Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 671
Filtrar
1.
Appl Plant Sci ; 12(5): e11576, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360189

RESUMEN

Premise: Plant functional traits are often used to describe the spectra of ecological strategies used by different species. Here, we demonstrate a machine learning approach for identifying the traits that contribute most to interspecific phenotypic divergence in a multivariate trait space. Methods: Descriptive and predictive machine learning approaches were applied to trait data for the genus Helianthus, including random forest and gradient boosting machine classifiers and recursive feature elimination. These approaches were applied at the genus level as well as within each of the three major clades within the genus to examine the variability in the major axes of trait divergence in three independent species radiations. Results: Machine learning models were able to predict species identity from functional traits with high accuracy, and differences in functional trait importance were observed between the genus and clade levels indicating different axes of phenotypic divergence. Conclusions: Applying machine learning approaches to identify divergent traits can provide insights into the predictability or repeatability of evolution through the comparison of parallel diversifications of clades within a genus. These approaches can be implemented in a range of contexts across basic and applied plant science from interspecific divergence to intraspecific variation across time, space, and environmental conditions.

2.
Biol Lett ; 20(9): 20240371, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39288814

RESUMEN

Bubble use evolved in many small invertebrates to enable underwater respiration, but, until recently, there has been no evidence that vertebrate animals use bubbles in a similar manner. Only one group of vertebrates, semi-aquatic Anolis lizards, may be an exception: these lizards dive underwater when threatened and, while underwater, rebreathe a bubble of air over their nostrils. Although it seems that rebreathing should be adaptive, possibly functioning to extend the time that lizards remain in underwater refugia, this has not been empirically tested. Here, I demonstrate that rebreathing serves to extend dive time in a semi-aquatic anole, Anolis aquaticus. I prevented the formation of normal rebreathing bubbles by applying a commercial emollient on the skin surface where bubbles form to assess the impact of bubbles on rebreathing cycles, gular pumps, and dive times. Lizards that were allowed to rebreathe normally remained underwater an average of 32% longer than those with impaired rebreathing, suggesting a functional role of rebreathing in underwater respiration. Unlike rebreathing, gular pumping was unaffected by treatment and may warrant further research regarding its role in supplementing underwater respiration. This study provides evidence that vertebrates can use bubbles to respire underwater and raises questions about adaptive mechanisms and potential bio-inspired applications.


Asunto(s)
Adaptación Fisiológica , Buceo , Lagartos , Animales , Lagartos/fisiología , Buceo/fisiología , Respiración
3.
Mar Environ Res ; 202: 106761, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39312822

RESUMEN

The stable maintenance of high biological diversity remains a major puzzle in biology. We propose a new mechanism involving the cyclical use of Competitive, Stress-tolerant, and Ruderal (CSR) strategies to explain high biodiversity maintenance. This study examines the interactions among three morphs of the cosmopolitan and commercially important seaweed Ulva Linnaeus. We measured biomass productivity, effective quantum yield, carbohydrate concentration, and nutrient competition across all seasons for one year and matched trait value combinations to CSR strategies. Our findings reveal that the Ulva morphs exhibited significant competitive interactions under eutrophic conditions, in a scramble competition dynamic. However, competition did not significantly affect their functional traits under naturally prevalent oligotrophic conditions. Season-by-season analysis revealed that each morph employed temporal niche partitioning by cyclically adopting different CSR strategies, thereby avoiding direct competition. This cyclical strategy, akin to a rock-paper-scissors game, prevents any single strategy from dominating year-round, maintaining the three-morph polymorphism. Our study further highlights the importance of year-long functional trait measurements to encompass seasonal changes in functional responses. Our CSR cycling conceptual model offers new insights useful for monitoring and conservation efforts.

4.
Conserv Physiol ; 12(1): coae063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39252884

RESUMEN

The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.

5.
J Anim Ecol ; 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39308046

RESUMEN

Understanding populations' responses to environmental change is crucial for mitigating human-induced disturbances. Here, we test hypotheses regarding how three essential components of demographic resilience (resistance, compensation and recovery) co-vary along the distinct life histories of three lizard species exposed to variable, prescribed fire regimes. Using a Bayesian hierarchical framework, we estimate vital rates (survival, growth and reproduction) with 14 years of monthly individual-level data and mark-recapture models to parameterize stochastic integral projection models from five sites in Brazilian savannas, each historically subjected to different fire regimes. With these models, we investigate how weather, microclimate and ecophysiological traits of each species influence their vital rates, emergent life history traits and demographic resilience components in varying fire regimes. Overall, weather and microclimate are better predictors of the species' vital rates, rather than their ecophysiological traits. Our findings reveal that severe fire regimes increase populations' resistance but decrease compensation or recovery abilities. Instead, populations have higher compensatory and recovery abilities at intermediate degrees of fire severity. Additionally, we identify generation time and reproductive output as predictors of resilience trends across fire regimes and climate. Our analyses demonstrate that the probability and quantity of monthly reproduction are the proximal drivers of demographic resilience across the three species. Our findings suggest that populations surpass a tipping point in severe fire regimes and achieve an alternative stable state to persist. Thus, higher heterogeneity in fire regimes can increase the reproductive aspects and resilience of different populations and avoid high-severity regimes that homogenize the environment. Despite being more resistant, species with long generation times and low reproductive output take longer to recover and cannot compensate as much as species with faster paces of life. We emphasize how reproductive constraints, such as viviparity and fixed clutch sizes, impact the ability of ectothermic populations to benefit and recover from disturbances, underscoring their relevance in conservation assessments.

6.
Syst Biol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093688

RESUMEN

Adaptive radiation involves diversification along multiple trait axes, producing phenotypically diverse, species-rich lineages. Theory generally predicts that multi-trait evolution occurs via a 'stages' model, with some traits saturating early in a lineage's history, and others diversifying later. Despite its multidimensional nature, however, we know surprisingly little about how different suites of traits evolve during adaptive radiation. Here, we investigated the rate, pattern, and timing of morphological and physiological evolution in the anole lizard adaptive radiation from the Caribbean island of Hispaniola. Rates and patterns of morphological and physiological diversity are largely unaligned, corresponding to independent selective pressures associated with structural and thermal niches. Cold tolerance evolution reflects parapatric divergence across elevation, rather than niche partitioning within communities. Heat tolerance evolution and the preferred temperature evolve more slowly than cold tolerance, reflecting behavioral buffering, particularly in edge-habitat species (a pattern associated with the Bogert effect). In contrast to the nearby island of Puerto Rico, closely related anoles on Hispaniola do not sympatrically partition thermal niche space. Instead, allopatric and parapatric separation across biogeographic and environmental boundaries serves to keep morphologically similar close relatives apart. The phenotypic diversity of this island's adaptive radiation accumulated largely as a by-product of time, with surprisingly few exceptional pulses of trait evolution. A better understanding of the processes that guide multidimensional trait evolution (and nuance therein) will prove key in determining whether the stages model should be considered a common theme of adaptive radiation.

7.
Ecol Evol ; 14(8): e11335, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39165538

RESUMEN

Urban areas experience higher temperatures compared to rural areas and as such, are increasingly considered places of acclimatization and adaptation to warming. Small ectotherms, such as insects, whose body temperature rises with habitat temperature, are directly affected by temperature changes. Thus, warming could have a profound effect on insect behavior and physiology. To test if the urban heat island effect drives higher thermal tolerance and activity changes, we used globally distributed and abundant insects-ants. We measured the heat and cold tolerance of 14 ant species distributed across urban and peri-urban areas. As thermal traits are often correlated with ant foraging, we measured foraging activity during three consecutive years across eight sites. Contrary to our prediction, ants exposed to the urban heat island effect did not have a higher heat tolerance than peri-urban ants. Instead, cold tolerance varied across habitats, with ants from the cooler, peri-urban habitats being able to tolerate lower temperatures. We recorded the same pattern of invariant heat and higher cold tolerance for ants in the canopy, compared to ground nesting ants. Ant activity was almost 10 times higher in urban sites and best predicted by cold, not heat tolerance. These unexpected results suggest that we need to rethink predictions about urban heat islands increasing insect heat tolerance in urban habitats, as cold tolerance might be a more plastic or adaptable trait, particularly in the temperate zone.

8.
mBio ; : e0106224, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189747

RESUMEN

Horizontal gene transfer (HGT) is a pivotal mechanism driving bacterial evolution, conferring adaptability within dynamic marine ecosystems. Among HGT mechanisms, conjugation mediated by type IV secretion systems (T4SSs) plays a central role in the ecological success of marine bacteria. However, the conditions promoting conjugation events in the marine environment are not well-understood. Roseobacters, abundant marine bacteria commonly associated with algae, possess a multitude of T4SSs. Many Roseobacters are heterotrophic bacteria that rely on algal secreted compounds to support their growth. These compounds attract bacteria, facilitating colonization and attachment to algal cells. Algae and their metabolites bring bacteria into close proximity, potentially promoting bacterial HGT. Investigation across various Roseobacters revealed that algal exudates indeed enhance plasmid transfer through conjugation. While algal exudates do not influence the transcription of bacterial conjugative machinery genes, they promote bacterial attachment, potentially stabilizing proximity and facilitating HGT. Notably, under conditions where attachment is less advantageous, the impact of algal exudates on conjugation is reduced. These findings suggest that algae enhance bacterial conjugation primarily by fostering attachment and highlight the importance of studying bacterial HGT within the context of algal-bacterial interactions. IMPORTANCE: This study explores how algal-bacterial interactions influence horizontal gene transfer (HGT) among marine bacteria. HGT, a key driver of bacterial evolution, is facilitated by conjugation mediated by type IV secretion systems (T4SSs). Through investigating Roseobacters, abundant marine bacteria often found to be associated with algae, the study reveals that algal exudates enhance plasmid transfer via conjugation. This enhancement is attributed to the promotion of bacterial attachment by algal compounds, emphasizing the role of algal-bacterial interactions in shaping genetic exchange within dynamic marine ecosystems. Understanding these mechanisms is crucial for elucidating bacterial adaptability and evolution in the marine environment.

9.
Microbiome ; 12(1): 158, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182147

RESUMEN

BACKGROUND: Magnetotactic bacteria (MTB) are a unique group of microorganisms that sense and navigate through the geomagnetic field by biomineralizing magnetic nanoparticles. MTB from the phylum Nitrospirota (previously known as Nitrospirae) thrive in diverse aquatic ecosystems. They are of great interest due to their production of hundreds of magnetite (Fe3O4) magnetosome nanoparticles per cell, which far exceeds that of other MTB. The morphological, phylogenetic, and genomic diversity of Nitrospirota MTB have been extensively studied. However, the metabolism and ecophysiology of Nitrospirota MTB are largely unknown due to the lack of cultivation techniques. METHODS: Here, we established a method to link the morphological, genomic, and metabolic investigations of an uncultured Nitrospirota MTB population (named LHC-1) at the single-cell level using nanoscale secondary-ion mass spectrometry (NanoSIMS) in combination with rRNA-based in situ hybridization and target-specific mini-metagenomics. RESULTS: We magnetically separated LHC-1 from a freshwater lake and reconstructed the draft genome of LHC-1 using genome-resolved mini-metagenomics. We found that 10 LHC-1 cells were sufficient as a template to obtain a high-quality draft genome. Genomic analysis revealed that LHC-1 has the potential for CO2 fixation and NO3- reduction, which was further characterized at the single-cell level by combining stable-isotope incubations and NanoSIMS analyses over time. Additionally, the NanoSIMS results revealed specific element distributions in LHC-1, and that the heterogeneity of CO2 and NO3- metabolisms among different LHC-1 cells increased with incubation time. CONCLUSIONS: To our knowledge, this study provides the first metabolic measurements of individual Nitrospirota MTB cells to decipher their ecophysiological traits. The procedure constructed in this study provides a promising strategy to simultaneously investigate the morphology, genome, and ecophysiology of uncultured microbes in natural environments. Video Abstract.


Asunto(s)
Genoma Bacteriano , Filogenia , Análisis de la Célula Individual , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Magnetosomas/metabolismo , Magnetosomas/genética , Lagos/microbiología , Metagenómica/métodos , ARN Ribosómico 16S/genética
11.
J Exp Biol ; 227(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39140251

RESUMEN

Ultraviolet radiation (UVR) is a pervasive factor that has shaped the evolution of life on Earth. Ambient levels of UVR mediate key biological functions but can also cause severe lethal and sublethal effects in a wide range of organisms. Furthermore, UVR is a powerful modulator of the effects of other environmental factors on organismal physiology, such as temperature, disease, toxicology and pH, among others. This is critically important in the context of global change, where understanding the effects of multiple stressors is a key challenge for experimental biologists. Ecological physiologists rarely afford UVR discussion or include UVR in experimental design, even when it is directly relevant to their study system. In this Commentary, we provide a guide for experimental biologists to better understand if, when, and how UVR can be integrated into experimental designs to improve the ecological realism of their experiments.


Asunto(s)
Rayos Ultravioleta , Animales , Estrés Fisiológico , Proyectos de Investigación
12.
Ann Bot ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115944

RESUMEN

BACKGROUND AND AIMS: Soil endemics have long fascinated botanists due to the insights they can provide about plant ecology and evolution. Often, these species have unique foliar nutrient composition patterns that reflect potential physiological adaptations to these harsh soil types. However, understanding global nutritional patterns to unique soil types can be complicated by the influence of recent and ancient evolutionary events. Our goal was to understand whether plant specialization to unique soils is a stronger determinant of plant nutrient composition than climate or evolutionary constraints. METHODS: We worked on gypsum soils. We analyzed whole-plant nutrient composition (leaves, stems, coarse roots and fine roots) of 36 native species of gypsophilous lineages from the Chihuahuan Desert (North America) and the Iberian Peninsula (Europe) regions, including widely distributed gypsum endemics, as specialists, and narrowly distributed endemics and non-endemics, as non-specialists. We evaluated the impact of evolutionary events and soil composition on the whole-plant composition, comparing the three categories of gypsum plants. KEY RESULTS: Our findings reveal nutritional convergence of widely distributed gypsum endemics. These taxa displayed higher foliar Sulfur and higher whole-plant Magnesium than their non-endemic relatives, irrespective of geographic location or phylogenetic history. Sulfur and Magnesium concentrations were mainly explained by non-phylogenetic variation among species related to gypsum specialization. Other nutrient concentrations were determined by more ancient evolutionary events. For example, Caryophyllales usually displayed high foliar Calcium, whereas Poaceae did not. In contrast, plant concentrations of Phosphorus was mainly explained by species-specific physiology not related to gypsum specialization or evolutionary constraints. CONCLUSIONS: Plant specialization to a unique soil may strongly influence plant nutritional strategies, as we described for gypsophilous lineages. Taking a whole-plant perspective (all organs) within a phylogenetic framework has enabled us to gain a better understanding of plant adaptation to unique soils when studying taxa from distinct regions.

13.
AoB Plants ; 16(4): plae040, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39119045

RESUMEN

Bamboos stand out among other tall plants in being able to generate positive pressure in the xylem at night, pushing water up to the leaves and causing drops to fall from leaf tips as guttation that can amount to a steady nocturnal 'bamboo rain'. The location and mechanism of nocturnal pressure generation in bamboos are unknown, as are the benefits for the plants. We conducted a study on the tall tropical bamboo species Bambusa oldhamii (giant timber bamboo) growing outdoors in southern California under full irrigation to determine where in the plant the nocturnal pressure is generated, when it rises in the evening, and when it dissipates in the morning. We hypothesized that the build-up of positive pressure would be triggered by the cessation of transpiration-driven sap flow and that resumption of sap flow in the morning would cause the pressure to dissipate. Nocturnal pressure was observed in mature stems and rhizomes, but never in roots. The pressure was episodic and associated with stem swelling and was usually, but not always, higher in rhizomes and basal stems than in stems at greater height. Time series analyses revealed that dry atmospheric conditions were followed by lower nocturnal pressure and rainfall events by higher stem pressure. Nocturnal pressure was unrelated to sap flow and even was generated for a short time in isolated stem pieces placed in water. We conclude that nocturnal pressure in bamboo is not 'root pressure' but is generated in the pseudo-woody rhizomes and stems. It is unrelated to the presence or absence of sap flow and therefore must be created outside of vessels, such as in phloem, parenchyma, or fibres. It is unlikely to be a drought adaptation and may benefit the plants by maximizing stem water storage for daytime transpiration or by transporting nutrients to the leaves.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39122106

RESUMEN

Body temperature (Tb) variation and environmental temperature gradients are more intense in small individuals because their body size allows for a more intimate relationship between Tb and the environment. To contribute to a methodological consensus on the ecophysiology of small ectotherms, we aimed to investigate whether different approaches and methodological techniques affect the measurement of critical temperatures in a small lizard (Coleodactylus meridionalis, Sphaerodactylidae) from the Atlantic Forest of southern Bahia, Brazil, and subsequently its vulnerability assessment. We measured two metrics of thermal physiology: critical thermal minimum (CTmin) and critical thermal maximum (CTmax). In total, four types of temperature measurements (protocols) were defined. In the first protocol, we estimated CTmax/CTmin without heating/cooling rate by directly measuring the lizard's midbody temperature. In the other three protocols, we used a ramping assay with a heating/cooling rate to estimate CTmax/CTmin in the chamber (height: 11.3 cm), substrate, and Tb of the lizard, respectively. In total 116 individuals of Coleodactylus meridionalis were collected, of which 177 CTmax and 131 CTmin were performed. C. meridionalis showed a mean CTmax of 41 °C and a mean CTmin of 8.9 °C when considering the Tb protocol, which is intermediate compared to the other protocols. The substrate temperature protocol was the closest to Tb, and for this, the best method for the small lizards using an infrared thermometer.


Asunto(s)
Temperatura Corporal , Lagartos , Animales , Lagartos/fisiología , Regulación de la Temperatura Corporal/fisiología , Brasil , Tamaño Corporal , Temperatura
15.
PeerJ ; 12: e17705, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040933

RESUMEN

The impact of temperature on reptile physiology has been examined through two main parameters: locomotor performance and metabolic rates. Among reptiles, different species may respond to environmental temperatures in distinct ways, depending on their thermal sensitivity. Such variation can be linked to the ecological lifestyle of the species and needs to be taken into consideration when assessing the thermal influence on physiology. This is particularly relevant for snakes, which are a very functionally diverse group. In this study, our aim was to analyze the thermal sensitivity of locomotor performance and resting metabolic rate (RMR) in three snake species from central Mexico (Crotalus polystictus, Conopsis lineata, and Thamnophis melanogaster), highlighting how it is influenced by their distinctive behavioral and ecological traits. We tested both physiological parameters in five thermal treatments: 15 °C, 25 °C, 30 °C, 33 °C, and 36 °C. Using the performance data, we developed thermal performance curves (TPCs) for each species and analyzed the RMR data using generalized linear mixed models. The optimal temperature for locomotion of C. polystictus falls near its critical thermal maximum, suggesting that it can maintain performance at high temperatures but with a narrow thermal safety margin. T. melanogaster exhibited the fastest swimming speeds and the highest mass-adjusted RMR. This aligns with our expectations since it is an active forager, a high energy demand mode. The three species have a wide performance breadth, which suggests that they are thermal generalists that can maintain performance over a wide interval of temperatures. This can be beneficial to C. lineata in its cold habitat, since such a characteristic has been found to allow some species to maintain adequate performance levels in suboptimal temperatures. RMR increased along with temperature, but the proportional surge was not uniform since thermal sensitivity measured through Q10 increased at the low and high thermal treatments. High Q10 at low temperatures could be an adaptation to maintain favorable performance in suboptimal temperatures, whereas high Q10 at high temperatures could facilitate physiological responses to heat stress. Overall, our results show different physiological adaptations of the three species to the environments they inhabit. Their different activity patterns and foraging habits are closely linked to these adaptations. Further studies of other populations with different climatic conditions would provide valuable information to complement our current understanding of the effect of environmental properties on snake physiology.


Asunto(s)
Temperatura , Animales , México , Metabolismo Basal/fisiología , Locomoción/fisiología , Crotalus/fisiología , Especificidad de la Especie
16.
New Phytol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044658

RESUMEN

Co-occurring plants show wide variation in their hydraulic and photosynthetic traits. Here, we extended 'least-cost' optimality theory to derive predictions for how variation in key hydraulic traits potentially affects the cost of acquiring and using water in photosynthesis and how this, in turn, should drive variation in photosynthetic traits. We tested these ideas across 18 woody species at a temperate woodland in eastern Australia, focusing on hydraulic traits representing different aspects of plant water balance, that is storage (sapwood capacitance, CS), demand vs supply (branch leaf : sapwood area ratio, AL : AS and leaf : sapwood mass ratio and ML : MS), access to soil water (proxied by predawn leaf water potential, ΨPD) and physical strength (sapwood density, WD). Species with higher AL : AS had higher ratio of leaf-internal to ambient CO2 concentration during photosynthesis (ci : ca), a trait central to the least-cost theory framework. CS and the daily operating range of tissue water potential (∆Ψ) had an interactive effect on ci : ca. CS, WD and ΨPD were significantly correlated with each other. These results, along with those from multivariate analyses, underscored the pivotal role leaf : sapwood allocation (AL : AS), and water storage (CS) play in coordination between plant hydraulic and photosynthetic systems. This study uniquely explored the role of hydraulic traits in predicting species-specific photosynthetic variation based on optimality theory and highlights important mechanistic links within the plant carbon-water balance.

17.
Am J Bot ; 111(7): e16373, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39010314

RESUMEN

PREMISE: Salt tolerance has rarely been investigated regionally in the neotropics and even more rarely in Orchidaceae, one of the largest families. Therefore, investigating local adaptation to salt spray and its physiological basis in Epidendrum fulgens, a neotropical orchid species, brings important new insights. METHODS: We assessed the degree of salt tolerance in E. fulgens by testing whether coastal populations are more tolerant to salt, which could point to local adaptation. To understand the physiological basis of such salt tolerance, we exposed wild-collected individuals to salt spray for 60 days, then measured leaf expansion, osmotic potential, sodium leaf concentration, chlorophyll leaf index, chlorophyll fluorescence, relative growth rate, and pressure-volume curves. RESULTS: There is no local adaptation to salt spray since both inland and coastal plants have a high tolerance to salt stress. This tolerance is explained by the ability to tolerate high concentrations of salt in leaf tissues, which is related to the high succulence displayed by this species. CONCLUSIONS: We showed an unprecedented salt tolerance level for an orchid species, highlighting our limited knowledge of that trait beyond the traditional studied groups. Another interesting finding is that salt tolerance in E. fulgens is linked to succulence, is widespread, and is not the result of local adaptation. We suggest that E. fulgens and its allied species could be an interesting group to explore the evolution of important traits related to tolerance to salt stress, like succulence.


Asunto(s)
Adaptación Fisiológica , Orchidaceae , Hojas de la Planta , Tolerancia a la Sal , Orchidaceae/fisiología , Orchidaceae/efectos de los fármacos , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de los fármacos , Cloruro de Sodio/farmacología , Clorofila/metabolismo , Sodio/metabolismo , Clima Tropical
18.
Microb Physiol ; 34(1): 197-242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39047710

RESUMEN

BACKGROUND: Dinoflagellates are a monophyletic group within the taxon Alveolata, which comprises unicellular eukaryotes. Dinoflagellates have long been studied for their organismic and morphologic diversity as well as striking cellular features. They have a main size range of 10-100 µm, a complex "cell covering", exceptionally large genomes (∼1-250 Gbp with a mean of 50,000 protein-encoding genes) spread over a variable number of highly condensed chromosomes, and perform a closed mitosis with extranuclear spindles (dinomitosis). Photosynthetic, marine, and free-living Prorocentrum cordatum is a ubiquitously occurring, bloom-forming dinoflagellate, and an emerging model system, particularly with respect to systems biology. SUMMARY: Focused ion beam/scanning electron microscopy (FIB/SEM) analysis of P. cordatum recently revealed (i) a flattened nucleus with unusual structural features and a total of 62 tightly packed chromosomes, (ii) a single, barrel-shaped chloroplast devoid of grana and harboring multiple starch granules, (iii) a single, highly reticular mitochondrion, and (iv) multiple phosphate and lipid storage bodies. Comprehensive proteomics of subcellular fractions suggested (i) major basic nuclear proteins to participate in chromosome condensation, (ii) composition of nuclear pores to differ from standard knowledge, (iii) photosystems I and II, chloroplast complex I, and chlorophyll a-b binding light-harvesting complex to form a large megacomplex (>1.5 MDa), and (iv) an extraordinary richness in pigment-binding proteins. Systems biology-level investigation of heat stress response demonstrated a concerted down-regulation of CO2-concentrating mechanisms, CO2-fixation, central metabolism, and monomer biosynthesis, which agrees with reduced growth yields. KEY MESSAGES: FIB/SEM analysis revealed new insights into the remarkable subcellular architecture of P. cordatum, complemented by proteogenomic unraveling of novel nuclear structures and a photosynthetic megacomplex. These recent findings are put in the wider context of current understanding of dinoflagellates.


Asunto(s)
Dinoflagelados , Dinoflagelados/genética , Fotosíntesis , Microscopía Electrónica de Rastreo , Núcleo Celular/metabolismo
19.
New Phytol ; 244(1): 43-45, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39044693
20.
Ecology ; 105(9): e4388, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39076113

RESUMEN

Contemporary symbioses in extreme environments can give an insight into mechanisms that stabilize species interactions during environmental change. The intertidal sea anemone, Anthopleura elegantissima, engages in a nutritional symbiosis with microalgae similar to tropical coral, but withstands more intense environmental fluctuations during tidal inundations. In this study, we compare baseline symbiotic traits and their sensitivity to thermal stress within and among anemone aggregations across the intertidal using a laboratory-based tank experiment to better understand how fixed genotypic and plastic environmental effects contribute to the successful maintenance of this symbiosis in extreme habitats. High intertidal anemones had lower baseline symbiont-to-host cell ratios under control conditions, but their symbionts had higher baseline photosynthetic efficiency compared to low intertidal anemone symbionts. Symbiont communities were identical across all samples, suggesting that shifts in symbiont density and photosynthetic performance could be an acclimatory mechanism to maintain symbiosis in different environments. Despite lower baseline symbiont-to-host cell ratios, high intertidal anemones maintained greater symbiont-to-host cell ratios under heat stress compared with low intertidal anemones, suggesting greater thermal tolerance of high intertidal holobionts. However, the thermal tolerance of clonal anemones acclimatized to different zones was not explained by tidal height alone, indicating additional environmental variables contribute to physiological differences. Host genotype significantly influenced anemone weight, but only explained a minor proportion of variation among symbiotic traits and their response to thermal stress, further implicating environmental history as the primary driver of holobiont tolerance. These results indicate that this symbiosis is highly plastic and may be able to acclimatize to climate change over ecological timescales, defying the convention that symbiotic organisms are more susceptible to environmental stress.


Asunto(s)
Ecosistema , Anémonas de Mar , Simbiosis , Animales , Anémonas de Mar/fisiología , Aclimatación/fisiología , Termotolerancia , Microalgas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA