Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
J Environ Sci (China) ; 149: 177-187, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181632

RESUMEN

In the context of peaking carbon dioxide emissions and carbon neutrality, development of feasible methods for converting CO2 into high value-added chemicals stands out as a hot subject. In this study, P[D+COO-][Br-][DBUH+], a series of novel heterogeneous dual-ionic poly(ionic liquid)s (PILs) were synthesized readily from 2-(dimethylamino) ethyl methacrylate (DMAEMA), bromo-substituted aliphatic acids, organic bases and divinylbenzene (DVB). The structures, compositions and morphologies were characterized or determined by nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), infrared spectroscopy (IR), scanning electron microscopes (SEM), and Brunauer-Emmett-Teller analysis (BET), etc. Application of the P[D+COO-][Br-][DBUH+] series as catalysts in converting CO2 into cyclic carbonates showed that P[D+COO-][Br-][DBUH+]-2/1/0.6 was able to catalyze epiclorohydrin-CO2 cycloaddition the most efficiently. This afforded chloropropylene carbonate (CPC) in 98.4% yield with ≥ 99% selectivity in 24 hr under solvent- and additive-free conditions at atmospheric pressure. Reusability experiments showed that recycling of the catalyst 6 times only resulted in a slight decline in the catalytic performance. In addition, it could be used for the synthesis of a variety of differently substituted cyclic carbonates in good to excellent yields. Finally, key catalytic active sites were probed, and a reasonable mechanism was proposed accordingly. In summary, this work poses an efficient strategy for heterogenization of dual-ionic PILs and provides a mild and environmentally benign approach to the fixation and utilization of carbon dioxide.


Asunto(s)
Dióxido de Carbono , Carbonatos , Líquidos Iónicos , Líquidos Iónicos/química , Dióxido de Carbono/química , Carbonatos/química , Catálisis , Modelos Químicos
2.
Angew Chem Int Ed Engl ; : e202414872, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320976

RESUMEN

Ring-opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers' ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight-membered (3,4-COO) and five-membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five-membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4-COO) showed both high stereo- and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post-polymerization ring-opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.

3.
Polymers (Basel) ; 16(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39339066

RESUMEN

The possibility of producing and designing bio-epoxides based on the natural polyphenol lignin/epoxidized lignin and tannic acids for application as wood adhesives is presented in this work. Lignin and tannic acids contain numerous reactive hydroxyl phenolic moieties capable of being efficiently involved in the reaction with commercial epoxy resins as a substitute for commercial, non-environmentally friendly, toxic amine-based hardeners. Furthermore, lignin was epoxidized in order to obtain an epoxy lignin that can be a replacement for diglycidyl ether bisphenol A (DGEBA). Cross-linking of bio-epoxy epoxides was investigated via FTIR spectroscopy and their prospects for wood adhesive application were evaluated. This study determined that the curing reaction of epoxy resin can be conducted using lignin/epoxy lignin or tannic acid. Tensile shear strength testing results showed that lignin and tannic acid can effectively replace amine hardeners in epoxy resins. Examination of the failure of the samples showed that all samples had a 100% fracture through the wood. All samples of bio-epoxy adhesives displayed significant tensile shear strength in the range of 5.84-10.87 MPa. This study presents an innovative approach to creating novel cross-linked networks of eco-friendly and high-performance wood bio-adhesives.

4.
Adv Sci (Weinh) ; 11(32): e2403295, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39189457

RESUMEN

A series of new pyrazolate and mixed pyrazolate/pyrazole magnesium complexes is described and their reactivity toward carbon dioxide is examined. The dimeric complex [Mg(pzt Bu, t Bu)2]2 inserts CO2 instantly and quantitatively forming the tetrameric complex [Mg(CO2·pzt Bu, t Bu)2]4 and monomeric donor-stabilized [Mg(CO2·pzt Bu, t Bu)2(thf)2]. Complexes of the type [Mgx(pzR,R)2 x(HpzR,R)y]n (R = iPr, tBu) engage in similar insertion reactions involving dissociation of the carbamic acid HOOCpzR,R. Even solid polymeric derivatives [Mg(pzR,R)2]n (R = Me, H) react instantaneously and exhaustively with CO2, the resulting [Mg(CO2·pz)2]m featuring a CO2 capacity of 35.7 wt% (8.2 mmol g-1). All described magnesium pyrazolates display completely reversible CO2 uptake in solution and in the solid state, respectively, as monitored via VT 1H NMR and in situ FTIR spectroscopy as well as thermogravimetric analysis. Fluorinated [Mg2(pzCF3,CF3)4(thf)3] does not yield any isolable CO2 insertion product but exhibits the highest activity in the catalytic transformation of epoxides and CO2 to cyclic carbonates.

5.
Chemistry ; : e202402694, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109584

RESUMEN

Here, we introduce a new class of titanocene catalysts for epoxide hydrosilylation that frustrates their hydridicity and thereby emphasizes their electron transfer reactivity. This unique attenuation of hydridicity is accomplished by introducing Lewis acidic silicon centers to the cyclopentadienyl ligands for an intramolecular coordination of the titanium bound hydride. The superiority of our rationally designed catalysts over classic titanocenes with alkyl substituted cyclopentadienyl ligands is demonstrated in the dramatically improved regioselectivity of the hydrosilylation of monosubstituted epoxides to primary alcohols.

6.
Sci Rep ; 14(1): 17730, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085363

RESUMEN

This study explored the catalytic performance of two robust zirconium-based metal-organic frameworks (MOFs), MIP-202(Zr) and UiO-66-(CO2H)2 in the ring-opening of epoxides using alcohols and amines as nucleophilic reagents. The MOFs were characterized by techniques such as FT-IR, PXRD, FE-SEM, and EDX. Through systematic optimization of key parameters (catalyst amount, time, temperature, solvent), MIP-202(Zr) achieved 99% styrene oxide conversion in 25 min with methanol at room temperature using 5 mg catalyst. In contrast, UiO-66-(CO2H)2 required drastically harsher conditions of 120 min, 60 °C, and four times the catalyst loading to reach 98% conversion. A similar trend was observed for ring-opening with aniline -MIP-202(Zr) gave 93% conversion in one hour at room temperature, while UiO-66-(CO2H)2 needed two hours at 60 °C for 95% conversion. The superior performance of MIP-202(Zr) likely stems from cooperative Brønsted/Lewis acid sites and higher proton conductivity enabling more efficient epoxide activation. Remarkably, MIP-202(Zr) maintained consistent activity over five recycles in the ring-opening of styrene oxide by methanol and over three recycles in the ring-opening of styrene oxide by aniline. Testing various epoxide substrates and nucleophiles revealed trends in reactivity governed by electronic and steric effects. The results provide useful insights into tuning Zr-MOF-based catalysts and highlight the promise of the cost-effective and sustainable MIP-202(Zr) for diverse epoxide ring-opening reactions on an industrial scale.

7.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065396

RESUMEN

In this study, the impact of ethylene oxide, propylene oxide, 1,2-butene oxide, and 1,2-pentene oxide on the polymerization of propylene at an industrial level was investigated, focusing on their influence on the catalytic efficiency and the properties of polypropylene (PP) without additives. The results show that concentrations between 0 and 1.24 ppm of these epoxides negatively affect the reaction's productivity, the PP's mechanical properties, the polymer's fluidity index, and the PP's thermal properties. Fourier transform infrared spectroscopy (FTIR) revealed bands for the Ti-O bond and the Cl-Ti-O-CH2 bonds at 430 to 475 cm-1 and 957 to 1037 cm-1, respectively, indicating the interaction between the epoxides and the Ziegler-Natta catalyst. The thermal degradation of PP in the presence of these epoxides showed a similar trend, varying in magnitude depending on the concentration of the inhibitor. Sample M7, with 0.021 ppm propylene oxide, exhibited significant mass loss at both 540 °C and 600 °C, suggesting that even small concentrations of this epoxide can markedly increase the thermal degradation of PP. This pattern is repeated in samples with 1,2-butene oxide and 1,2-pentene oxide. These results highlight the need to strictly control the presence of impurities in PP production to optimize both the final product's quality and the polymerization process's efficiency.

8.
Biochem Pharmacol ; 225: 116266, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38710333

RESUMEN

Cancer continues to be a serious threat to human health worldwide. Lung, prostate and triple-negative breast cancers are amongst the most incident and deadliest cancers. Steroidal compounds are one of the most diversified therapeutic classes of compounds and they were proven to be efficient against several types of cancer. The epoxide function has been frequently associated with anticancer activity, particularly the 1,2-epoxide function. For this reason, three 1,2-epoxysteroid derivatives previously synthesised (EP1, EP2 and EP3) and one synthesised for the first time (oxysteride) were evaluated against H1299 (lung), PC3 (prostate) and HCC1806 (triple-negative breast) cancer cell lines. A human non-tumour cell line, MRC-5 (normal lung cell line) was also used. EP2 was the most active compound in all cell lines with IC50 values of 2.50, 3.67 and 1.95 µM, followed by EP3 with IC50 values of 12.65, 15.10 and 14.16 µM in H1299, PC3 and HCC1806 cells, respectively. Additional studies demonstrated that EP2 and EP3 induced cell death by apoptosis at lower doses and apoptosis/necrosis at higher doses, proving that their effects were dose-dependent. Both compounds also exerted their cytotoxicity by ROS production and by inducing double-strand breaks. Furthermore, EP2 and EP3 proved to be much less toxic against a normal lung cell line, MRC5, indicating that both compounds might be selective, and they also demonstrated suitable in silico ADME and toxicity parameters. Finally, none of the compounds induced haemoglobin release. Altogether, these results point out the extreme relevance of both compounds, especially EP2, in the potential treatment of these types of cancer.


Asunto(s)
Antineoplásicos , Compuestos Epoxi , Neoplasias Pulmonares , Neoplasias de la Próstata , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Compuestos Epoxi/farmacología , Compuestos Epoxi/química , Línea Celular Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Apoptosis/efectos de los fármacos , Esteroides/farmacología , Esteroides/química , Relación Dosis-Respuesta a Droga
9.
Angew Chem Int Ed Engl ; 63(28): e202404186, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38691059

RESUMEN

The introduction of nitrogen-containing functional groups to chiral polymer backbones enables the tailoring of physical properties and offers opportunities for further post-polymerization modification. However, the substrate scope of such polymers is extremely limited because monomers having nitrogen-containing groups can change coordination state with respect to the metal centers, thus decreasing the activity and enantioselectivity and even poisoning the catalyst completely. In this paper, we report our attempts to carry out the asymmetric copolymerization of meso-epoxide with highly reactive isocyanates. In particular, we found that biphenol-linked bimetallic Co(III) complexes with multiple chiral centers are very efficient in catalyzing this asymmetric copolymerization reaction, affording optically active polyurethanes with a completely alternating nature and a high enantioselectivity of up to 94 % ee. Crucially, we identified that the steric hindrance at the phenolate ortho position of the ligand strongly influences the catalytic activity and product enantioselectivity. In addition, density functional theory calculations revealed that the highly sterically bulky substituents change the mechanism from bimetallic to monometallic, and result in the unexpected inversion of the chiral induction direction. Moreover, the high stereoregularity of the produced polyurethanes enhances their thermal stability, and they can be selectively decomposed into oxazolidinones. This study offers a versatile methodology for the synthesis of chiral polymers containing nitrogen functionalities.

10.
Molecules ; 29(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38731627

RESUMEN

A concise synthesis of the sex pheromones of elm spanworm as well as painted apple moth has been achieved. The key steps were the alkylation of acetylide ion, Sharpless asymmetric epoxidation and Brown's P2-Ni reduction. This approach provided the sex pheromone of the elm spanworm (1) in 31% total yield and those of the painted apple moth (2, 3) in 26% and 32% total yields. The ee values of three final products were up to 99%. The synthesized pheromones hold promising potential for use in the management and control of these pests.


Asunto(s)
Compuestos Epoxi , Mariposas Nocturnas , Atractivos Sexuales , Animales , Atractivos Sexuales/síntesis química , Atractivos Sexuales/química , Compuestos Epoxi/química , Estructura Molecular
11.
EBioMedicine ; 103: 105127, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677183

RESUMEN

BACKGROUND: Obesity drives maladaptive changes in the white adipose tissue (WAT) which can progressively cause insulin resistance, type 2 diabetes mellitus (T2DM) and metabolic dysfunction-associated liver disease (MASLD). Obesity-mediated loss of WAT homeostasis can trigger liver steatosis through dysregulated lipid pathways such as those related to polyunsaturated fatty acid (PUFA)-derived oxylipins. However, the exact relationship between oxylipins and metabolic syndrome remains elusive and cross-tissue dynamics of oxylipins are ill-defined. METHODS: We quantified PUFA-related oxylipin species in the omental WAT, liver biopsies and plasma of 88 patients undergoing bariatric surgery (female N = 79) and 9 patients (female N = 4) undergoing upper gastrointestinal surgery, using UPLC-MS/MS. We integrated oxylipin abundance with WAT phenotypes (adipogenesis, adipocyte hypertrophy, macrophage infiltration, type I and VI collagen remodelling) and the severity of MASLD (steatosis, inflammation, fibrosis) quantified in each biopsy. The integrative analysis was subjected to (i) adjustment for known risk factors and, (ii) control for potential drug-effects through UPLC-MS/MS analysis of metformin-treated fat explants ex vivo. FINDINGS: We reveal a generalized down-regulation of cytochrome P450 (CYP)-derived diols during obesity conserved between the WAT and plasma. Notably, epoxide:diol ratio, indicative of soluble epoxide hydrolyse (sEH) activity, increases with WAT inflammation/fibrosis, hepatic steatosis and T2DM. Increased 12,13-EpOME:DiHOME in WAT and liver is a marker of worsening metabolic syndrome in patients with obesity. INTERPRETATION: These findings suggest a dampened sEH activity and a possible role of fatty acid diols during metabolic syndrome in major metabolic organs such as WAT and liver. They also have implications in view of the clinical trials based on sEH inhibition for metabolic syndrome. FUNDING: Wellcome Trust (PS3431_WMIH); Duke-NUS (Intramural Goh Cardiovascular Research Award (Duke-NUS-GCR/2022/0020); National Medical Research Council (OFLCG22may-0011); National Institute of Environmental Health Sciences (Z01 ES025034); NIHR Imperial Biomedical Research Centre.


Asunto(s)
Tejido Adiposo Blanco , Hígado Graso , Obesidad , Oxilipinas , Humanos , Obesidad/metabolismo , Obesidad/complicaciones , Femenino , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/etiología , Masculino , Oxilipinas/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/patología , Persona de Mediana Edad , Adulto , Inflamación/metabolismo , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Biomarcadores , Espectrometría de Masas en Tándem
12.
Polymers (Basel) ; 16(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38611226

RESUMEN

The improvement of sustainable chemical processes plays a pivotal role in safe environmental and societal development, for example, by reducing the use of hazardous substances, preventing chemical waste, and improving the efficiency of chemical reactions to obtain added-value compounds. In this context, the porous coordination polymer MOF-808 (MOF, metal-organic framework) was prepared by a straightforward method in water, at room temperature, and was unequivocally characterized by powder X-ray diffraction, vibrational spectroscopy, thermogravimetric analysis, and scanning electron microscopy. MOF-808 material was applied for the first time as catalysts in ring-opening aminolysis reactions of epoxides. It demonstrated high activity and selectivity for reactions of styrene oxide and cyclohexene oxide with aniline, using a very low amount of an eco-sustainable solvent (0.5 mL of EtOH), at 70 °C. Moreover, MOF-808 demonstrated high stability in the catalytic reaction conditions applied, and a notable reuse capacity of up to 20 consecutive reaction cycles, without significant variation in its catalytic performance. In fact, this Zr-based porous coordination polymer prepared by environment-friendly conditions proved to be a novel efficient heterogeneous catalyst, promoting the ring-opening reaction of epoxides under more sustainable conditions, and using a very low amount of catalyst.

13.
Macromol Rapid Commun ; 45(12): e2300716, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38497903

RESUMEN

Mesoionic N-heterocyclic olefins (mNHOs) have recently emerged as a novel class of highly nucleophilic and super-basic σ-donor compounds. Making use of these properties in synthetic polymer chemistry, it is shown that a combination of a specific mNHO and a Mg-based Lewis acid (magnesium bis(hexamethyldisilazide), Mg(HMDS)2) delivers poly(propylene oxide) in quantitative yields from the polymerization of the corresponding epoxide (0.1 mol% mNHO loading). The initiation mechanism involves monomer activation by the Lewis acid and direct ring-opening of the monomer by nucleophilic attack of the mNHO, forming a zwitterionic propagating species. Modulation of the mNHO properties is thereby a direct tool to impact initiation efficiency, revealing a sterically unencumbered triazole-derivative as particularly useful. The joint application of mNHOs together with borane-type Lewis acids is also outlined, resulting in high conversions and fast polymerization kinetics. Importantly, while molar mass distributions remain relatively broad, indicating faster propagation than initiation, the overall molar masses are significantly lower than found in the case of regular NHOs, underlining the increased nucleophilicity and ensuing improved initiation efficiency of mNHOs.


Asunto(s)
Alquenos , Compuestos Epoxi , Ácidos de Lewis , Polimerizacion , Ácidos de Lewis/química , Compuestos Epoxi/química , Alquenos/química , Compuestos Heterocíclicos/química , Estructura Molecular , Polímeros/química , Polímeros/síntesis química
14.
Adv Sci (Weinh) ; 11(14): e2308228, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326090

RESUMEN

Rising carbon dioxide (CO2) levels in the atmosphere are recognized as a threat to atmospheric stability and life. Although this greenhouse gas is being produced on a large scale, there are solutions to reduction and indeed utilization of the gas. Many of these solutions involve costly or unstable technologies, such as air-sensitive metal-organic frameworks (MOFs) for CO2 capture or "non-green" systems such as amine scrubbing. Conjugated microporous polymers (CMPs) represent a simpler, cheaper, and greener solution to CO2 capture and utilization. They are often easy to synthesize at scale (a one pot reaction in many cases), chemically and thermally stable (especially in comparison with their MOF and covalent organic framework (COF) counterparts, owing to their amorphous nature), and, as a result, cheap to manufacture. Furthermore, their large surface areas, tunable porous frameworks and chemical structures mean they are reported as highly efficient CO2 capture motifs. In addition, they provide a dual pathway to utilize captured CO2 via chemical conversion or electrochemical reduction into industrially valuable products. Recent studies show that all these attractive properties can be realized in metal-free CMPs, presenting a truly green option. The promising results in these two fields of CMP applications are reviewed and explored here.

15.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256094

RESUMEN

The fixation of carbon dioxide with epoxides is one of the most attractive methods for the green utilisation of this greenhouse gas and leads to many valuable chemicals. This process is characterised by 100% atom efficiency; however, an efficient catalyst is required to achieve satisfactory yields. Metal-organic frameworks (MOFs) are recognised as being extremely promising for this purpose. Nevertheless, many of the proposed catalysts are based on ions of rare elements or elements not entirely safe for the environment; this is notable with commercially unavailable ligands. In an effort to develop novel catalysts for CO2 fixation on an industrial scale, we propose novel MOFs, which consist of aluminium ions coordinated with commercially available 1,4-naphthalene dicarboxylic acid (Al@NDC) and their nanocomposites with gold nanoparticles entrapped inside their structure (AlAu@NDC). Due to the application of 4-amino triazole and 5-amino tetrazole as crystallization mediators, the morphology of the synthesised materials can be modified. The introduction of gold nanoparticles (AuNPs) into the structure of the synthesised Al-based MOFs causes the change in morphology from nano cuboids to nanoflakes, simultaneously decreasing their porosity. However, the homogeneity of the nanostructures in the system is preserved. All synthesised MOF materials are highly crystalline, and the simulation of PXRD patterns suggests the same tetragonal crystallographic system for all fabricated nanomaterials. The fabricated materials are proven to be highly efficient catalysts for carbon dioxide cycloaddition with a series of model epoxides: epichlorohydrin; glycidol; styrene oxide; and propylene oxide. Applying the synthesised catalysts enables the reactions to be performed under mild conditions (90 °C; 1 MPa CO2) within a short time and with high conversion and yield (90% conversion of glycidol towards glycerol carbonate with 89% product yield within 2 h). The developed nanocatalysts can be easily separated from the reaction mixture and reused several times (both conversion and yield do not change after five cycles). The excellent performance of the fabricated catalytic materials might be explained by their high microporosity (from 421 m2 g-1 to 735 m2 g-1); many catalytic centres in the structure exhibit Lewis acids' behaviour, increased capacity for CO2 adsorption, and high stability. The presence of AuNPs in the synthesised nanocatalysts (0.8% w/w) enables the reaction to be performed with a higher yield within a shorter time; this is especially important for less-active epoxides such as propylene oxide (two times higher yield was obtained using a nanocomposite, in comparison with Al-MOF without nanoparticles).


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Propanoles , Dióxido de Carbono , Oro , Aluminio , Compuestos Epoxi , Iones
16.
J Biomol Struct Dyn ; 42(4): 1733-1750, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37114441

RESUMEN

COVID-19, the disease responsible for the recent pandemic, is caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The main protease (Mpro) of SARS-CoV-2 is an essential proteolytic enzyme that plays a number of important roles in the replication of the virus in human host cells. Blocking the function of SARS-CoV-2 Mpro offers a promising and targeted, therapeutic option for the treatment of the COVID-19 infection. Such an inhibitory strategy is currently successful in treating COVID-19 under FDA's emergency use authorization, although with limited benefit to the immunocompromised along with an unfortunate number of side effects and drug-drug interactions. Current COVID vaccines protect against severe disease and death but are mostly ineffective toward long COVID which has been seen in 5-36% of patients. SARS-CoV-2 is a rapidly mutating virus and is here to stay endemically. Hence, alternate therapeutics to treat SARS-CoV-2 infections are still needed. Moreover, because of the high degree of conservation of Mpro among different coronaviruses, any newly developed antiviral agents should better prepare us for potential future epidemics or pandemics. In this paper, we first describe the design and computational docking of a library of novel 188 first-generation peptidomimetic protease inhibitors using various electrophilic warheads with aza-peptide epoxides, α-ketoesters, and ß-diketones identified as the most effective. Second-generation designs, 192 compounds in total, focused on aza-peptide epoxides with drug-like properties, incorporating dipeptidyl backbones and heterocyclic ring motifs such as proline, indole, and pyrrole groups, yielding 8 hit candidates. These novel and specific inhibitors for SARS-CoV-2 Mpro can ultimately serve as valuable alternate and broad-spectrum antivirals against COVID-19.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Humanos , SARS-CoV-2 , Simulación de Dinámica Molecular , Síndrome Post Agudo de COVID-19 , Antivirales/farmacología , Antivirales/química , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Péptidos , Compuestos Epoxi , Simulación del Acoplamiento Molecular
17.
Materials (Basel) ; 16(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38138762

RESUMEN

Considering the increased anthropogenic emissions of CO2 into the atmosphere, it is important to develop economic incentives for the use of CO2 capture methodologies. The conversion of CO2 into heterocyclic carbonates shows significant potential. However, there is a need for suitable organocatalysts to reach the required efficiency for these reactions. Given this, there has been an increasing focus on the development of organocatalytic systems consisting of a nucleophile and a hydrogen bond donor (HBD) so that CO2 conversion can occur in ambient conditions. In this work, we evaluated the potential of fluorescent carbon dots (CDs) as catalytic HBDs in the ring-opening reaction of epoxides, which is typically the rate-limiting step of CO2 conversion reactions into heterocyclic carbonates. The obtained results demonstrated that the CDs had a relevant catalytic effect on the studied model reaction, with a rate constant of 0.2361 ± 0.008 h-1, a percentage of reactant conversion of 70.8%, and a rate constant enhancement of 32.2%. These results were better than the studied alternative molecular HBDs. Thus, this study demonstrated that CDs have the potential to be used as HBDs and employed in organocatalyzed CO2 conversion into value-added products.

18.
Free Radic Res ; : 1-48, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124354

RESUMEN

Immense gains in understanding of mechanisms and effects of lipid oxidation have been achieved in the nearly 90 years over which lipid oxidation has been an active research focus. Even so, the substantial questions still being raised about lipid oxidation in this special issue show clearly that missing pieces remain and must be considered for full accounting of this important reaction in any system. In this context, epoxides are spotlighted as a critical overlooked product of lipid autoxidation - underestimated in analysis, underestimated in presence as a functionally active and competitive intermediate and product of lipid oxidation, and underestimated in potential contributions to impact of lipid oxidation on other molecules and cell functions. Logical reasons for ignoring or not finding epoxides are offered in historical development of lipid oxidation knowledge. Reactions generating lipid epoxides in autoxidation are reviewed, limitations in detecting and tracking epoxides are outlined to explain why epoxides may not be detected when they should be present, and justifications for increased research and analysis of epoxides are argued. The main goal is to provide a context for recognizing epoxides as critical products that must be accounted for in determining the state rather than extent of lipid oxidation and in tracking its consequences in oils, foods, personal care products, and tissues. A secondary goal is to stimulate new research using contemporary analyses to fill in the gaps of knowledge about epoxide formation, structure, and reactions in lipid autoxidation.

19.
Proc Natl Acad Sci U S A ; 120(46): e2312907120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37922331

RESUMEN

Metallosurfactants, defined here as hydrophobic metal-containing groups embedded in hydrophilic units when dispersed in water, emanate in the formation of metallomicelles. This approach continues to attract great interest for its ability to serve as micellar catalysts for various metal-mediated chemical transformations in water. Indeed, relevant to green chemistry, micellar catalysis plays a preeminent function as a replacement for organic solvents in a variety of chemical reactions. There are several methods for the interaction of metal complexes (catalysts or catalyst precursors) and surfactants for producing micellar aggregates. A very effective manner for achieving this involves the direct bonding of the metal center to the amphiphilic polymeric materials. Herein, we describe the synthesis of a metallosurfactant containing a palladium complex covalently incorporated into a CO2-based triblock polycarbonate derived using a dicarboxylic acid chain-transfer agent. This amphiphilic polycarbonate was shown to self-assemble in water to provide uniform and spherical micelles, where the catalytic metal center is located in the hydrophobic portion of the micelle. The resulting metallosurfactant was demonstrated to effectively catalyze carbon-carbon coupling reactions at very low catalyst loadings.

20.
Chempluschem ; 88(12): e202300559, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37815112

RESUMEN

Cyclic carbonates have received significant interests for uses as reagents, solvents, and monomers. The coupling reaction of epoxides with carbon dioxide (CO2 ) to produce cyclic carbonate is an attractive route which can significantly reduce greenhouse gas emissions and environmental hazards. Herein, a series of five indium chloride complexes supported by inden Schiff-base ligands were reported along with four X-ray crystal structures. The constrained five-membered rings were added to the ligands to enhance the coordination of epoxides to the In metal. From the catalyst screening, In inden complex having tert-butyl substituents and propylene backbone in combination with tetrabutylammonium bromide (TBAB) exhibited the highest catalytic activity (TON up to 1017) for propylene oxide/CO2 coupling reaction with >99 % selectivity for cyclic carbonate under solvent-free conditions. In addition, the catalyst was shown to be active at atmospheric pressure of CO2 at room temperature. The catalyst system can be applied to various internal and terminal epoxide substrates to exclusively produce the corresponding cyclic carbonates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA