Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2406232, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283026

RESUMEN

Electrochromic smart windows (ESWs) are an effective energy-saving technology for near-zero energy buildings. They consume electric energy unidirectionally during a round-trip coloring-bleaching process, with the energy involved in the bleaching process being wasted. It is highly desirable to reuse this wasted electric energy directly and/or transfer it into other energy storage equipment, further enhancing the overall efficiency of electric energy usage. Herein, a zinc anode-based ESW (ESW-PZ) is reported that not only has fascinating visible-near-infrared (VIS-NIR) dual-band electrochromic performance (a high optical contrast of 63%) but also showcases good energy storage characteristics (a wide voltage window of 2.6 V and a high energy density of 127.5 µWh cm-2). The buildings utilizing ESW-PZ to modulate indoor environments demonstrated an average annual energy saving of 366 MJ m-2 based on energy simulations, which is about 16% of the total energy consumption. Impressively, a high utilization efficiency of 90% (855 mWh m-2) of the wasted electric energy is realized through an ingenious circuit-switching strategy, which can be reused to power small household appliances.

2.
ACS Appl Mater Interfaces ; 16(38): 51433-51446, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39270217

RESUMEN

The growing concern over low-frequency noise pollution resulting from global industrialization has posed substantial challenges in noise attenuation. However, conventional acoustic metamaterials, with fixed geometries, offer limited flexibility in the frequency range adjustment once constructed. This research unveiled the promising potential of ionic electroactive polymers, particularly ionic polymer-metal composites (IPMCs), as a superior candidate to design tunable acoustic metamaterial due to its bidirectional energy conversion capabilities. The previously perceived limitations of the IPMC, including slow reaction and high energy expenditure, owning to its inherent sluggish intermediary ionic mass transport process, were astutely leveraged to expedite the attenuation of low-frequency sound energy. Both our experimental and simulation results elucidated that the IPMC can generate voltage potentials in response to acoustic pressure at frequencies significantly higher than those previously established. In addition, the peak absorption frequency can be effectively shifted by up to 45.7% with the application of a 4 V voltage. By further integration with a microperforated panel (MPP) structure, the developed metamaterial absorbers can achieve complete sound absorption, which was continuously tunable under minimal voltage stimulation across a wide frequency spectrum. In addition, a microslit structure IPMC metamaterial absorber was designed to realize modulation of the perforation rate, and the absorption peak can be shifted by up to 79.2%. These findings signify a pioneering application of ionic intelligent materials and may pave the way for further innovations of tunable low-frequency acoustic structures, ultimately advancing the pragmatic deployment of both soft intelligent materials and acoustic metamaterials.

3.
Adv Mater ; 36(33): e2405924, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850277

RESUMEN

Here, an ionic polymer of intrinsic microporosity (PIM) as a high-functioning supercapacitor electrode without the need for conductive additives or binders is reported. The performance of this material is directly related to its large accessible surface area. By comparing electrochemical performance between a porous viologen PIM and a nonporous viologen polymer, it is revealed that the high energy and power density are both due to the ability of ions to rapidly access the ionic PIM. In 0.1 m H2SO4 electrolyte, a pseudocapacitve energy of 315 F g-1 is observed, whereas in 0.1 m Na2SO4, a capacitive energy density of 250 F g-1 is obtained. In both cases, this capacity is retained over 10 000 charge-discharge cycles, without the need for stabilizing binders or conductive additives even at moderate loadings (5 mg cm-2). This desirable performance is maintained in a prototype symmetric two-electrode capacitor device, which has >99% Coloumbic efficiency and a <10 mF capacity drop over 2000 cycles. These results demonstrate that ionic PIMs function well as standalone supercapacitor electrodes and suggest ionic PIMs may perform well in other electrochemical devices such as sensors, ion-separation membranes, or displays.

4.
Materials (Basel) ; 17(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38730941

RESUMEN

To treat cardiovascular diseases (i.e., a major cause of mortality after cancers), endovascular-technique-based guidewire has been employed for intra-arterial navigation. To date, most commercially available guidewires (e.g., Terumo, Abbott, Cordis, etc.) are non-steerable, which is poorly suited to the human arterial system with numerous bifurcations and angulations. To reach a target artery, surgeons frequently opt for several tools (guidewires with different size integrated into angulated catheters) that might provoke arterial complications such as perforation or dissection. Steerable guidewires would, therefore, be of high interest to reduce surgical morbidity and mortality for patients as well as to simplify procedure for surgeons, thereby saving time and health costs. Regarding these reasons, our research involves the development of a smart steerable guidewire using electroactive polymer (EAP) capable of bending when subjected to an input voltage. The actuation performance of the developed device is assessed through the curvature behavior (i.e., the displacement and the angle of the bending) of a cantilever beam structure, consisting of single- or multi-stack EAP printed on a substrate. Compared to the single-stack architecture, the multi-stack gives rise to a significant increase in curvature, even when subjected to a moderate control voltage. As suggested by the design framework, the intrinsic physical properties (dielectric, electrical, and mechanical) of the EAP layer, together with the nature and thickness of all materials (EAP and substrate), do have strong effect on the bending response of the device. The analyses propose a comprehensive guideline to optimize the actuator performance based on an adequate selection of the relevant materials and geometric parameters. An analytical model together with a finite element model (FEM) are investigated to validate the experimental tests. Finally, the design guideline leads to an innovative structure (composed of a 10-stack active layer screen-printed on a thin substrate) capable of generating a large range of bending angle (up to 190°) under an acceptable input level of 550 V, which perfectly matches the standard of medical tools used for cardiovascular surgery.

5.
Materials (Basel) ; 17(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793535

RESUMEN

Ionic electroactive polymer (iEAP) actuators are recognized as exceptional candidates for artificial muscle development, with significant potential applications in bionic robotics, space exploration, and biomedical fields. Here, we developed a new iEAP actuator utilizing high-purity single-walled carbon nanotubes (SWCNTs)-reinforced poly(3, 4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT: PSS, PP) hybrid electrodes and a Nafion/EMIBF4 ion-exchange membrane via a straightforward and efficient spray printing technique. The SWCNT/PP actuator exhibits significantly enhanced electric conductivity (262.9 S/cm) and specific capacitance (22.5 mF/cm2), benefitting from the synergistic effect between SWCNTs and PP. These improvements far surpass those observed in activated carbon aerogel bucky-gel-electrode-based actuators. Furthermore, we evaluated the electroactive behaviors of the SWCNT/PP actuator under alternating square-wave voltages (1-3 V) and frequencies (0.01-100 Hz). The results reveal a substantial bending displacement of 6.44 mm and a high bending strain of 0.61% (at 3 V, 0.1 Hz), along with a long operating stability of up to 10,000 cycles (at 2 V, 1 Hz). This study introduces a straightforward and efficient spray printing technique for the successful preparation of iEAP actuators with superior electrochemical and electromechanical properties as intended, which hold promise as artificial muscles in the field of bionic robotics.

6.
Biomimetics (Basel) ; 9(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786491

RESUMEN

Mechanical stimulation is prevalent within organisms, and appropriate regulation of such stimulation can significantly enhance cellular functions. Consequently, the in vitro construction and simulation of mechanical stimulation have emerged as a research hotspot in biomechanics. In recent years, a class of artificial muscles named electroactive polymers (EAPs), especially ionic EAPs, have shown promising applications in biomechanics. While several techniques utilizing ionic EAPs for cell mechanical stimulation have been reported, further research is needed to advance and enhance their practical applications. Here, we prepared a microactuator array based on ionic EAP artificial muscles for cell mechanical stimulation. As a preliminary effort, we created a 5 × 5 microactuator array on a supporting membrane by employing laser cutting. We evaluated the electro-actuation performance of the microactuators through experimental testing and numerical simulations, affirming the potential use of the microactuator array for cell mechanical stimulation. The devised approach could inspire innovative design concepts in the development of miniaturized intelligent electronic devices, not only in biomechanics and biomimetics but also in other related fields.

7.
Polymers (Basel) ; 15(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38139966

RESUMEN

The manufacturing of Diels-Alder (D-A) crosslinked epoxy nanocomposites is an emerging field with several challenges to overcome: the synthesis is complex due to side reactions, the mechanical properties are hindered by the brittleness of these bonds, and the content of carbon nanotubes (CNT) added to achieve electroactivity is much higher than the percolation thresholds of other conventional resins. In this work, we develop nanocomposites with different D-A crosslinking ratios (0, 0.6, and 1.0) and CNT contents (0.1, 0.3, 0.5, 0.7, and 0.9 wt.%), achieving a simplified route and avoiding the use of solvents and side reactions by selecting a two-step curing method (100 °C-6 h + 60 °C-12 h) that generates the thermo-reversible resins. These reversible nanocomposites show ohmic behavior and effective Joule heating, reaching the dissociation temperatures of the D-A bonds. The fully reversible nanocomposites (ratio 1.0) present more homogeneous CNT dispersion compared to the partially reversible nanocomposites (ratio 0.6), showing higher electrical conductivity, as well as higher brittleness. For this study, the nanocomposite with a partially reversible matrix (ratio 0.6) doped with 0.7 CNT wt.% was selected to allow us to study its new smart functionalities and performance due to its reversible network by analyzing self-healing and thermoforming.

8.
J Funct Biomater ; 14(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37888188

RESUMEN

Electroactive polymer-metal composites (EAPMCs) have gained significant attention in tissue engineering owing to their exceptional mechanical and electrical properties. EAPMCs develop by combining an electroactive polymer matrix and a conductive metal. The design considerations include choosing an appropriate metal that provides mechanical strength and electrical conductivity and selecting an electroactive polymer that displays biocompatibility and electrical responsiveness. Interface engineering and surface modification techniques are also crucial for enhancing the adhesion and biocompatibility of composites. The potential of EAPMC-based tissue engineering revolves around its ability to promote cellular responses, such as cell adhesion, proliferation, and differentiation, through electrical stimulation. The electrical properties of these composites can be used to mimic natural electrical signals within tissues and organs, thereby aiding tissue regeneration. Furthermore, the mechanical characteristics of the metallic components provide structural reinforcement and can be modified to align with the distinct demands of various tissues. EAPMCs have extraordinary potential as regenerative biomaterials owing to their ability to promote beneficial effects in numerous electrically responsive cells. This study emphasizes the characteristics and applications of EAPMCs in tissue engineering.

9.
Adv Sci (Weinh) ; 10(32): e2303838, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37792271

RESUMEN

Soft robotics systems are currently under development using ionic electroactive polymers (i-EAP) as soft actuators for the human-machine interface. However, this endeavor has been impeded by the dilemma of reconciling the competing demands of force and strain in i-EAP actuators. Here, the authors present a novel design called "ions-silica percolated ionic dielectric elastomer (i-SPIDER)", which exhibits ionic liquid-confined silica microstructures that effectively resolve the chronic issue of conventional i-EAP actuators. The i-SPIDER actuator demonstrates remarkable electromechanical conversion capacity at low voltage, thanks to improved ion accumulation facilitated by interpreting electrode polarization at the electrolyte-electrode interface. This approach concurrently enhances both strain (by approximately 1.52%) and force (by roughly 1.06 mN) even at low Young's modulus (merely 5.9 MPa). Additionally, by demonstrating arachnid-inspired soft robots endowed with user-desired tasks through control of various form factors, the development of soft robots using the i-SPIDER that can concomitantly enhance strain and force holds promise as a compelling avenue for ushering in the next generation of miniaturized, low-powered soft robotics.

10.
Polymers (Basel) ; 15(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904536

RESUMEN

The development of biofuel cells (BFCs) currently has high potential since these devices can be used as alternative energy sources. This work studies promising materials for biomaterial immobilization in bioelectrochemical devices based on a comparative analysis of the energy characteristics (generated potential, internal resistance, power) of biofuel cells. Bioanodes are formed by the immobilization of membrane-bound enzyme systems of Gluconobacter oxydans VKM V-1280 bacteria containing pyrroloquinolinquinone-dependent dehydrogenases into hydrogels of polymer-based composites with carbon nanotubes. Natural and synthetic polymers are used as matrices, and multi-walled carbon nanotubes oxidized in hydrogen peroxide vapor (MWCNTox) are used as fillers. The intensity ratio of two characteristic peaks associated with the presence of atoms C in the sp3 and sp2 hybridization for the pristine and oxidized materials is 0.933 and 0.766, respectively. This proves a reduced degree of MWCNTox defectiveness compared to the pristine nanotubes. MWCNTox in the bioanode composites significantly improve the energy characteristics of the BFCs. Chitosan hydrogel in composition with MWCNTox is the most promising material for biocatalyst immobilization for the development of bioelectrochemical systems. The maximum power density was 1.39 × 10-5 W/mm2, which is 2 times higher than the power of BFCs based on other polymer nanocomposites.

11.
Micromachines (Basel) ; 13(8)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36014211

RESUMEN

Electroactive polymer (EAP) is a polymer that reacts to electrical stimuli, such as voltage, and can be divided into electronic and ionic EAP by an electrical energy transfer mechanism within the polymer. The mechanism of ionic EAP is the movement of the positive ions inducing voltage change in the polymer membrane. Among the ionic EAPs, an ionic polymer-metal composite (IPMC) is composed of a metal electrode on the surface of the polymer membrane. A common material for the polymer membrane of IPMC is Nafion containing hydrogen ions, and platinum, gold, and silver are commonly used for the electrode. As a result, IPMC has advantages, such as low voltage requirements, large bending displacement, and bidirectional actuation. Manufacturing of IPMC is composed of preparing the polymer membrane and plating electrode. Preparation methods for the membrane include solution casting, hot pressing, and 3D printing. Meanwhile, electrode formation methods include electroless plating, electroplating, direct assembly process, and sputtering deposition. The manufactured IPMC is widely demonstrated in applications such as grippers, micro-pumps, biomedical, biomimetics, bending sensors, flow sensors, energy harvesters, biosensors, and humidity sensors. This paper will review the overall field of IPMC by demonstrating the categorization, principle, materials, and manufacturing method of IPMC and its applications.

12.
ACS Appl Mater Interfaces ; 14(38): 43701-43710, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36044399

RESUMEN

Here, we report low-voltage-driven fast-response nanostructured columnar ionic liquid crystal/polymer composite actuators that form three-dimensional continuous ion channels. A three-component self-assembly of a zwitterionic rod-like molecule (49.5 wt %), an ionic liquid (27.5 wt %), and poly(vinyl alcohol) (23.0 wt %) provided a free-standing stretchable membrane electrolyte. The dissociated ions can move through a continuous 3D ionophilic matrix surrounding the hydrophobic columns formed by the hexagonally organized rod-mesogens. Three-layer actuators composed of the electrolyte film sandwiched between two conductive polymer film electrodes of doped polythiophene exhibited a bending motion with 0.32% strain and moved 2 mm within 220 ms under 1 V at 0.1 Hz in 70% relative humidity due to the formation of electric double layers at the soft solid electrolyte/electrode interfaces. The bending strain of the columnar nanostructured actuator is comparable to those of polymer iongel actuators and block polymer actuators containing 25-80 wt % of ionic liquids. It is noteworthy that a small number of ions organized into the 3D nanochannels can generate the large bending deformation, which can contribute to reduce the risk of leakage of ions and the production cost. In addition, we have demonstrated a low-voltage-driven deformable mirror actuator that is expected to be applied to optical devices.

13.
Membranes (Basel) ; 12(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35323790

RESUMEN

Two types of poly(5-phenyl-2-norbornene) were synthesized via ring opening metathesis and addition polymerization. The polymers sulfonation reaction under homogeneous conditions resulted in ionomer with high sulfonation degree up to 79% (IEC 3.36 meq/g). The prepared ionomer was characterized by DSC, GPC, 1H NMR and FT-IR. Polymers for electromechanical applications soluble in common polar organic solvents were obtained by replacing proton of sulfonic group with imidazolium and 1-methylimidazlium. Membranes were prepared using the above-mentioned polymers and 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF4), as well as mixtures with polyvinylidene fluoride (PVDF). Mechanical, morphological, and conductive properties of the membranes were examined by tensile testing, SEM, and impedance spectroscopy, respectively. Dry and air-stable actuators with electrodes based on SWCNT were fabricated via hot-pressing. Actuators with membranes based on methylimidazolium containing ionomers outperformed classical bucky gel actuator and demonstrated high strain (up to 1.14%) and generated stress (up to 1.21 MPa) under low voltage of 2 V.

14.
Polymers (Basel) ; 13(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833199

RESUMEN

The article reports on the influence of annealing PVDF in an autoclave process on the PVDF phase composition. DSC, FTIR and XRD measurements serve to observe the phase changes in an already stretched, polarised and ß-phase rich film. Annealing was conducted between 90 and 185 ∘C to cover a broad range of curing processes in an autoclave. The ß-phase is found to be stable up to near the melting range at 170 ∘C. At 175 ∘C, the non-piezoelectric α-phase dominates and the piezoelectric γ- and γ'-phases appear. The γ-phase grows at elevated temperatures and replaces the ß-phase. This observation stresses the importance of developing new methods to reactivate the polarisation after annealing, in particular for the integration of PVDF as a sensor in laminated structures, such as CFRP.

15.
Philos Trans A Math Phys Eng Sci ; 379(2208): 20200408, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34455834

RESUMEN

Ionic polymer-metal composites (IPMCs) constitute a promising class of soft, active materials with potentially ubiquitous use in science and engineering. Realizing the full potential of IPMCs calls for a deeper understanding of the mechanisms underpinning their most intriguing characteristics: the ability to deform under an electric field and the generation of a voltage upon mechanical deformation. These behaviours are tightly linked to physical phenomena at the level of atoms, including rearrangements of ions and molecules, along with the formation of sub-nanometre thick double layers on the surface of the metal electrodes. Several continuum theories have been developed to describe these phenomena, but their experimental and theoretical validation remains incomplete. IPMC modelling at the atomistic scale could beget valuable support for these efforts, by affording granular analysis of individual atoms. Here, we present a simplified atomistic model of IPMCs based on classical molecular dynamics. The three-dimensional IPMC membrane is constrained by two smooth walls, a simplified analogue of metal electrodes, impermeable only to counterions. The electric field is applied as an additional force acting on all the atoms. We demonstrate the feasibility of simulating counterions' migration and pile-up upon the application of an electric field, similar to experimental observations. By analysing the spatial configuration of atoms and stress distribution, we identify two mechanisms for stress generation. The presented model offers new insight into the physical underpinnings of actuation and sensing in IPMCs. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

16.
Nanotechnology ; 32(38)2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34144550

RESUMEN

Ionic polymer metal composite (IPMC) always takes big risks of electrode cracking and peeling, which lead to energy wasting, waterloss, and uneven electric field distribution, thus hamper its commercial applications. To address this issue, we propose a facile and effective technique to repair the electrode fatigue by coating polyvinylpyrrolidone (PVP) encapsulated Ag nanoparticles (PVP@AgNPs) on the long-term used IPMC surface. To improve the electrochemical stability, the silver nanoparticles (Ag NPs) with a diameter of ∼34 nm are encapsulated by a 1.3 nm thick PVP film, thus forming a shell-core structure to resist corrosion from the electrolyte solution. Physiochemical investigations reveal that, PVP@AgNPs closely attach to the interior and exterior surfaces of the original Pt nanograin electrode, thus refreshing its electronic conductivity; the repaired IPMC actuator exhibits better electromechanical properties compared to its precursor actuator: 7.62 folds in displacement output, 9.38 folds in force output, and 9.73 folds in stable working time.

17.
Front Bioeng Biotechnol ; 9: 606008, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33634083

RESUMEN

A tunable optical lens can tune or reconfigure the lens material itself such that it can eliminate the moving part of the lens, which brings broad technological impacts. Many tunable optical lenses have been implemented using electroactive polymers that can change the shape of the lens. However, the refractive index (RI) change of electroactive polymers has not been well investigated. This paper investigated the RI change of CNC-based transparent and electroactive polyurethane (CPPU) in the presence of an actuating electric field. The prepared CPPU was electrically poled to enhance its electro-optical performance, and the poling conditions in terms of frequency and electric field were optimized. The poled CPPU was characterized using a Fourier transform infrared spectroscopy and a refractometer. To investigate the RI change in the presence of an actuating electric field, the poled CPPU was constrained between two electrodes with a fixed distance. The RI linearly increased as the actuating electric field increased. The RI change mechanism and the optimized poling conditions are illustrated. The tunable RI is a promising property for implementing a tunable optical lens.

18.
Front Robot AI ; 8: 792831, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096985

RESUMEN

Soft robots, devices with deformable bodies and powered by soft actuators, may fill a hitherto unexplored niche in outer space. All space-bound payloads are heavily limited in terms of mass and volume, due to the cost of launch and the size of spacecraft. Being constructed from stretchable materials allows many possibilities for compacting soft robots for launch and later deploying into a much larger volume, through folding, rolling, and inflation. This morphability can also be beneficial for adapting to operation in different environments, providing versatility, and robustness. To be truly soft, a robot must be powered by soft actuators. Dielectric elastomer transducers (DETs) offer many advantages as artificial muscles. They are lightweight, have a high work density, and are capable of artificial proprioception. Taking inspiration from nature, in particular the starfish podia, we present here bio-inspired inflatable DET actuators powering low-mass robots capable of performing complex motion that can be compacted to a fraction of their operating size.

19.
Adv Drug Deliv Rev ; 170: 396-424, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32987096

RESUMEN

Electroactive materials are employed at the interface of biology and electronics due to their advantageous intrinsic properties as soft organic electronics. We examine the most recent literature of electroactive material-based biosensors and their emerging role as theranostic devices for the delivery of therapeutic agents. We consider electroactive materials through the lens of smart drug delivery systems as materials that enable the release of therapeutic cargo in response to specific physiological and external stimuli and discuss the way these mechanisms are integrated into medical devices with examples of the latest advances. Studies that harness features unique to conductive polymers are emphasized; lastly, we highlight new perspectives and future research direction for this emerging technology and the challenges that remain to overcome.


Asunto(s)
Técnicas Biosensibles , Sistemas de Liberación de Medicamentos , Polímeros/química , Conductividad Eléctrica , Electrodos , Humanos
20.
Mater Sci Eng C Mater Biol Appl ; 114: 111047, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32994009

RESUMEN

This study presents a state-of-the-art soft and biocompatible transducer capable of detecting vessel inner-wall pressure for biomedical applications. The device includes a 3D electroactive polymer core element encapsulated by polydimethylsiloxane with an ellipsoidal structure. The device produces a voltage output when its sensing mechanism experiences different pressures, resulting in deformation at different orientations. Thus, it can be employed to detect the pressure exerted by inner vessel walls of different stiffness values. The output voltage is induced by the strain experienced by the sensing mechanism of the device without the need for any external electrical power source. The core element, which is made of an ionic polymer-metal composite, possesses a unique hollow design; this allows a catheter to pass through, and the core element can be anchored at an arbitrary position on the catheter. We also demonstrate that the fabricated device can be integrated with a medically used percutaneous transluminal angioplasty balloon catheter to form a smart sensing module. This module can detect different levels of fat accumulation around the inner wall of a blood vessel phantom. Evaluating vessel blockage and stiffness using the signals acquired from the developed device is discussed.


Asunto(s)
Angioplastia de Balón , Catéteres , Polímeros , Transductores de Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA