Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.639
Filtrar
1.
Comput Methods Programs Biomed ; 257: 108447, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39366070

RESUMEN

BACKGROUND AND OBJECTIVE: Numerous factors, including demographic characteristics, have been implicated in modulating individual sensitivity to propofol; however, substantial inter-individual differences persist even after accounting for these factors. This study thus aimed to explore whether pre-anesthesia brain functional network metrics correlate with an individual's sensitivity to propofol. METHODS: A total of 54 subjects, including 30 patients and 24 healthy volunteers, were enrolled. Propofol was administered via a target-controlled infusion device, and anesthesia depth was monitored using a bispectral index monitor. Sensitivity to propofol was quantified using the induction time, measured from infusion onset to the bispectral index, which reached 60. Brain functional network metrics indicative of functional integration and segregation, centrality, and network resilience were computed from pre-anesthetic 60-channel EEG recordings. Linear regression analysis and machine learning predictive models were applied to evaluate the contribution of pre-anesthesia network metrics in predicting individual sensitivity to propofol. RESULTS: Our analysis results revealed that subjects could be categorized into high- or low-sensitivity groups based on their induction time. Individuals with low sensitivity exhibited a greater network degree, clustering coefficient, global efficiency, and betweenness centrality, along with reduced modularity and assortativity coefficient in the alpha band. Furthermore, alpha band network metrics were significantly correlated with individual induction time. Leveraging these network metrics as features enabled the classification of individuals into high- or low-sensitivity groups with an accuracy of 94%. CONCLUSIONS: Using a clinically relevant endpoint that signifies the level of anesthesia suitable for surgical procedures, this study underscored the robust correlation between pre-anesthesia alpha-band network metrics and individual sensitivity to propofol in a cohort that included both patients and healthy volunteers. Our findings offer preliminary insights into the potential utility of pre-anesthetic brain status assessment to predict propofol sensitivity on an individual basis, which may help to develop a more accurate personalized anesthesia plan.

2.
Sleep Med ; 124: 323-330, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39368159

RESUMEN

OBJECTIVE: This study aimed to investigate the neurophysiological effects of obstructive sleep apnea (OSA) using multi-channel sleep electroencephalography (EEG) through machine learning methods encompassing various analysis methodologies including power spectral analysis, network analysis, and microstate analysis. METHODS: Twenty participants with apnea-hypopnea index (AHI) ≥ 15 and 18 participants with AHI <15 were recruited. Overnight polysomnography was conducted concurrently with 19-channel EEG. Preprocessed EEG data underwent computation of relative spectral power. A weighted network based on graph theory was generated; and indices of strength, path length, eigenvector centrality, and clustering coefficient were calculated. Microstate analysis was conducted to derive four topographic maps. Machine learning techniques were employed to assess EEG features capable of differentiating two groups. RESULTS: Among 71 features that showed significant differences between the two groups, seven exhibited good classification performance, achieving 88.3 % accuracy, 92 % sensitivity, and 84 % specificity. These features were power at C4 theta, P3 theta, P4 theta, and F8 gamma during NREM1 sleep and at Pz gamma during REM sleep from power spectral analysis; eigenvector centrality at F7 gamma during REM sleep from network analysis; and duration of microstate 4 during NREM2 sleep from microstate analysis. These seven EEG features were significantly correlated with polysomnographic parameters reflecting the severity of OSA. CONCLUSIONS: The application of machine learning techniques and various EEG analytical methods resulted in a model that showed good performance in classifying moderate to severe OSA and highlights the potential of EEG to serve as a biomarker of functional changes in OSA.

3.
Brain Res Bull ; : 111091, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368632

RESUMEN

Detecting consciousness in clinically unresponsive patients remains a significant challenge. Existing studies demonstrate that electroencephalography (EEG) can detect brain responses in behaviorally unresponsive patients, indicating potential for consciousness detection. However, most of this evidence is based on chronic patients, and there is a lack of studies focusing on acute coma cases. This study aims to detect signs of residual consciousness in patients with acute coma by using bedside EEG and electromyography (EMG) during an auditory oddball paradigm. We recruited patients with acute brain injury (either traumatic brain injury or cardiac arrest) who were admitted to the intensive care unit within two weeks after injury, with a Glasgow Coma Scale (GCS) score of 8 or below. Auditory stimuli included the patients' own names and other common names (referred to as standard names), spoken by the patients' relatives, delivered under two conditions: passive listening (where patients were instructed that sounds would be played) and active listening (where patients were asked to move hands when heard their own names). Brain and muscle activity were recorded using EEG and EMG during the auditory paradigm. Event-related potentials (ERP) and EMG spectra were analyzed and compared between responses to the subject's own name and other standard names in both passive and active listening conditions. A total of 22 patients were included in the final analysis. Subjects exhibited enhanced ERP responses when exposed to their own names, particularly during the active listening task. Compared to standard names or passive listening, distinct differences in brain network connectivity and increased EMG responses were detected during active listening to their own names. These findings suggest the presence of residual consciousness, offering the potential for assessing consciousness in behaviorally unresponsive patients.

4.
Sleep Adv ; 5(1): zpae063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364191

RESUMEN

Study Objectives: This study aimed to outline the strategy and outcomes of a study team in recruiting participants for an infant sleep study via social media during the COVID-19 pandemic, to assess the feasibility of recruitment via social media, and to quantitatively and qualitatively explore parental satisfaction and perceptions of recruitment via social media. Methods: The assessing sleep in infants with early-onset atopic dermatitis by longitudinal evaluation (SPINDLE) study recruited infants with and without atopic dermatitis for a longitudinal study assessing sleep. Infants were recruited via social media and their parents were interviewed to explore their experience of recruitment via social media. Results: In total, 57 controls and 33 cases were recruited. Of the 45 controls recruited via social media, 43 (95.6%) were recruited via Instagram and 2 (4.4%) were recruited via Twitter. Of the seven cases recruited via social media, 6 (85.7%) were recruited via Facebook (via sharing of Instagram posts by third parties on Facebook) and 1 (14.3%) was recruited via Instagram. All (100%, n = 28) mothers recruited via social media who completed the full study were satisfied with this approach to recruitment. Specific reasons why mothers reported engaging following exposure to the social media posts included the benefit of additional health checks for their baby, the benefit to scientific advancement, and the opportunity for a stimulating outing following the COVID-19 lockdowns. Conclusions: Our experience highlights parents' acceptance of recruitment via social media, the optimization of time and financial resources, and the benefit of using internet-based recruitment during a pandemic.

5.
Trials ; 25(1): 640, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350274

RESUMEN

BACKGROUND: Multiple system atrophy (MSA) is recognized as an atypical Parkinsonian syndrome, distinguished by a more rapid progression than that observed in Parkinson's disease. Unfortunately, the prognosis for MSA remains poor, with a notable absence of globally recognized effective treatments. Although preliminary studies suggest that transcranial magnetic stimulation (TMS) could potentially alleviate clinical symptoms in MSA patients, there is a significant gap in the literature regarding the optimal stimulation parameters. Furthermore, the field lacks consensus due to the paucity of robust, large-scale, multicenter trials. METHODS: This investigation is a multi-center, randomized, double-blind, sham-controlled trial. We aim to enroll 96 individuals diagnosed with MSA, categorized into Parkinsonian type (MSA-P) and cerebellar type (MSA-C) according to their predominant clinical features. Participants will be randomly allocated in a 1:1 ratio to either the TMS or sham stimulation group. Utilizing advanced navigation techniques, we will ensure precise targeting for the intervention, applying theta burst stimulation (TBS). To assess the efficacy of TBS on both motor and non-motor functions, a comprehensive evaluation will be conducted using internationally recognized clinical scales and gait analysis. To objectively assess changes in brain connectivity, functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) will be employed as sensitive indicators before and after the intervention. DISCUSSION: The primary aim of this study is to ascertain whether TBS can alleviate both motor and non-motor symptoms in patients with MSA. Additionally, a critical component of our research involves elucidating the underlying mechanisms through which TBS exerts its potential therapeutic effects. ETHICS AND DISSEMINATION: All study protocols have been reviewed and approved by the First Affiliated Medical Ethics Committee of the Air Force Military Medical University (KY20232118-F-1). TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300072658. Registered on 20 June 2023.


Asunto(s)
Atrofia de Múltiples Sistemas , Estimulación Magnética Transcraneal , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Método Doble Ciego , Electroencefalografía , Imagen por Resonancia Magnética , Estudios Multicéntricos como Asunto , Atrofia de Múltiples Sistemas/terapia , Atrofia de Múltiples Sistemas/fisiopatología , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento
6.
J Clin Sleep Med ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364965

RESUMEN

Sleep disorders have been described in anti-NMDAr encephalitis including insomnia, hypersomnia, narcolepsy, and sleep-disordered breathing. A patient presented with typical features of anti-NMDAr encephalitis associated with a right ovarian teratoma. After two months of clinical improvement with immunotherapy, the patient deteriorated. A 24-hour video EEG-polysomnography revealed a severe sleep quantity deficit, a total destruction of sleep architecture consisting of short clusters of N1 and rapid eye movement sleep stages, associated with motor and autonomic hyperactivity. These features were consistent with agrypnia excitata and were associated with disease reactivation due to a left ovarian teratoma. A new course of immunotherapy and surgery improved clinical symptoms and normalized sleep patterns. Agrypnia excitata, the most severe form of status dissociatus, was a sleep biomarker of disease relapse in this patient. Polysomnographic studies in the acute phase of anti-NMDAr encephalitis are lacking and are needed to better understand the evolution of sleep patterns.

7.
Mol Brain ; 17(1): 72, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354549

RESUMEN

Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.


Asunto(s)
Memoria a Corto Plazo , Estimulación Transcraneal de Corriente Directa , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Femenino , Adulto Joven , Estimulación Transcraneal de Corriente Directa/métodos , Ritmo Teta/fisiología , Ritmo Gamma/fisiología , Electroencefalografía , Adulto , Estimulación Eléctrica , Conducta/fisiología
8.
Netw Neurosci ; 8(3): 714-733, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355447

RESUMEN

Learning new motor skills through training, also termed motor learning, is central for everyday life. Current training strategies recommend intensive task-repetitions aimed at inducing local activation of motor areas, associated with changes in oscillation amplitudes ("event-related power") during training. More recently, another neural mechanism was suggested to influence motor learning: modulation of functional connectivity (FC), that is, how much spatially separated brain regions communicate with each other before and during training. The goal of the present study was to compare the impact of these two neural processing types on motor learning. We measured EEG before, during, and after a finger-tapping task (FTT) in 20 healthy subjects. The results showed that training gain, long-term expertise (i.e., average motor performance), and consolidation were all predicted by whole-brain alpha- and beta-band FC at motor areas, striatum, and mediotemporal lobe (MTL). Local power changes during training did not predict any dependent variable. Thus, network dynamics seem more crucial than local activity for motor sequence learning, and training techniques should attempt to facilitate network interactions rather than local cortical activation.


Both, local and network processing mechanisms support motor sequence learning. The aim of the present study was to compare the impact of these two processing types on motor learning. We measured EEG before, during, and after a finger-tapping task (FTT) in 20 healthy subjects. The results showed that only network dynamics, measured with functional connectivity, could predict learning, long-term expertise, and consolidation. Conversely, local activity, measured with event-related power decrease, did not predict any dependent measure. Specifically, network interactions of the primary motor area, the striatum, and the medial temporal lobe correlated with learning performance. Therefore, network dynamics seem more crucial than local activity for motor sequence learning and training techniques should facilitate network interactions rather than local cortical activation.

9.
J Undergrad Neurosci Educ ; 22(3): A197-A206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355672

RESUMEN

Electroencephalography (EEG) has given rise to a myriad of new discoveries over the last 90 years. EEG is a noninvasive technique that has revealed insights into the spatial and temporal processing of brain activity over many neuroscience disciplines, including sensory, motor, sleep, and memory formation. Most undergraduate students, however, lack laboratory access to EEG recording equipment or the skills to perform an experiment independently. Here, we provide easy-to-follow instructions to measure both wave and event-related EEG potentials using a portable, low-cost amplifier (Backyard Brains, Ann Arbor, MI) that connects to smartphones and PCs, independent of their operating system. Using open-source software (SpikeRecorder) and analysis tools (Python, Google Colaboratory), we demonstrate tractable and robust laboratory exercises for students to gain insights into the scientific method and discover multidisciplinary neuroscience research. We developed 2 laboratory exercises and ran them on participants within our research lab (N = 17, development group). In our first protocol, we analyzed power differences in the alpha band (8-13 Hz) when participants alternated between eyes open and eyes closed states (n = 137 transitions). We could robustly see an increase of over 50% in 59 (43%) of our sessions, suggesting this would make a reliable introductory experiment. Next, we describe an exercise that uses a SpikerBox to evoke an event-related potential (ERP) during an auditory oddball task. This experiment measures the average EEG potential elicited during an auditory presentation of either a highly predictable ("standard") or low-probability ("oddball") tone. Across all sessions in the development group (n=81), we found that 64% (n=52) showed a significant peak in the standard response window for P300 with an average peak latency of 442ms. Finally, we tested the auditory oddball task in a university classroom setting. In 66% of the sessions (n=30), a clear P300 was shown, and these signals were significantly above chance when compared to a Monte Carlo simulation. These laboratory exercises cover the two methods of analysis (frequency power and ERP), which are routinely used in neurology diagnostics, brain-machine interfaces, and neurofeedback therapy. Arming students with these methods and analysis techniques will enable them to investigate this laboratory exercise's variants or test their own hypotheses.

10.
Brain Lang ; 257: 105462, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39357142

RESUMEN

Few studies have examined neural correlates of late talking in toddlers, which could aid in understanding etiology and improving diagnosis of developmental language disorder (DLD). Greater frontal gamma activity has been linked to better language skills, but findings vary by risk for developmental disorders, and this has not been investigated in late talkers. This study examined whether frontal gamma power (30-50 Hz), from baseline-state electroencephalography (EEG), was related to DLD risk (categorical late talking status) and a continuous measure of expressive language in n = 124 toddlers. Frontal gamma power was significantly associated with late talker status when controlling for demographic factors and concurrent receptive language (ß = 1.96, McFadden's Pseudo R2 = 0.21). Demographic factors and receptive language did not significantly moderate the association between frontal gamma power and late talker status. A continuous measure of expressive language ability was not significantly associated with gamma (r = -0.07). Findings suggest that frontal gamma power may be useful in discriminating between groups of children that differ in DLD risk, but not for expressive language along a continuous spectrum of ability.

11.
Neuroscience ; 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357642

RESUMEN

Cortical proprioceptive processing of intermittent, passive movements can be assessed by extracting evoked and induced electroencephalographic (EEG) responses to somatosensory stimuli. Although the existent prior research on somatosensory stimulations, it remains unknown to what extent ongoing volitional muscle activation modulates the proprioceptive cortical processing of passive ankle-joint rotations. Twenty-five healthy volunteers (28.8 ±â€¯7 yr, 14 males) underwent a total of 100 right ankle-joint passive rotations (4° dorsiflexions, 4 ±â€¯0.25 s inter-stimulus interval, 30°/s peak angular velocity) evoked by a movement actuator during passive condition with relaxed ankle and active condition with a constant plantarflexion torque of 5 ±â€¯2.5 Nm. Simultaneously, EEG, electromyographic (EMG) and kinematic signals were collected. Spatiotemporal features of evoked and induced EEG responses to the stimuli were extracted to estimate the modulation of the cortical proprioceptive processing between the active and passive conditions. Proprioceptive stimuli during the active condition elicited robustly ∼26 % larger evoked response and ∼38 % larger beta suppression amplitudes, but ∼42 % weaker beta rebound amplitude over the primary sensorimotor cortex than the passive condition, with no differences in terms of response latencies. These findings indicate that the active volitional motor task during naturalistic proprioceptive stimulation of the ankle joint enhances related cortical activation and reduces related cortical inhibition with respect to the passive condition. Possible factors explaining these results include mechanisms occurring at several levels of the proprioceptive processing from the peripheral muscle (i.e. mechanical, muscle spindle status, etc.) to the different central (i.e. spinal, sub-cortical and cortical) levels.

12.
Clin Neurophysiol ; 167: 241-253, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39369552

RESUMEN

OBJECTIVE: Pooling multisite resting-state electroencephalography (rsEEG) datasets may introduce bias due to batch effects (i.e., cross-site differences in the rsEEG related to scanner/sample characteristics). The Combining Batches (ComBat) models, introduced for microarray expression and adapted for neuroimaging, can control for batch effects while preserving the variability of biological covariates. We aim to evaluate four ComBat harmonization methods in a pooled sample from five independent rsEEG datasets of young and old adults. METHODS: RsEEG signals (n = 374) were automatically preprocessed. Oscillatory and aperiodic rsEEG features were extracted in sensor space. Features were harmonized using neuroCombat (standard ComBat used in neuroimaging), neuroHarmonize (variant with nonlinear adjustment of covariates), OPNested-GMM (variant based on Gaussian Mixture Models to fit bimodal feature distributions), and HarmonizR (variant based on resampling to handle missing feature values). Relationships between rsEEG features and age were explored before and after harmonizing batch effects. RESULTS: Batch effects were identified in rsEEG features. All ComBat methods reduced batch effects and features' dispersion; HarmonizR and OPNested-GMM ComBat achieved the greatest performance. Harmonized Beta power, individual Alpha peak frequency, Aperiodic exponent, and offset in posterior electrodes showed significant relations with age. All ComBat models maintained the direction of observed relationships while increasing the effect size. CONCLUSIONS: ComBat models, particularly HarmonizeR and OPNested-GMM ComBat, effectively control for batch effects in rsEEG spectral features. SIGNIFICANCE: This workflow can be used in multisite studies to harmonize batch effects in sensor-space rsEEG spectral features while preserving biological associations.

13.
Comput Methods Programs Biomed ; 257: 108446, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39369588

RESUMEN

BACKGROUND AND OBJECTIVE: Practicing mindfulness is a mental process toward interoceptive awareness, achieving stress reduction and emotion regulation through brain-function alteration. Literature has shown that electroencephalography (EEG)-derived connectivity possesses the potential to differentiate brain functions between mindfulness naïve and mindfulness experienced, where such quantitative differentiation could benefit telediagnosis for mental health. However, there is no prior guidance in model selection targeting on the mindfulness-experience prediction. Here we hypothesized that the EEG effective connectivity could reach a good prediction performance in mindfulness experiences with brain interpretability. METHODS: We aimed at probing direct Directed Transfer Function (dDTF) to classify the participants' history of mindfulness-based stress reduction (MBSR), and aimed at optimizing the prediction accuracy by comparing multiple machine learning (ML) algorithms. Targeting the gamma-band effective connectivity, we evaluated the EEG-based prediction of the mindfulness experiences across 7 machine learning (ML) algorithms and 3 sessions (i.e., resting, focus-breathing, and body-scan). RESULTS: The support vector machine and naïve Bayes classifiers exhibited significant accuracies above the chance level across all three sessions, and the decision tree algorithm reached the highest prediction accuracy of 91.7 % with the resting state, compared to the classification accuracies with the other two mindful states. We further conducted the analysis on essential EEG channels to preserve the classification accuracy, revealing that preserving just four channels (F7, F8, T7, and P7) out of 19 yielded the accuracy of 83.3 %. Delving into the contribution of connectivity features, specific connectivity features predominantly located in the frontal lobe contributed more to classifier construction, which aligned well with the existing mindfulness literature. CONCLUSION: In the present study, we initiated a milestone of developing an EEG-based classifier to detect a person's mindfulness experience objectively. The prediction accuracy of the decision tree was optimal to differentiate the mindfulness experiences using the local resting-state EEG data. The suggested algorithm and key channels on the mindfulness-experience prediction may provide guidance for predicting mindfulness experiences using the EEG-based classification embedded in future wearable neurofeedback systems or plausible digital therapeutics.

14.
J Sleep Res ; : e14368, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39363577

RESUMEN

Sleep is vital for health. It has regenerative and protective functions. Its disruption reduces the quality of life and increases susceptibility to disease. During sleep, there is a cyclicity of distinct phases that are studied for clinical purposes using polysomnography (PSG), a costly and technically demanding method that compromises the quality of natural sleep. The search for simpler devices for recording biological signals at home addresses some of these issues. We have reworked a single-channel in-ear electroencephalography (EEG) sensor grounded to a commercially available memory foam earplug with conductive tape. A total of 14 healthy volunteers underwent a full night of simultaneous PSG, in-ear EEG and actigraphy recordings. We analysed the performance of the methods in terms of sleep metrics and staging. In another group of 14 patients evaluated for sleep-related pathologies, PSG and in-ear EEG were recorded simultaneously, the latter in two different configurations (with and without a contralateral reference on the scalp). In both groups, the in-ear EEG sensor showed a strong correlation, agreement and reliability with the 'gold standard' of PSG and thus supported accurate sleep classification, which is not feasible with actigraphy. Single-channel in-ear EEG offers compelling prospects for simplifying sleep parameterisation in both healthy individuals and clinical patients and paves the way for reliable assessments in a broader range of clinical situations, namely by integrating Level 3 polysomnography devices. In addition, addressing the recognised overestimation of the apnea-hypopnea index, due to the lack of an EEG signal, and the sparse information on sleep metrics could prove fundamental for optimised clinical decision making.

15.
Neurobiol Dis ; : 106692, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39370050

RESUMEN

The neuropsychiatric symptoms are common in Wilson's disease (WD) patients. However, it remains unclear about the associated functional brain networks. In this study, source localization-based functional connectivity analysis of close-eye resting-state electroencephalography (EEG) were implemented to assess the characteristics of functional networks in 17 WD patients with neurological involvements and 17 healthy controls (HCs). The weighted phase-lag index (wPLI) was subsequently calculated in source space across five different frequency bands and the resulting connectivity matrix was transformed into a weighted graph whose structure was measured by five graphical analysis indicators, which were finally correlated with clinical scores. Compared to HCs, WD patients revealed disconnected sub-networks in delta, theta and alpha bands. Moreover, WD patients exhibited significantly reduced global clustering coefficients and small-worldness in all five frequency bands. In WD group, the severity of neurological symptoms and structural brain abnormalities were significantly correlated with disrupted functional networks. In conclusion, our study demonstrated that functional network deficits in WD can reflect the severity of their neurological symptoms and structural brain abnormalities. Resting-state EEG may be used as a marker of brain injury in WD.

16.
Front Comput Neurosci ; 18: 1431815, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39371523

RESUMEN

Brain-computer interfaces (BCIs) represent a groundbreaking approach to enabling direct communication for individuals with severe motor impairments, circumventing traditional neural and muscular pathways. Among the diverse array of BCI technologies, electroencephalogram (EEG)-based systems are particularly favored due to their non-invasive nature, user-friendly operation, and cost-effectiveness. Recent advancements have facilitated the development of adaptive bidirectional closed-loop BCIs, which dynamically adjust to users' brain activity, thereby enhancing responsiveness and efficacy in neurorehabilitation. These systems support real-time modulation and continuous feedback, fostering personalized therapeutic interventions that align with users' neural and behavioral responses. By incorporating machine learning algorithms, these BCIs optimize user interaction and promote recovery outcomes through mechanisms of activity-dependent neuroplasticity. This paper reviews the current landscape of EEG-based adaptive bidirectional closed-loop BCIs, examining their applications in the recovery of motor and sensory functions, as well as the challenges encountered in practical implementation. The findings underscore the potential of these technologies to significantly enhance patients' quality of life and social interaction, while also identifying critical areas for future research aimed at improving system adaptability and performance. As advancements in artificial intelligence continue, the evolution of sophisticated BCI systems holds promise for transforming neurorehabilitation and expanding applications across various domains.

17.
Front Neurosci ; 18: 1425527, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39371612

RESUMEN

Due to the interconnected nature of the brain, changes in one region are likely to affect other structurally and functionally connected regions. Emerging evidence indicates that single-site transcranial alternating current stimulation (tACS) can modulate functional connectivity between stimulated and interconnected unstimulated brain regions. However, our understanding of the network response to tACS is incomplete. Here, we investigated the effect of beta tACS of different intensities on phase-based connectivity between the left and right primary motor cortices in 21 healthy young adults (13 female; mean age 24.30 ± 4.84 years). Participants underwent four sessions of 20 min of 20 Hz tACS of varying intensities (sham, 0.5 mA, 1.0 mA, or 1.5 mA) applied to the left primary motor cortex at rest. We recorded resting-state and event-related electroencephalography (EEG) before and after tACS, analyzing changes in sensorimotor beta (13-30 Hz) imaginary coherence (ImCoh), an index of functional connectivity. Event-related EEG captured movement-related beta activity as participants performed self-paced button presses using their right index finger. For resting-state connectivity, we observed intensity-dependent changes in beta ImCoh: sham and 0.5 mA stimulation resulted in an increase in beta ImCoh, while 1.0 mA and 1.5 mA stimulation decreased beta ImCoh. For event-related connectivity, 1.5 mA stimulation decreased broadband ImCoh (4-90 Hz) during movement execution. None of the other stimulation intensities significantly modulated event-related ImCoh during movement preparation, execution, or termination. Interestingly, changes in ImCoh during movement preparation following 1.0 mA and 1.5 mA stimulation were significantly associated with participants' pre-tACS peak beta frequency, suggesting that the alignment of stimulation frequency and peak beta frequency affected the extent of neuromodulation. Collectively, these results suggest that beta tACS applied to a single site influences connectivity within the motor network in a manner that depends on the intensity and frequency of stimulation. These findings have significant implications for both research and clinical applications.

18.
Ther Adv Neurol Disord ; 17: 17562864241276202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39371640

RESUMEN

Background: Epilepsy is a chronic neurological disorder characterized by recurrent seizures that significantly impact patients' quality of life. Identifying predictors is crucial for early intervention. Objective: Electroencephalography (EEG) microstates effectively describe the resting state activity of the human brain using multichannel EEG. This study aims to develop a comprehensive prediction model that integrates clinical features with EEG microstates to predict drug-refractory epilepsy (DRE). Design: Retrospective study. Methods: This study encompassed 226 patients with epilepsy treated at the epilepsy center of a tertiary hospital between October 2020 and May 2023. Patients were categorized into DRE and non-DRE groups. All patients were randomly divided into training and testing sets. Lasso regression combined with Stepglm [both] algorithms was used to screen independent risk factors for DRE. These risk factors were used to construct models to predict the DRE. Three models were constructed: a clinical feature model, an EEG microstate model, and a comprehensive prediction model (combining clinical-EEG microstates). A series of evaluation methods was used to validate the accuracy and reliability of the prediction models. Finally, these models were visualized for display. Results: In the training and testing sets, the comprehensive prediction model achieved the highest area under the curve values, registering 0.99 and 0.969, respectively. It was significantly superior to other models in terms of the C-index, with scores of 0.990 and 0.969, respectively. Additionally, the model recorded the lowest Brier scores of 0.034 and 0.071, respectively, and the calibration curve demonstrated good consistency between the predicted probabilities and observed outcomes. Decision curve analysis revealed that the model provided significant clinical net benefit across the threshold range, underscoring its strong clinical applicability. We visualized the comprehensive prediction model by developing a nomogram and established a user-friendly website to enable easy application of this model (https://fydxh.shinyapps.io/CE_model_of_DRE/). Conclusion: A comprehensive prediction model for DRE was developed, showing excellent discrimination and calibration in both the training and testing sets. This model provided an intuitive approach for assessing the risk of developing DRE in patients with epilepsy.

19.
Appl Neuropsychol Child ; : 1-15, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352008

RESUMEN

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by repeated patterns of hyperactivity, impulsivity, and inattention that limit daily functioning and development. Electroencephalography (EEG) anomalies correspond to changes in brain connection and activity. The authors propose utilizing empirical mode decomposition (EMD) and discrete wavelet transform (DWT) for feature extraction and machine learning (ML) algorithms to categorize ADHD and control subjects. For this study, the authors considered freely accessible ADHD data obtained from the IEEE data site. Studies have demonstrated a range of EEG anomalies in ADHD patients, such as variations in power spectra, coherence patterns, and event-related potentials (ERPs). Some of the studies claimed that the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD. , Based on the research that claimed the brain's prefrontal cortex and frontal regions collaborate in intricate networks, and disorders in either of them exacerbate the symptoms of ADHD, the proposed study examines the optimal position of EEG electrode for identifying ADHD and in addition to monitoring accuracy on frontal/ prefrontal and other regions of brain our study also investigates the position groupings that have the highest effect on accurateness in identification of ADHD. The results demonstrate that the dataset classified with AdaBoost provided values for accuracy, precision, specificity, sensitivity, and F1-score as 1.00, 0.70, 0.70, 0.75, and 0.71, respectively, whereas using random forest (RF) it is 0.98, 0.64, 0.60, 0.81, and 0.71, respectively, in detecting ADHD. After detailed analysis, it is observed that the most accurate results included all electrodes. The authors believe the processes can detect various neurodevelopmental problems in children utilizing EEG signals.

20.
Sleep ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320057

RESUMEN

STUDY OBJECTIVES: The brains of preterm infants exhibit altered functional connectivity (FC) networks, but the potential variation in sleep states and the impact of breathing patterns on FC networks are unclear. This study explores the evolution of resting-state FC from preterm to term, focusing on breathing patterns and distinguishing between active sleep and quiet sleep. METHODS: We recruited 63 preterm infants and 44 healthy-term infants and performed simultaneous electroencephalography and functional near-infrared spectroscopy. FC was calculated using oxy- and deoxyhemoglobin signals across eight channels. First, FC was compared between periodic breathing (PB) and non-PB segments. Then sleep state-dependent FC development was explored. FC was compared between active sleep and quiet sleep segments and between preterm infants at term and term-born infants in each sleep state. Finally, associations between FC at term, clinical characteristics, and neurodevelopmental outcomes in late infancy were assessed in preterm infants. RESULTS: In total, 148 records from preterm infants and 44 from term-born infants were analyzed. PB inflated FC values. After excluding PB segments, FC was found to be elevated during active sleep compared to quiet sleep, particularly in connections involving occipital regions. Preterm infants had significantly higher FC in both sleep states compared to term-born infants. Furthermore, stronger FC in specific connections during active sleep at term was associated with unfavorable neurodevelopment in preterm infants. CONCLUSIONS: Sleep states play a critical role in FC development and preterm infants show observable changes in FC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA