Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400688, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019797

RESUMEN

Visible-light-driven photocatalytic hydrogen (H2) production has been extensively studied as a clean and sustainable energy resource. Although sacrificial electron donors (SEDs) are commonly used to evaluate photocatalytic activity, their irreversible decomposition forces charge separation, which disrupts the inherent dual productivity of photocatalysis, that is, the formation of both the reduction and oxidation products. To achieve highly efficient photoinduced charge separation without SED decomposition, the layer-by-layer assembly of redox-active photosensitizing dyes and electron mediators through Zr4+-phosphonate bonds has been extensively studied as an artificial mimic of the electron transport chain in natural photosynthesis. This concept paper presents an overview of photoredox cascade catalytic (PRCC) systems comprising multiple Ru(II)-trisbipyridine-type dyes and mediator layers on Pt-loaded TiO2 nanoparticles for H2 production from redox reversible electron donors (RREDs). The PRCC structure-activity relationship for photocatalytic H2 production is briefly discussed in terms of layer thickness, surface structure and modification, and cooperativity with molecular oxidation catalysts. Finally, new insights into the design of efficient dual-production photocatalysts based on the PRCC structure are presented.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38657181

RESUMEN

Due to their unique afterglow ability, long-wavelength-light rechargeable persistent luminescence (PersL) nanoparticles (PLNPs) have been emerging as an important category of imaging probes. Among them, ZnGa2O4:0.6% Cr3+ (ZGC) PLNPs have gained widespread recognition due to the ease of synthesis and uniform morphology. Unfortunately, the limited absorption arising from the low molar extinction coefficient of Cr3+ results in relatively low afterglow intensity and rapid decay after long-wavelength LED light irradiation. Herein, we discovered a strategy that boosting dye-sensitization performance was able to effectively amplify the PersL signal under white LED light. Specifically, Dil served as a highly efficient sensitizer for Cr3+, promoting the absorption of the excitation light. By adjusting the Pr dopant concentrations, ZGCP0.5 PLNPs with optimal trap densities were obtained, which showed the highest PersL intensity and dye-sensitized performance. Strikingly, ZGCP0.5-Dil PLNPs exhibited a 24.3-fold enhancement in intensity and a 2-fold prolongation of decay time over bare ZGC PLNPs through the synergy effect of optimal electron traps and dye sensitization. Photostable ZGCP0.5-Dil PLNPs enabled imaging of the HepG2 tumor and effectively guided tumor surgical resection verified by the H&E staining analysis. This strategy could be a significant reference in other dye-sensitization PLNPs to enhance longer-wavelength rechargeable PersL.

3.
Acta Biomater ; 176: 390-404, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38244657

RESUMEN

Non-invasive precision tumor dynamic phototherapy has broad application prospects. Traditional semiconductor materials have low photocatalytic activity and low reactive oxygen species (ROS) production rate due to their wide band gap, resulting in unsatisfactory phototherapy efficacy for tumor treatment. Employing the dye-sensitization mechanism can significantly enhance the catalytic activity of the materials. We develop a multifunctional nanoplatform (BZP) by leveraging the benefits of bismuth-based semiconductor nanomaterials. BZP possesses robust ROS generation and remarkable near-infrared photothermal conversion capabilities for improving tumor immune microenvironment and achieving superior phototherapy sensitization. BZP produces highly cytotoxic ROS species via the photocatalytic process and cascade reaction, amplifying the photocatalytic therapy effect. Moreover, the simultaneous photothermal effect during the photocatalytic process facilitates the improvement of therapeutic efficacy. Additionally, BZP-mediated phototherapy can trigger the programmed death of tumor cells, stimulate dendritic cell maturation and T cell activation, modulate the tumor immune microenvironment, and augment the therapeutic effect. Hence, this study demonstrates a promising research paradigm for tumor immune microenvironment-improved phototherapy. STATEMENT OF SIGNIFICANCE: Through the utilization of dye sensitization and rare earth doping techniques, we have successfully developed a biodegradable bismuth-based semiconductor nanocatalyst (BZP). Upon optical excitation, the near-infrared dye incorporated within BZP promptly generates free electrons, which, under the influence of the Fermi energy level, undergo transfer to BiF3 within BZP, thereby facilitating the effective separation of electron-hole pairs and augmenting the catalytic capability for reactive oxygen species (ROS) generation. Furthermore, a cascade reaction mechanism generates highly cytotoxic ROS, which synergistically depletes intracellular glutathione, thereby intensifying oxidative stress. Ultimately, this dual activation strategy, combining oxidative and thermal damage, holds significant potential for tumor immunotherapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Neoplasias , Humanos , Femenino , Neoplasias de la Mama/patología , Especies Reactivas de Oxígeno/metabolismo , Bismuto/uso terapéutico , Nanopartículas/uso terapéutico , Fototerapia/métodos , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Nanotecnología , Línea Celular Tumoral , Microambiente Tumoral
4.
Acta Biomater ; 170: 532-542, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37669712

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for causing life-threatening infections that result in high morbidity and mortality rates. The development of advanced imaging and therapeutic methods for in vivo diagnosis and treatment of MRSA infections remains challenging. Here, we develop a hybrid nanoplatform based on rare-earth-doped nanoparticles (RENPs) sensitized by a moiety-engineered near-infrared (NIR) TPEO-820 dye and with a ZIF-8 layer that incorporates CysNO, a photochemically triggered nitric oxide donor. We then use the hybrid for both NIR-II bioimaging and photoactivatable treatment of MRSA-infected wounds. We show that the NIR dye sensitization leads to an 8.5-fold enhancement of the downshifting emission and facilitates deep-tissue NIR-II imaging of bacterial infections. Moreover, the sensitization strategy enhances the UV emission of RENPs by two orders of magnitude, leading to the efficiently controllable release of nitric oxide for effective disinfection of MRSA in vitro and in vivo. The hybrid nanoplatform thus offers promising opportunities for simultaneous localization and controllable treatment of MRSA. STATEMENT OF SIGNIFICANCE: Early detection and treatment of MRSA infections are crucial for reducing public health risks. It is a significant challenge that develops sensitive in vivo diagnosis and complete elimination of drug-resistant bacterial infections. Herein, a nanoplatform has been developed for photoactivatable therapy of MRSA infections and deep tissue NIR-II imaging. This platform utilizes lanthanide-doped rare earth nanoparticles (RENPs) that are sensitized by a moiety-engineered near-infrared (NIR) dye TPEO-820. The TPEO-820 sensitized RENPs exhibit 5 times increase in the release of NO concentration for MRSA treatment compared to unsensitized RENPs, enabling precise therapy of MRSA infection both in vitro and in vivo. Moreover, the platform demonstrates NIR-II luminescence in vivo, allowing for sensitive imaging in deep tissue for MRSA infection.

5.
Angew Chem Int Ed Engl ; 62(46): e202313014, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37735096

RESUMEN

Biomass photoreforming is a promising method to provide both a clean energy resource in the form of hydrogen (H2 ) and valuable chemicals as the results of water reduction and biomass oxidation. To overcome the poor contact between heterogeneous photocatalysts and biomass substrates, we fabricated a new photoredox cascade catalyst by combining a homogeneous catalyst, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), and a heterogeneous dual-dye sensitized photocatalyst (DDSP) composed of two Ru(II)-polypyridine photosensitizers (RuP6 and RuCP6 ) and Pt-loaded TiO2 nanoparticles. During blue-light irradiation (λ=460±15 nm; 80 mW), the DDSP photocatalytically reduced aqueous protons to form H2 and simultaneously oxidized TEMPO• radicals to generate catalytically active TEMPO+ . It oxidized biomass substrates (water-soluble glycerol and insoluble cellulose) to regenerate TEMPO• . In the presence of N-methyl imidazole as a proton transfer mediator, the photocatalytic H2 production activities for glycerol and cellulose reforming reached 2670 and 1590 µmol H2 (gTiO2 )-1  h-1 , respectively, which were comparable to those of state-of-the-art heterogeneous photocatalysts.

6.
Adv Mater ; 35(51): e2304907, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37566538

RESUMEN

Dye-sensitization can enhance lanthanide-based upconversion luminescence, but is hindered by interfacial energy transfer from organic dye to lanthanide ion Yb3+ . To overcome these limitations, modifying coordination sites on dye conjugated structures and minimizing the distance between fluorescence cores and Yb3+ in upconversion nanoparticles (UCNPs) are proposed. The specially designed near-infrared (NIR) dye, disulfo-indocyanine green (disulfo-ICG), acts as the antenna molecule and exhibits a 2413-fold increase in luminescence under 808 nm excitation compared to UCNPs alone using 980 nm irradiation. The significant improvement is attributed to the high energy transfer efficiency of 72.1% from disulfo-ICG to Yb3+ in UCNPs, with majority of energy originating from triplet state (T1 ) of disulfo-ICG. Shortening the distance between the dye and lanthanide ions increases the probability of energy transfer and strengthens the heavy atom effect, leading to enhanced T1 generation and improved dye-triplet sensitization upconversion. Importantly, this approach also applies to 730 nm excitation Cy7-SO3 sensitization system, overcoming the spectral mismatch between Cy7 and Yb3+ and achieving a 52-fold enhancement in luminescence. Furthermore, the enhancement of upconversion at single particle level through dye-sensitization is demonstrated. This strategy expands the range of NIR dyes for sensitization and opens new avenues for highly efficient dye-sensitized upconversion systems.

7.
ACS Appl Mater Interfaces ; 15(28): 34249-34262, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37417666

RESUMEN

Molecular dyes, called sensitizers, with a cis-[Ru(LL)(dcb)(NCS)2] structure, where dcb is 4,4'-(CO2H)2-2,2'-bipyridine and LL is dcb or a different diimine ligand, are among the most optimal for application in dye-sensitized solar cells (DSSCs). Herein, a series of five sensitizers, three bearing two dcb ligands and two bearing one dcb ligand, were anchored to mesoporous thin films of conducting tin-doped indium oxide (ITO) or semiconducting TiO2 nanocrystallites. The number of dcb ligands impacts the surface orientation of the sensitizer; density functional theory (DFT) calculations revealed an ∼1.6 Å smaller distance between the oxide surface and the Ru metal center for sensitizers with two dcb ligands. Interfacial electron transfer kinetics from the oxide material to the oxidized sensitizer were measured as a function of the thermodynamic driving force. Analysis of the kinetic data with Marcus-Gerischer theory indicated that the electron coupling matrix element, Hab, was sensitive to distance and ranged from Hab = 0.23 to 0.70 cm-1, indicative of nonadiabatic electron transfer. The reorganization energies, λ, were also sensitive to the sensitizer location within the electric double layer and were smaller, with one exception, for sensitizers bearing two dcb ligands λ = 0.40-0.55 eV relative to those with one λ = 0.63-0.66 eV, in agreement with dielectric continuum theory. Electron transfer from the oxide to the photoexcited sensitizer was observed when the diimine ligand was more easily reduced than the dcb ligand. Lateral self-exchange "hole hopping" electron transfer between surface-anchored sensitizers was found to be absent for sensitizers with two dcb ligands, while those with only one were found to hop with rates similar to those previously reported in the literature, khh = 47-89 µs-1. Collectively, the kinetic data and analysis reveal that interfacial kinetics are highly sensitive to the surface orientation and sensitizers bearing two dcb ligands are most optimal for practical applications of DSSCs.

8.
ACS Appl Mater Interfaces ; 15(22): 27277-27284, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37226704

RESUMEN

Dye-sensitized H2 evolution photocatalysts have attracted considerable attention as promising systems for the photochemical generation of H2 from water. In this study, to mimic the reaction field of natural photosynthesis artificially, we synthesized a hydrophobic Ru(II) dye-sensitized Pt-TiO2 nanoparticle photocatalyst, RuC9@Pt-TiO2 (RuC9 = [Ru(dC9bpy)2(H4dmpbpy)]2+; dC9bpy = 4,4'-dinonyl-2,2'-bipyridine, H4dmpbpy = 4,4'-dimethyl phosphonic acid-2,2'-bipyridine), and integrated it into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer vesicle membranes. The photocatalytic H2 production activity in 0.5 M l-ascorbic acid aqueous solution enhanced by more than three times in the presence of DPPC vesicles (apparent quantum yield = 2.11%), whereas such a significant enhancement was hardly observed when the vesicle formation was omitted. These results indicate that the highly dispersed state of the hydrophobic RuC9@Pt-TiO2 nanoparticles in the DPPC bilayer vesicles is a key factor in achieving enhanced photocatalytic H2 production activity in aqueous solution.

9.
Nano Lett ; 23(11): 5209-5216, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37227052

RESUMEN

Upconversion nanoparticles (UCNPs) doped with lanthanides have limited brightness due to their small absorption cross section to light. However, using organic sensitizers can significantly enhance their light absorption ability. Unfortunately, the practical application of organic sensitizers has been hindered by poor stability and aggregation-caused quenching (ACQ). To address these issues, we developed a novel squaraine-based dye, SQ-739, for sensitizing upconversion luminescence (UCL). This dye has a maximum absorption at 739 nm, and shows 1 order of magnitude and 2-fold improved chemical- and photostability, compared to the commonly used cyanine-based dye IR-806, respectively. When SQ-739 is used to sensitize UCNPs, the resulting SQ-739-UCNPs exhibit excellent photostability and reduced ACQ in the presence of polar solvents. Moreover, at the single particle level, the SQ-739-UCNPs exhibit a 97-fold increase in UCL emission compared to bare UCNPs. This squaraine dye-based system represents a new design strategy for developing highly stable and efficient NIR upconversion probes.

10.
J Colloid Interface Sci ; 641: 595-609, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36963253

RESUMEN

HYPOTHESIS: The development of solid-solution photocatalysts with tunable bandgaps and band structures, which are significant factors that influence their photocatalytic properties, is crucial. EXPERIMENTS: We fabricated a series of novel bismuth-rich Bi7O9I3-Bi4O5Br2 solid-solution photocatalysts with controlled I:Br molar ratios (denoted as B-IxBr1-x, x  = 0.2, 0.3, 0.4, or 0.6) via a rapid, facile, and energy-efficient microwave-heating route. The photodegradations under visible-light irradiation of the phenolic compounds (4-nitrophenol (4NP), 3-nitrophenol (3NP), and bisphenol A (BPA)), and the simultaneous photodegradation of BPA and rhodamine B (RhB) in a coexisting BPA - RhB system were investigated. FINDINGS: The B-I0.3Br0.7 solid solution provided the highest photocatalytic activity toward 4NP degradation, with degradation rates 32 and 4 times higher than those of Bi7O9I3 and Bi4O5Br2, respectively. The photodegradation efficiency of the studied phenolic compounds followed the order BPA (97.5%) > 4NP (72.8%) > 3NP (27.5%). The RhB-sensitization mechanism significantly enhanced the photodegradation efficiency of BPA. Electrochemical measurements demonstrated the efficient separation and migration of charge carriers in the B-I0.3Br0.7 solid solution, which enhanced the photocatalytic activity. The B-I0.3Br0.7 solid solution effectively activated molecular oxygen to produce •O2-, which subsequently produced other reactive species, including H2O2 and •OH, as revealed by reactive-species trapping, nitroblue tetrazolium transformation, and o-tolidine oxidation experiments.

11.
Acta Biomater ; 158: 637-648, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621634

RESUMEN

Decreasing the scavenging capacity of reactive oxygen species (ROS) and enhancing ROS production are the two principal objectives in the development of novel sonosensitizers for sonodynamic therapy (SDT). Herein, we designed a protoporphyrin-sensitized bismuth-based semiconductor (P-NBOF) as a sonosensitizer to generate ROS and synergistically depleted glutathione for enhanced SDT against tumors. The bismuth-based nanomaterial (NBOF) is a wide-bandgap semiconductor. Sensitization by protoporphyrin made it easier to excite electrons under ultrasonic stimulation, and the energy of the lowest unoccupied electron orbital in protoporphyrin was higher than the conduction-band energy of NBOF. Under ultrasound excitation, the excited electrons in the protoporphyrin were injected into the conduction band of the NBOF, increasing its reducing ability leading to the production of more superoxide anion radicals and also helping to increase the charge separation of protoporphyrin leading to the production of more singlet oxygen. Meanwhile, P-NBOF continuously depleted glutathione, which was not only conducive to breaking the redox balance of the tumor microenvironment to enhance the therapeutic efficacy of SDT, but also promoted its degradation and metabolism. The construction of this P-NBOF sonosensitizer thus provided an effective strategy to enhance SDT for tumors. STATEMENT OF SIGNIFICANCE: To enhance the efficacy of sonodynamic tumor therapy, we developed a degradable protoporphyrin-sensitized bismuth-based nano-semiconductor (P-NBOF) by optimizing the band structure and glutathione-depletion ability. Protoporphyrin in P-NBOF under excitation preferentially generates free electrons, which are then injected into the conduction band of NBOF, improving the reducing ability of NBOF and promoting the separation of electron-hole pairs, thereby enhancing the production capacity of reactive oxygen species. Furthermore, P-NBOF can deplete glutathione, reduce the scavenging of reactive oxygen species, and reactivate and amplify the effect of sonodynamic therapy. The construction of the nanotherapeutic platform provides an option for enhancing sonodynamic therapy.


Asunto(s)
Neoplasias , Terapia por Ultrasonido , Humanos , Protoporfirinas/farmacología , Protoporfirinas/química , Especies Reactivas de Oxígeno , Bismuto/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Glutatión , Línea Celular Tumoral , Microambiente Tumoral
12.
Environ Res ; 216(Pt 2): 114568, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36252840

RESUMEN

Developing efficient and stable visible light active photocatalyst has significant environmental applications. Though dye sensitization of TiO2 nanoparticles with natural chlorophyll pigments can potentially impart visible light activity, their long-term stability is a major concern. We investigated the functionalization of TiO2 with salicylic acid, and subsequent sensitization with chlorophylls to improve the catalyst stability for the photocatalytic degradation of Ciprofloxacin (CPX) under visible light. A significant improvement in the degradation efficiency and catalyst stability was observed for five reuse cycles. Further, an optimum CPX degradation of ∼75% was achieved with 0.75 g L-1 catalyst dosage of 0.1 chl/0.1 SA-TiO2, initial pH of 6, and 10 ppm of initial CPX for a visible light exposure of 2 h. The degradation followed the pseudo-second-order kinetics. In addition, the ciprofloxacin degradation was reduced in the wastewater matrix system due to the presence of other scavenging species such as chlorides, sulphates, and alkalinity. Significant reduction in the toxicity of degradation compounds after the photocatalytic degradation was observed in comparison to parent CPX. Further, the degradation pathway and plausible mechanism of degradation of CPX were also proposed.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Ciprofloxacina , Clorofila , Ácido Salicílico , Contaminantes Químicos del Agua/análisis , Titanio/química , Catálisis , Luz
13.
J Mol Model ; 28(12): 407, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36454391

RESUMEN

CONTEXT: Density functional theory (DFT) and time-dependent DFT (TD-DFT) studies of darrow red covalently attached to 3-glycidyloxypropyltrimethoxysilane (DR-GPTMS) were conducted, and it was shown that DR-GPTMS can be applied as a photosensitizer in dye-sensitized zinc oxide (ZnO) photocatalysts. The frontier molecular orbital (FMO) levels of DR-GPTMS simulated using a conductor-like polarizable continuum model in water were suitable for electron injection from photoexcited DR-GPTMS to ZnO. Additionally, the oxidized DR-GPTMS produced by electron injection can be regenerated using triethanolamine. UV-visible absorption spectra, FMOs, and density of states spectra of DR-GPTMS adsorbed on the Zn2O3 cluster were also investigated to understand the mechanism of electron injection. The results suggest that DR-GPTMS induces good visible-light absorption and efficient electron injection to ZnO. METHODS: DFT and TD-DFT calculations were performed using the Gaussian 09W package (Gaussian, Inc., Wallingford, CT, USA). The density of states spectra was obtained using GaussSum (3.0.2). The B3LYP/6-31G** level of theory was employed for all calculations except for the UV-visible absorption spectra simulation. In calculations involving ZnO, the LanL2DZ or SDD basis set was assigned to the zinc atoms. TD-DFT calculations were performed at the eight different functionals (B3LYP, PBE0, M06-L, M06, M06-2X, M06-HF, CAM-B3LYP, and ωB97XD) with the 6-31+G** basis set. A conductor-like polarizable continuum model (CPCM) using water was employed determining the solvent effect.


Asunto(s)
Compuestos de Organosilicio , Óxido de Zinc , Fármacos Fotosensibilizantes , Teoría Funcional de la Densidad , Agua
14.
ACS Appl Mater Interfaces ; 14(30): 35205-35214, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35862637

RESUMEN

A family of three ruthenium bipyridyl rigid-rod compounds of the general form [Ru(bpy)2(LL)](PF6)2 were anchored to mesoporous thin films of tin-doped indium oxide (ITO) nanocrystals. Here, LL is a 4-substituted 2,2-bipyridine (bpy) ligand with varying numbers of conjugated phenylenethynylene bridge units between the bipyridine ring and anchoring group consisting of a bis-carboxylated isophthalic group. The visible absorption spectra and the formal potentials, Eo(RuIII/II), of the surface anchored rigid-rods were insensitive to the presence of the phenylene ethynylene bridge units in 0.1 M tetrabutyl ammonium perchlorate acetonitrile solutions (TBAClO4/CH3CN). The conductive nature of the ITO enabled potentiostatic control of the Fermi level and hence a means to tune the Gibbs free energy change, -ΔG°, for electron transfer from the ITO to the rigid-rods. Pseudo-rate constants for this electron transfer reaction increased as the number of bridge units decreased at a fixed -ΔG°. With the assumption that the reorganization energy, λ, and the electronic coupling matrix element, Hab, were independent of the applied potential, rate constants measured as a function of -ΔG° and analyzed through Marcus-Gerischer theory provided estimates of Hab and λ. In rough accordance with the dielectric continuum theory, λ was found to increase from 0.61 to 0.80 eV as the number of bridge units was increased. In contrast, Hab decreased markedly with distance from 0.54 to 0.11 cm-1, consistent with non-adiabatic electron transfer. Comparative analysis with previously published studies of bridges with an sp3-hybridized carbon indicated that the phenylene ethynylene bridge does not enhance electronic coupling between the oxide and the rigid-rod acceptor. The implications of these findings for practical applications in solar energy conversion are specifically discussed.

15.
ChemSusChem ; 15(15): e202200594, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35638151

RESUMEN

Dye-sensitized photoelectrochemical cells are promising devices in solar energy conversion. However, several limitations still have to be addressed, such as the major loss pathway through charge recombination at the dye-semiconductor interface. Charge separating dyes constructed as push-pull systems can increase the spatial separation of electron and hole, decreasing the recombination rate. Here, a family of dyes, consisting of polyphenylamine donors, fluorene bridges, and perylene monoimide acceptors, was investigated in silico using a combination of semi-empirical nuclear dynamics and a quantum propagation of photoexcited electron and hole. To optimize the charge separation, several molecular design strategies were investigated, including modifying the donor molecule, increasing the π-bridge length, and decoupling the molecular components through steric effects. The combination of a triphenylamine donor, using an extended 2-fluorene π-bridge, and decoupling the different components by steric hindrance from side groups resulted in a dye with significantly improved charge separation properties in comparison to the original supramolecular complex.


Asunto(s)
Energía Solar , Aminas/química , Colorantes/química , Fluorenos , Luz Solar
16.
Chemistry ; 28(26): e202104366, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35218098

RESUMEN

While concerns about improving recharged afterglow intensity in vivo still motivate further exploration, afterglow nanoparticles (AGNP) offer unique optical merit for autofluorescence-free biological imaging. Apart from efforts enhancing the afterglow emission properties of AGNP, improving afterglow excitation response to visible or near infrared light is important but has lacked success. Dye sensitization has been used to improve the optical response of photovoltaic nanomaterials and to enhance upconversion luminescence efficiency. This concept has recently been expanded and applied to AGNPs. As a new multifunctional nanoprobe, such dye-sensitized AGNP takes advantage of both high spatial resolution fluorescence imaging and sensitive afterglow imaging. This Concept introduces the background, the concept, mechanism, and related imaging application, as well as reviewing existing challenges and proposing future developmental directions for the dye-sensitized AGNPs.


Asunto(s)
Luminiscencia , Nanopartículas , Rayos Infrarrojos , Imagen Óptica/métodos
17.
J Colloid Interface Sci ; 607(Pt 2): 1180-1188, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34571305

RESUMEN

Dye-sensitized system holds great potential for the development of visible-light-responsive photocatalysts not only because it can enhance the light absorption and charge separation efficiency of the systems but also because it can tune the band structure of catalysts. Herein, two-dimensional (2D) Fe-MOF nanosheets (Fe-MNS) with a LUMO potential of 0.11 V (vs. RHE) was prepared. Interestingly, it has been found that when the 2D Fe-MNS catalyst was functionalized with visible-light-responsive [Ru(bpy)]32+ as a dye-sensitizer, the electrons from the [Ru(bpy)]32+ can effectively inject into the 2D Fe-MNS, which resulted in a negative shift of the LUMO potential of the 2D Fe-MNS to -0.15 V (vs. RHE). Consequently, the [Ru(bpy)]32+/Fe-MNS catalytic system exhibits a sound photocatalytic CO2-to-CO activity of 1120 µmol g-1h-1 under visible-light-irradiation. The photocatalytic CO production was further ameliorated by regulating the electronic structure of the 2D Fe-MNS by doping Co ions, achieving a remarkable photocatalytic activity of 1637 µmol g-1h-1. This work further supports that the dye-sensitized system is an auspicious strategy worth exploring with different catalysts for the development of visible-light-responsive photocatalytic systems.

18.
Angew Chem Int Ed Engl ; 61(1): e202112125, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34676648

RESUMEN

Lanthanide (Ln3+ )-doped upconversion (UC) nanoprobes, which have drawn extensive attention for various bioapplications, usually suffer from small absorption cross-sections and weak luminescence intensity of Ln3+ ions. Herein, we report the controlled synthesis of a new class of Ln3+ -doped UC nanoprobes based on CsLu2 F7 :Yb/Er nanocrystals (NCs), which can effectively increase the intersystem crossing (ISC) efficiency from singlet excited state to triplet excited state of IR808 up to 99.3 % through the heavy atom effect. By virtue of the efficient triplet sensitization of IR808, the optimal UC luminescence (UCL) intensity of IR808-modified CsLu2 F7 :Yb/Er NCs is enhanced by 1309 times upon excitation at 808 nm. Benefiting from the intense dye-triplet-sensitized UCL, the nanoprobes are demonstrated for sensitive assay of extracellular and intracellular hypochlorite with an 808-nm/980-nm dual excited ratiometric strategy.

19.
Nanomaterials (Basel) ; 11(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34835876

RESUMEN

Upconversion nanocrystals that converted near-infrared radiation into emission in the ultraviolet spectral region offer many exciting opportunities for drug release, photocatalysis, photodynamic therapy, and solid-state lasing. However, a key challenge is the development of lanthanide-doped nanocrystals with efficient ultraviolet emission, due to low conversion efficiency. Here, we develop a dye-sensitized, heterogeneous core-multishelled lanthanide nanoparticle for ultraviolet upconversion enhancement. We systematically study the main influencing factors on ultraviolet upconversion emission, including dye concentration, excitation wavelength, and dye-sensitizer distance. Interestingly, our experimental results demonstrate a largely promoted multiphoton upconversion. The underlying mechanism and detailed energy transfer pathway are illustrated. These findings offer insights into future developments of highly ultraviolet-emissive nanohybrids and provide more opportunities for applications in photo-catalysis, biomedicine, and environmental science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA