría de Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/química , Monitoreo del Ambiente/métodos , Clorofila A/metabolismo , Clorofila A/química , Cinética , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
3.
Chemphyschem ; 25(14): e202400246, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38656666

RESUMEN

In MLCT chromophores, internal conversion (IC) in the form of hole reconfiguration pathways (HR) is a major source of dissipation of the absorbed photon energy. Therefore, it is desirable to minimize their impact in energy conversion schemes by slowing them down. According to previous findings on {Ru(bpy)} chromophores, donor-acceptor interactions between the Ru ion and the ligand scaffold might allow to control HR/IC rates. Here, a series of [Ru(tpm)(bpy)(R-py)]2+ chromophores, where tpm is tris(1-pyrazolyl)methane, bpy is 2,2'-bipyridine and R-py is a 4-substituted pyridine, were prepared and fully characterized employing electrochemistry, spectroelectrochemistry, steady-state absorption/emission spectroscopy and electronic structure computations based on DFT/TD-DFT. Their excited-state decay was monitored using nanosecond and femtosecond transient absorption spectroscopy. HR/IC lifetimes as slow as 568 ps were obtained in DMSO at room temperature, twice as slow as in the reference species [Ru(tpm)(bpy)(NCS)]+.

4.
Entropy (Basel) ; 26(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38539771

RESUMEN

The Kardar-Parisi-Zhang (KPZ) equation describes a wide range of growth-like phenomena, with applications in physics, chemistry and biology. There are three central questions in the study of KPZ growth: the determination of height probability distributions; the search for ever more precise universal growth exponents; and the apparent absence of a fluctuation-dissipation theorem (FDT) for spatial dimension d>1. Notably, these questions were answered exactly only for 1+1 dimensions. In this work, we propose a new FDT valid for the KPZ problem in d+1 dimensions. This is achieved by rearranging terms and identifying a new correlated noise which we argue to be characterized by a fractal dimension dn. We present relations between the KPZ exponents and two emergent fractal dimensions, namely df, of the rough interface, and dn. Also, we simulate KPZ growth to obtain values for transient versions of the roughness exponent α, the surface fractal dimension df and, through our relations, the noise fractal dimension dn. Our results indicate that KPZ may have at least two fractal dimensions and that, within this proposal, an FDT is restored. Finally, we provide new insights into the old question about the upper critical dimension of the KPZ universality class.

5.
Pflugers Arch ; 476(3): 365-377, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308122

RESUMEN

To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.


Asunto(s)
Hipertensión , Carrera , Ratas , Animales , Ratas Endogámicas SHR , Oxitocina/metabolismo , Oxitocina/farmacología , Hipotálamo/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Vasopresinas/metabolismo , Hipertensión/metabolismo , Fatiga
6.
Chemosphere ; 346: 140569, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37918533

RESUMEN

2,4-D and fipronil are among Brazil's most used pesticides. The presence of these substances in surface waters is a concern for the aquatic ecosystem health. Thus, understanding the behavior of these substances under environmentally relevant conditions is essential for an effective risk assessment. This study aimed to determine the degradation profiles of 2,4-D and fipronil after controlled application in aquatic mesocosm systems under influencing factors such as environmental aspects and vinasse application, evaluate pesticide dissipation at the water-sediment interface, and perform an environmental risk assessment in water and sediment compartments. Mesocosm systems were divided into six different treatments, namely: control (C), vinasse application (V), 2,4-D application (D), fipronil application (F), mixture of 2,4-D and fipronil application (M), and mixture of 2,4-D and fipronil with vinasse application (MV). Pesticide application was performed according to typical Brazilian sugarcane management procedures, and the experimental systems were monitored for 150 days. Pesticide dissipation kinetics was modeled using first-order reaction models. The estimated half-life times of 2,4-D were 18.2 days for individual application, 50.2 days for combined application, and 9.6 days for combined application with vinasse. For fipronil, the respective half-life times were 11.7, 13.8, and 24.5 days. The dynamics of pesticides in surface waters resulted in the deposition of these compounds in the sediment. Also, fipronil transformation products fipronil-sulfide and fipronil-sulfone were quantified in water 21 days after pesticide application. Finally, performed risk assessments showed significant potential risk to environmental health, with RQ values for 2,4-D up to 1359 in freshwater and 98 in sediment, and RQ values for fipronil up to 22,078 in freshwater and 2582 in sediment.


Asunto(s)
Plaguicidas , Contaminantes Químicos del Agua , Ecosistema , Contaminantes Químicos del Agua/análisis , Plaguicidas/toxicidad , Plaguicidas/análisis , Agua , Ácido 2,4-Diclorofenoxiacético/toxicidad
7.
Medicina (Kaunas) ; 59(7)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37512000

RESUMEN

Background: The objective of this study was to evaluate the load transmitted to the peri-implant bone by seven different restorative materials in single-unit rehabilitations with morse taper implants using a strain gauge. Materials: In a polyurethane block that simulated type III bone, a morse taper platform implant was installed (3.5 × 11 mm) in the center and 1 mm below the test base surface, and four strain gauges were installed around the implant, simulating the mesial, distal, buccal and lingual positions. Seven similar hybrid abutment crowns were crafted to simulate a lower premolar using different materials: 1-PMMA; 2-glass ceramic over resin matrix; 3-PEEK + lithium disilicate; 4-metal-ceramic; 5-lithium disilicate; 6-zirconia + feldspathic; 7-monolithic zirconia. All groups underwent axial and oblique loads (45 degrees) of 150 N from a universal testing machine. Five measurements (n = 5) were performed with each material and for each load type; the microdeformation data underwent statistical analysis. The data were obtained in microdeformation (µÎµ), and the significance level was set at p ≤ 0.05. Results: There was no statistically significant difference in the evaluation among the materials under either the axial load or the oblique load at 45 degrees. In turn, in the comparison between axial load and oblique load, there was a difference in load for all materials. Conclusion: The restorative material did not influence the load transmitted to the bone. Furthermore, the load transmitted to the bone was greater when it occurred obliquely at 45° regardless of the material used. In conclusion, it appeared that the different elastic modulus of each material did not influence the load transmission to the peri-implant bone.


Asunto(s)
Coronas , Circonio , Humanos
8.
HardwareX ; 14: e00416, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37090786

RESUMEN

Advances in sensors have revolutionized the biomedical engineering field, having an extreme affinity for specific analytes also providing an effective, real-time, point-of-care testing for an accurate diagnosis. Quartz Crystal Microbalance (QCM) is a well-established sensor that has been successfully applied in a broad range of applications to monitor and explore various surface interactions, in situ thin-film formations, and layer properties. This technology has gained interest in biomedical applications since novel QCM systems are able to work in liquid media. QCM with dissipation monitoring (QCM-D) is an expanded version of a QCM that measures changes in damping properties of adsorbed layers thus providing information on its viscoelastic nature. In this article, an open source and low cost QCM-D prototype for biomedical applications was developed. In addition, the system was validated using different Polyethylene Glycol (PEG) concentrations due to its importance for many medical applications. The statistics show a bigger dissipation of the system as the fluid becomes more viscous, also having a very acceptable sensibility when temperature is controlled.

9.
Environ Pollut ; 324: 121283, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36804884

RESUMEN

Recently, Comte et al. (2022) re-examined the natural degradation of chlordecone (CLD) in the soils of the French West Indies (FWI) by introducing an additional 'dissipation parameter' into the WISORCH model developed by Cabidoche et al. (2009). Recent data sets of CLD concentrations in FWI soils obtained by Comte et al. enabled them optimizing the model parameters, resulting in significantly shorter estimates of pollution persistence than in the original model. Their conclusions jeopardize the paradigm of a very limited degradation of CLD in FWI soils, which may lead to an entire revision of the management of CLD contamination. However, we believe that their study is questionable on several important aspects. This includes potential biases in the data sets and in the modeling approach. It results in an inconsistency between the estimated dissipation half-life time (DT50) of five years that the authors determined for CLD and the fate of CLD in soil from the application period 1972-1993 until nowadays. Most importantly, a rapid dissipation of CLD in the field as proposed by Comte et al. is not sufficiently supported by data and estimates. Hence, the paradigm of long-term persistence of CLD in FWI soils is still to be considered.


Asunto(s)
Clordecona , Insecticidas , Contaminantes del Suelo , Clordecona/análisis , Clordecona/metabolismo , Insecticidas/análisis , Suelo , Semivida , Contaminantes del Suelo/análisis , Indias Occidentales
10.
Int J Biometeorol ; 67(3): 517-526, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36723757

RESUMEN

Surface temperature can be used as a tool for calculating sensible heat transfer. However, it needs to be associated with air temperature to identify the direction of heat flow (gain or loss). This study quantified sensible heat transfer in Japanese quail as a function of operative temperature. The meteorological variables were air temperature, relative humidity, and black globe temperature. Quail surface temperature was measured on 50 adult Coturnix coturnix japonica individuals 270 days old during 8 days by using a thermographic camera. The data were analyzed by the least-squares method to assess the effects of sex (male and female), period of the day (morning and afternoon), and body region (head, body, and feet). Quail surface temperature was strongly correlated with operative temperature. The total sensible heat flow was 64.02 W m-2. The morning period had a mean operative temperature of 22.48 °C, providing a higher gradient between air and quail temperature and thereby producing a higher heat flow (82.19 W m-2). In the afternoon, the heat transfer was lower (45.70 W m-2) because the operative temperature was higher (30.84 °C). Comparison between sexes showed that heat transfer was higher in females (67.37 W m-2) than in males (60.53 W m-2). The head served as an important thermal window, with a heat transfer of 78.24 W m-2, whereas the body and feet had a transfer of 56.80 W m-2. Heat transfer by sensible mechanisms was quantified in Japanese quail. Heat transfer depended greatly on ambient temperature. When the operative temperature was below 28 °C, sensible mechanisms were efficient in dissipating heat to the environment. When the ambient temperature exceeded 29 °C, quail could not effectively dissipate heat to the environment through sensible mechanisms. At 30 °C and above, heat loss shifted to heat gain, causing thermal stress in Japanese quail.


Asunto(s)
Coturnix , Calor , Humanos , Animales , Masculino , Femenino , Regulación de la Temperatura Corporal , Temperatura
11.
Environ Sci Pollut Res Int ; 29(10): 15127-15143, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34628609

RESUMEN

Herbicide mixtures have often been used to control weeds in crops worldwide, but the behavior of these mixtures in the environment is still poorly understood. Laboratory and greenhouse tests have been conducted to study the interaction of the herbicides diuron, hexazinone, and sulfometuron-methyl which have been applied alone and in binary and ternary mixtures in the processes of sorption, desorption, half-life, and leaching in the soil. A new index of the risk of leaching of these herbicides has also been proposed. The sorption and desorption study has been carried out by the batch equilibrium method. The dissipation of the herbicides has been evaluated for 180 days to determine the half-life (t1/2). The leaching tests have been carried out on soil columns. The herbicides isolated and in mixtures have been quantified using ultra-high performance liquid chromatography coupled to the mass spectrometer. Diuron, hexazinone, and sulfometuron-methyl in binary and ternary mixtures have less sorption capacity and greater desorption when compared to these isolated herbicides. Dissipation of diuron alone is slower, with a half-life (t1/2) = 101 days compared to mixtures (t1/2 between 44 and 66 days). For hexazinone and sulfometuron-methyl, the dissipation rate is lower in mixtures (t1/2 over 26 and 16 days), with a more pronounced effect in mixtures with the presence of diuron (t1/2 = 47 and 56 and 17 and 22 days). The binary and ternary mixtures of diuron, hexazinone, and sulfometuron-methyl promoted more significant transport in depth (with the three herbicides quantified to depth P4, P7, and P7, respectively) compared to the application of these isolated herbicides (quantified to depth P2, P4, and P5). Considering the herbicides' desorption and solubility, the new index proposed to estimate the leaching potential allowed a more rigorous assessment concerning the risk of leaching these pesticides, with hexazinone and sulfometuron-methyl presenting a higher risk of contamination of groundwater.


Asunto(s)
Herbicidas , Plaguicidas , Contaminantes del Suelo , Adsorción , Diurona , Herbicidas/análisis , Suelo , Contaminantes del Suelo/análisis
12.
J Environ Sci Health B ; 56(7): 644-649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34096452

RESUMEN

Saflufenacil is an herbicide that is leachable in soil and has the potential to contaminate groundwater, besides having moderate toxicity to aquatic organisms. Some macrophyte species may interfere with the availability of herbicides in water, increasing dissipation in this environment. Thus, the objective of this work was to evaluate the absorption and dissipation of 14C-saflufenacil in water by Egeria densa and Pistia stratiotes. Dissipation was performed with 14C-saflufenacil applied directly in water and quantified by liquid scintillation spectrometry (LSS). The evaluation times were 0, 3, 6, 24, 48, 72 and 96 h after application (HAA) for E. densa and 0, 12, 24, 36, 48, 60, 84 and 108 HAA for P. stratiotes. Absorption was analyzed through plant combustion in a biological oxidizer. The presence of the macrophytes increased the dissipation of 14C-saflufenacil in water. The half-life time (DT50) of the herbicide decreased by 82.6% in the presence of E. densa at 96 HAA. For P. stratiotes, the reduction in DT50 was 94.8% at 108 HAA. The absorption of 14C-saflufenacil was low for both macrophytes during the evaluated time. However, the macrophytes E. densa and P. stratiotes showed potential for the phytoremediation of water contaminated with saflufenacil.


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Biodegradación Ambiental , Pirimidinonas , Sulfonamidas , Agua , Contaminantes Químicos del Agua/análisis
13.
Conserv Physiol ; 9(1): coaa141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34164130

RESUMEN

Pinnipeds (true seals, sea lions and walruses) inhabit two thermally different environments, air and water, so need to make continuous adjustments to maintain a balanced body temperature. The thermal isolation properties of thick blubber keep warmth within the body's core, ideal for mammals while in the water; however, when on land, this thick blubber makes it difficult to lose heat. Some pinnipeds use thermal windows, discrete patches where temperature changes on their body surface, as a mechanism to dissipate excessive heat. We identify the factors that correlate with the appearance of thermal windows and changes in body surface temperature on southern elephant seals, Mirounga leonina, while they are hauled out ashore. Infrared thermography was used to measure surface temperature of the seals. Temperature was lower on the torso than the flippers and head, suggesting that not all body sites have the same role in thermal balance. Air temperature was the main driver of variation in the surface temperature of the seals' flippers and head; seals cool their superficial tissues when the air temperature is below ~ 2°C. This minimizes heat loss by reducing the thermal gradient between their skin and the ambient air. Wind speed was the main predictor of whether thermal windows appear on a seals' body surface. When wind speed was minimal, thermal windows occurred more often, which may be associated with either hair and skin drying, or producing thermal conditions for hair and skin regrowth. The type of aggregation (huddled or alone) influenced the surface temperature of the fore flippers; however, we did not find statistical influence of the seal's sex, state of moult, or the substrate on which they were hauled out (kelp or sand). Understanding how animals maintain their thermal balance is important if we are to predict how they will respond to future climate change.

14.
Sensors (Basel) ; 21(4)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33669964

RESUMEN

A low-cost signal processing circuit developed to measure and drive a heat dissipation soil matric potential sensor based on a single thermosensitive resistor is demonstrated. The SnSe2 has a high thermal coefficient, from -2.4Ω/°C in the 20 to 25 °C to -1.07Ω/°C in the 20 to 25 °C. The SnSe2 thermosensitive resistor is encapsulated with a porous gypsum block and is used as both the heating and temperature sensing element. To control the power dissipated on the thermosensitive resistor and keep it constant during the heat pulse, a mixed analogue/digital circuit is used. The developed control circuit is able to maintain the dissipated power at 327.98±0.3% mW when the resistor changes from 94.96Ω to 86.23Ω. When the gravimetric water content of the porous block changes from dry to saturated (θw=36.7%), we measured a variation of 4.77Ω in the thermosensitive resistor, which results in an end-point sensitivity of 130 mΩ/%. The developed system can easily meet the standard requirement of measuring the gravimetric soil water content with a resolution of approximately Δθw=1%, since the resistance is measured with a resolution of approximately µ31µΩ, three orders of magnitude smaller than the sensitivity.

15.
Polymers (Basel) ; 13(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672475

RESUMEN

Following the general aim of recapitulating the native mechanical properties of tissues and organs in vitro, the field of materials science and engineering has benefited from recent progress in developing compliant substrates with physical and chemical properties similar to those of biological materials. In particular, in the field of mechanobiology, soft hydrogels can now reproduce the precise range of stiffnesses of healthy and pathological tissues to study the mechanisms behind cell responses to mechanics. However, it was shown that biological tissues are not only elastic but also relax at different timescales. Cells can, indeed, perceive this dissipation and actually need it because it is a critical signal integrated with other signals to define adhesion, spreading and even more complicated functions. The mechanical characterization of hydrogels used in mechanobiology is, however, commonly limited to the elastic stiffness (Young's modulus) and this value is known to depend greatly on the measurement conditions that are rarely reported in great detail. Here, we report that a simple relaxation test performed under well-defined conditions can provide all the necessary information for characterizing soft materials mechanically, by fitting the dissipation behavior with a generalized Maxwell model (GMM). The simple method was validated using soft polyacrylamide hydrogels and proved to be very useful to readily unveil precise mechanical properties of gels that cells can sense and offer a set of characteristic values that can be compared with what is typically reported from microindentation tests.

16.
Sci Total Environ ; 772: 145038, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-33581523

RESUMEN

Agriculture effluents from cleaning and handling equipment used in pesticide applications can contaminate superficial and groundwater sources when not correctly disposed of. Biobeds using soil enriched with amendments represent a viable technology to control and minimize pesticide pollution of soil and water in farmlands. They are usually installed outdoors without protection, making them vulnerable to rain flooding, lack of moisture, drought, and intense heat or cold. Temperature (T) and moisture (M) of the biomixture are considered two of the most important physical factor affecting pesticide dissipation. This study aimed to evaluate the effect of T and M on the dissipation of five of the most used pesticides (carbofuran, atrazine, 2,4-D, diazinon, and glyphosate) in Yucatan State, Mexico. Three experiments using miniaturized biobeds considering optimal temperature and moisture (T of 30 ± 2 °C and 90% water holding capacity [WHC]) were performed. The optimal dissipation time and the effect of T, M variations, and volatilization was determined. The optimal dissipation time was over 14 days. Carbofuran was the least dissipated pesticide and glyphosate the most. The primary factor affecting pesticide dissipation was T (P < 0.05), reaching rates of dissipation of 99% at 45 °C. Variations of M in the biomixture were not significant on pesticide dissipation (P > 0.05). The white-rot fungi were observed; its presence was related to increments of T. Head Space analysis (at 45 °C) showed low pesticide volatilization (≤0.03%) for all pesticide used were quantified; water vapor condensation could reduce the pesticide volatilization for experimental conditions.

17.
J. Anim. Behav. Biometeorol ; 9(1): 1-12, Jan. 2021. ilus, graf
Artículo en Inglés | VETINDEX | ID: biblio-1484334

RESUMEN

The present review aims to analyze the effect of extremely hot climates on the neurophysiological responses of thermal control and behavior in the river buffalo. Understanding thermal neuromodulation and its effects on the buffalo's behavior is of central importance, for this will allow us to make better decisions in terms of improving the level of welfare of buffaloes living in environments characterized by extreme heat, such as the humid tropics. The thermoregulation process involves a complex mechanism that begins with the integration of peripheral signals that are sent to the lateral parabrachial nucleus of the brainstem and then to the preoptic nucleus of the hypothalamus to generate physiological variations such as vasodilatation to dissipate heat under conditions of thermal stress, or vasoconstriction to conserve heat upon the perception of cold stimuli. The thermal biology of the river buffalo is based on several different adaptation mechanisms. The infrared thermography (IRT) technique will be of great help in this area because it permits the detection of vascular microcirculation changes in different thermal windows under adverse climatic conditions. Although buffaloes are classified as rustic animals, it is important to take into account their morpho-physiology and thermoregulation mechanisms to prevent thermal stress and the resulting poor welfare and reduced productivity. However, if appropriate thermoregulation facilities are provided (i.e., ponds, pools, potholes, or swampy areas), buffaloes can properly thermoregulate and tolerate high ambient temperatures. Therefore, they may represent a good option and an appropriate animal-based enterprise under climate change and global warming conditions.


Asunto(s)
Animales , Bovinos , Búfalos/fisiología , Regulación de la Temperatura Corporal/fisiología , Respuesta al Choque Térmico/fisiología
18.
J. Anim. Behav. Biometeorol. ; 09(01): 1-12, Jan. 2021. ilus, graf
Artículo en Inglés | VETINDEX | ID: vti-765629

RESUMEN

The present review aims to analyze the effect of extremely hot climates on the neurophysiological responses of thermal control and behavior in the river buffalo. Understanding thermal neuromodulation and its effects on the buffalo's behavior is of central importance, for this will allow us to make better decisions in terms of improving the level of welfare of buffaloes living in environments characterized by extreme heat, such as the humid tropics. The thermoregulation process involves a complex mechanism that begins with the integration of peripheral signals that are sent to the lateral parabrachial nucleus of the brainstem and then to the preoptic nucleus of the hypothalamus to generate physiological variations such as vasodilatation to dissipate heat under conditions of thermal stress, or vasoconstriction to conserve heat upon the perception of cold stimuli. The thermal biology of the river buffalo is based on several different adaptation mechanisms. The infrared thermography (IRT) technique will be of great help in this area because it permits the detection of vascular microcirculation changes in different thermal windows under adverse climatic conditions. Although buffaloes are classified as rustic animals, it is important to take into account their morpho-physiology and thermoregulation mechanisms to prevent thermal stress and the resulting poor welfare and reduced productivity. However, if appropriate thermoregulation facilities are provided (i.e., ponds, pools, potholes, or swampy areas), buffaloes can properly thermoregulate and tolerate high ambient temperatures. Therefore, they may represent a good option and an appropriate animal-based enterprise under climate change and global warming conditions.(AU)


Asunto(s)
Animales , Bovinos , Búfalos/fisiología , Respuesta al Choque Térmico/fisiología , Regulación de la Temperatura Corporal/fisiología
19.
Sensors (Basel) ; 20(22)2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-33207621

RESUMEN

The total energy dissipation rate on the ocean surface, ϵt (W m-2), provides a first-order estimation of the kinetic energy input rate at the ocean-atmosphere interface. Studies on the spatial and temporal distribution of the energy dissipation rate are important for the improvement of climate and wave models. Traditional oceanographic research normally uses remote measurements (airborne and platforms sensors) and in situ data acquisition to estimate ϵt; however, those methods cover small areas over time and are difficult to reproduce especially in the open oceans. Satellite remote sensing has proven the potential to estimate some parameters related to breaking waves on a synoptic scale, including the energy dissipation rate. In this paper, we use polarimetric Synthetic Aperture Radar (SAR) data to estimate ϵt under different wind and sea conditions. The used methodology consisted of decomposing the backscatter SAR return in terms of two contributions: a polarized contribution, associated with the fast response of the local wind (Bragg backscattering), and a non-polarized (NP) contribution, associated with wave breaking (Non-Bragg backscattering). Wind and wave parameters were estimated from the NP contribution and used to calculate ϵt from a parametric model dependent of these parameters. The results were analyzed using wave model outputs (WAVEWATCH III) and previous measurements documented in the literature. For the prevailing wind seas conditions, the ϵt estimated from pol-SAR data showed good agreement with dissipation associated with breaking waves when compared to numerical simulations. Under prevailing swell conditions, the total energy dissipation rate was higher than expected. The methodology adopted proved to be satisfactory to estimate the total energy dissipation rate for light to moderate wind conditions (winds below 10 m s-1), an environmental condition for which the current SAR polarimetric methods do not estimate ϵt properly.

20.
Materials (Basel) ; 13(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233588

RESUMEN

The aim of this work is to simulate the fragmentation of bullets impacted through granular media, in this case, sand. In order to validate the simulation, a group of experiments were conducted with the sand contained in two different box prototypes. The walls of the first box were constructed with fiberglass and the second with plywood. The prototypes were subjected to the impact force of bullets fired 15 m away from the box. After the shots, X-ray photographs were taken to observe the penetration depth. Transient numerical analyses were conducted to simulate these physical phenomena by using the smooth particle hydrodynamics (SPH) module of ANSYS® 2019 AUTODYN software. Advantageously, this module considers the granular media as a group of uniform particles capable of transferring kinetic energy during the elastic collision component of an impact. The experimental results demonstrated a reduction in the maximum bullet kinetic energy of 2750 J to 100 J in 0.8 ms. The numerical results compared with the X-ray photographs showed similar results demonstrating the capability of sand to dissipate kinetic energy and the fragmentation of the bullet caused at the moment of impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA