Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1033-1043, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884238

RESUMEN

Quercus myrsinifolia is one of the dominant species in the evergreen broad-leaf forest on the southern slope of Shennongjia. The study of spatial distribution pattern and spatial correlation of Q. myrsinifolia population will help to understand population development and potential ecological processes, as well as the structure and biodiversity maintenance mechanism of evergreen broad-leaf forests at the northern edge of the subtropics. Based on forest dynamic monitoring data from one 1 hm2 permanent plot on the southern slope of Shennongjia, we employed pair correlation functions g(r) and marked correlation functions to analyze the diameter structure of the Q. myrsinifolia population, spatial distribution patterns at different diameter classes, and intraspecific and interspecific spatial associations. The results showed that diameter structure of Q. myrsinifolia population exhibited an inverted 'J'-shaped distribution, suggesting a healthy regeneration status and belonging to a growing population type. The spatial distribution showed a decreasing trend in aggregation with increasing diameter. Positive correlations among individuals strengthened with closer diameter classes, while weakening with larger diameter differences. Interspecific spatial associations showed an increasing correlation of Q. myrsinifolia with understory dominant species with increasing spatial scales, but no correlation was observed with canopy-dominant species. Our results suggested that the spatial pattern of Q. myrsinifolia populations on the southern slope of Shennongjia was mainly influenced by habitat filtering, seed dispersal limitation, and intraspecific and interspecific competition. Furthermore, the adaptive strategies of Q. myrsinifolia varied when they coexisted with different species.


Asunto(s)
Ecosistema , Dinámica Poblacional , Quercus , Análisis Espacial , China , Quercus/crecimiento & desarrollo , Biodiversidad , Bosques
2.
Plants (Basel) ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674515

RESUMEN

Arguments about the origin and evolution of the evergreen broad-leaved forests in East Asia exist generally, and are even contradictory in some cases. The origin and evolution of the flora of East Asia, especially in the evolutionary process, the formation time of the Asian monsoon, the implications of phylogenetic and biogeographic studies on some important taxa, and the implications of palaeobotanical evidence are debatable. Most research from different disciplines suggests that the monsoon in the Miocene was key to the diversification of East Asian flora and its evergreen broad-leaved forests. The common view is that the evergreen broad-leaved forests of East Asia are closely related to the monsoon's intensity and developments, which were caused by the uplift of Himalaya-Tibet during or after the mid-Miocene. Analysis of the floristic elements show that the present subtropical evergreen broad-leaved forests in East Asia could have an early or ancient tropical origin and a tropical Asian affinity, but that their species are dominated by endemic Chinese or East Asian ones, many of which have tropical Asian affinity or are tropical sister species. The time of Himalayan uplift and the intensity of the monsoon climate are believed to be key to the formation of the evergreen broad-leaved forests in East Asia. Combined with existing paleobotanical findings, the uplift of the Himalayas and the formation of the monsoon climate, as well as floristic elements of the subtropical evergreen broad-leaved forests, we believe that they evolved from an Asian tropical rainforest after the mid-Miocene in the southeastern region of East Asia, while the ancient subtropical evergreen broad-leaved forests in the southwestern region continuously evolved into the present subtropical ones.

3.
BMC Plant Biol ; 24(1): 168, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438905

RESUMEN

BACKGROUND: Forests are essential for maintaining species diversity, stabilizing local and global climate, and providing ecosystem services. Exploring the impact of paleogeographic events and climate change on the genetic structure and distribution dynamics of forest keystone species could help predict responses to future climate change. In this study, we combined an ensemble species distribution model (eSDM) and multilocus phylogeography to investigate the spatial genetic patterns and distribution change of Quercus glauca Thunb, a keystone of East Asian subtropical evergreen broad-leaved forest. RESULTS: A total of 781 samples were collected from 77 populations, largely covering the natural distribution of Q. glauca. The eSDM showed that the suitable habitat experienced a significant expansion after the last glacial maximum (LGM) but will recede in the future under a general climate warming scenario. The distribution centroid will migrate toward the northeast as the climate warms. Using nuclear SSR data, two distinct lineages split between east and west were detected. Within-group genetic differentiation was higher in the West than in the East. Based on the identified 58 haplotypes, no clear phylogeographic structure was found. Populations in the Nanling Mountains, Wuyi Mountains, and the southwest region were found to have high genetic diversity. CONCLUSIONS: A significant negative correlation between habitat stability and heterozygosity might be explained by the mixing of different lineages in the expansion region after LGM and/or hybridization between Q. glauca and closely related species. The Nanling Mountains may be important for organisms as a dispersal corridor in the west-east direction and as a refugium during the glacial period. This study provided new insights into spatial genetic patterns and distribution dynamics of Q. glauca.


Asunto(s)
Ecosistema , Quercus , Quercus/genética , Filogeografía , Bosques , Cambio Climático
4.
Ecol Evol ; 13(10): e10607, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37881223

RESUMEN

Beta-diversity, or the spatio-temporal variation in community composition, can be partitioned into turnover and nestedness components in a multidimensional framework. Forest structure, including comprehensive characteristics of vertical and horizontal complexity, strongly affects species composition and its spatial variation. However, the effects of forest structure on beta-diversity patterns in multidimensional and multiple-scale contexts are poorly understood. Here, we assessed beta-diversity at local (a 20-ha forest dynamics plot) and regional (a plot network composed of 19 1-ha plots) scales in a Chinese subtropical evergreen broad-leaved forest. We then evaluated the relative importance of forest structure, topography, and spatial structure on beta-diversity and its turnover and nestedness components in taxonomic, functional, and phylogenetic dimensions at local and regional scales. We derived forest structural parameters from both unmanned aerial vehicle light detection and ranging (UAV LiDAR) data and plot inventory data. Turnover component dominated total beta-diversity for all dimensions at the two scales. With the exception of some components (taxonomic and functional turnover at the local scale; functional nestedness at the regional scale), environmental factors (i.e., topography and forest structure) contributed more than pure spatial variation. Explanations of forest structure for beta-diversity and its component patterns at the local scale were higher than those at the regional scale. The joint effects of spatial structure and forest structure influenced component patterns in all dimensions (except for functional turnover) to some extent at the local scale, while pure forest structure influenced taxonomic and phylogenetic nestedness patterns to some extent at the regional scale. Our results highlight the importance and scale dependence of forest structure in shaping multidimensional beta-diversity and its component patterns. Clearly, further studies need to link forest structure directly to ecological processes (e.g., asymmetric light competition and disturbance dynamics) and explore its roles in biodiversity maintenance.

5.
Ying Yong Sheng Tai Xue Bao ; 34(5): 1161-1168, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37236931

RESUMEN

Temperature lapse rate (TLR), measured as the degree of temperature change along an altitudinal gradient, is a key indicator of multiple ecological processes of mountain systems. Although many studies have examined temperature changes of open air or near-surface along altitudes, we know little about altitudinal variations of soil temperature, which play an important role in regulating growth and reproduction of organisms, as well as ecosystem nutrient cycling. Based on temperature data of near-surface (15 cm above ground) and soil layers (8 cm below ground) from 12 sampling sites of subtropical forest along an altitudinal gradient (300-1300 m) in Jiangxi Guan-shan National Nature Reserve from September 2018 to August 2021, we calculated the lapse rates of mean, maximum, and minimum temperatures, as well as accumulated temperatures by using simple linear regression for both near-surface and soil temperature. The seasonal dynamics of aforementioned variables were also evaluated. The results showed that there were large differences among mean, maximum, and minimum lapse rates for annual near-surface temperature, which were 0.38, 0.31 and 0.51 ℃·(100 m)-1, respectively. But little variation was documented for soil temperature which were 0.40, 0.38 and 0.42 ℃·(100 m)-1, respectively. The seasonal variations of temperature lapse rates for near-surface and soil layers were minor except for minimum temperature. The lapse rates of minimum temperature were deeper in spring and winter for near-surface and in spring and autumn for soil layers. For growing degree days (GDD), the accumulated temperature under both layers were negatively correlated with altitude, and the lapse rates of ≥5 ℃ were 163 ℃·d·(100 m)-1 for near-surface and 179 ℃·d·(100 m)-1 for soil. The ≥5 ℃ GDD in soil were about 15 days longer than that in near-surface at the same altitude. The results showed inconsistent patterns of altitudinal variations between near-surface and soil temperature. Soil temperature and its lapse rates had minor seasonal variations compared with the near-surface counterparts, which was related to the strong buffering capacity of soil.


Asunto(s)
Ecosistema , Suelo , Temperatura , Estaciones del Año , Bosques , Altitud , China
6.
Animals (Basel) ; 13(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37106857

RESUMEN

Landscape context can reflect the habitat structure and play an important role in bird species occurrences and abundance. For local biodiversity conservation and restoration, we examined the effects of landscape context on bird communities at different altitude gradients. Our study was conducted in four altitude gradients (<300 m, 300-599 m, 600-899 m, 900-1200 m) of subtropical evergreen broad-leaved forest in Wuyishan National Park, China. The bird survey was carried out in 115 transects in spring, summer, autumn and winter. We examined the effects of altitude, season and landscape context. The result showed that (1) species richness and abundance at <300 m altitude were highest among the four altitude gradients, and they showed more significant differences than those at other altitude gradients; (2) the species richness of birds was associated with altitude, season and landscape context, as the season is more significant than other explanatory variables; (3) at the landscape level, habitat configuration is more important. The average canopy height and contagion index positively correlated with the species richness and abundance of birds at all four altitude gradients. In particular, the average canopy height is significant at 300-599 m and 600-899 m altitude gradients. The study results can provide a theoretical basis and guidance for future national park conservation and management and ecological restoration in the subtropical evergreen broad-leaved forest regions.

7.
Front Plant Sci ; 13: 1033731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36507462

RESUMEN

The recalcitrant understory fern layer is an important ecological filter for seedling regeneration, yet how the fern layer influences seedling regeneration dynamics remains unclear. Here we transplanted 576 seedlings of four dominant tree species, Castanopsis fargesii, Lithocarpus glaber, Schima superba and Hovenia acerba, to the treatments of Diplopterygium glaucum retention and removal under an evergreen broad-leaved forest in eastern China. We monitored the survival, growth and biomass data of these seedlings for 28 months, and then used generalized linear mixed models to evaluate the treatment effects on seedling survival, growth, biomass and root-shoot ratio. Our results showed that fern retention significantly inhibited the seedling establishment of all four species. During the seedling development stage, the seedling relative growth rate of L. glaber decreased under fern retention, which was not the case for the other three species. Root-shoot ratio of C. fargesii and L. glaber increased significantly under fern retention. Our findings provide new evidence of the filtering effect of a recalcitrant fern understory. Notably, we observed that the response of tree seedlings to the recalcitrant fern understory was more sensitive in the establishment stage. Finally, our work highlights that the filtering effect of the recalcitrant fern understory changes depending on the regeneration stages, and that shade-tolerant species, C. fargesii and L. glaber were even more affected by fern disturbed habitats, suggesting that effective management should attempt to curb forest fern outbreaks, thus unblocking forest recruitment.

8.
Ecol Evol ; 12(9): e9323, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36177111

RESUMEN

Neutral-theory-based stochastic and niche-theory-based determinative processes are commonly used to explain the mechanisms of natural community assembly. However, considerable uncertainty remains regarding the relative importance of different ecological processes in shaping forest communities. Functional traits and phylogeny provide important information about plant environmental adaptation strategies and evolutionary history and promise a better mechanistic and predictive understanding of community assembly. Based on nine leaf functional traits and phylogenetic data of 18 dominant species in a Lithocarpus glaber-Cyclobalanopsis glauca evergreen broad-leaved forest, we analyzed the variation in traits, explored the influence of phylogeny and environment on leaf traits, and distinguished the relative effects of spatial and environmental variables on functional traits and phylogenetic compositions. The results showed the following: (i) Leaf traits had moderate intraspecific variation, and significant interspecific variation existed especially among life forms. (ii) Significant phylogenetic signals were detected only in leaf thickness and leaf area. The correlations among traits both supported "the leaf economics spectrum" at the species and community levels, and the relationships significantly increased or only a little change after removing the phylogenetic influence, which showed a lack of consistency between the leaf functional trait patterns and phylogenetic patterns. We infer the coexistent species tended to adopt "realism" to adapt to their habitats. (iii) Soil total potassium and phosphorus content, altitude, aspect, and convexity were the most critical environmental factors affecting functional traits and phylogenetic composition. Total environmental and spatial variables explained 63.38% of the variation in functional trait composition and 47.96% of the variation in phylogenetic structures. Meanwhile, the contribution of pure spatial factors was significantly higher than that of the pure environment. Stochastic processes played dominant roles in driving community functional trait assembly, but determinative processes such as environmental filtering had a stronger effect on shaping community phylogenetic structure at a fine scale.

9.
PeerJ ; 9: e11553, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34131527

RESUMEN

Elevation is important for determining the nutrient biogeochemical cycle in forest ecosystems. Changes in the ecological stoichiometry of nutrients along an elevation gradient can be used to predict how an element cycle responds in the midst of global climate change. We investigated changes in concentrations of and relationships between nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) in the leaves and roots of the dominant tree species, Castanopsis fargesii, along an elevation gradient (from 500 to 1,000 m above mean sea level) in a subtropical natural forest in China. We analyzed correlations between C. fargesii's above-ground biomass and stoichiometry with environmental factors. We also analyzed the soil and plant stoichiometry of this C. fargesii population. Our results showed that leaf N decreased while leaf K and Ca increased at higher elevations. Meanwhile, leaf P showed no relationship with elevation. The leaf N:P indicated that C. fargesii was limited by N. Elevation gradients contributed 46.40% of the total variance of ecological stoichiometry when assessing environmental factors. Our research may provide a theoretical basis for the biogeochemical cycle along with better forest management and fertilization for this C. fargesii population.

10.
Ying Yong Sheng Tai Xue Bao ; 31(6): 1909-1915, 2020 Jun.
Artículo en Chino | MEDLINE | ID: mdl-34494743

RESUMEN

The numerical classification and ordination of plant communities can reveal the relationship between plant distribution and environment, with implications on vegetation restoration and forest management. Community types were classified using a clustering method based on 45 forest dynamic plots with each area of 0.04 hm2 in Wuchaoshan, Hangzhou, Zhejiang Province, China. The ordination of plant community and the relationship between communities and edaphic variables (soil nutrient availability and topography) were explored using redundancy analysis. Results showed there were three community types in the study area, including Schima superba community type, Quercus fabri-Symplocos anomala community type, and Cyclobalanopsis glauca community type. Stem density and basal area of trees were not significantly different among those community types. Species richness in the C. glauca community was higher than that in S. superba community, but not significantly different from the Q. fabri-S. anomala community. Results from the redundancy analysis showed that community distribution was significantly related to edaphic factors. Topographic and soil factors accounted for 46.4% of the total variation in community distribution while total soil phosphorus, available phosphorus, available potassium, elevation, slope, aspect, and canopy openness had significant effects on community composition. Total soil phosphorus, available potassium, and altitude were the main factors influencing community distribution in Wuchaoshan. 53.6% of the total variation in community distribution were not explained, perhaps due to anthropogenic disturbance.


Asunto(s)
Bosques , Theaceae , China , Suelo , Árboles
11.
Proc Biol Sci ; 285(1885)2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135164

RESUMEN

Forest ecosystems are an integral component of the global carbon cycle as they take up and release large amounts of C over short time periods (C flux) or accumulate it over longer time periods (C stock). However, there remains uncertainty about whether and in which direction C fluxes and in particular C stocks may differ between forests of high versus low species richness. Based on a comprehensive dataset derived from field-based measurements, we tested the effect of species richness (3-20 tree species) and stand age (22-116 years) on six compartments of above- and below-ground C stocks and four components of C fluxes in subtropical forests in southeast China. Across forest stands, total C stock was 149 ± 12 Mg ha-1 with richness explaining 28.5% and age explaining 29.4% of variation in this measure. Species-rich stands had higher C stocks and fluxes than stands with low richness; and, in addition, old stands had higher C stocks than young ones. Overall, for each additional tree species, the total C stock increased by 6.4%. Our results provide comprehensive evidence for diversity-mediated above- and below-ground C sequestration in species-rich subtropical forests in southeast China. Therefore, afforestation policies in this region and elsewhere should consider a change from the current focus on monocultures to multi-species plantations to increase C fixation and thus slow increasing atmospheric CO2 concentrations and global warming.


Asunto(s)
Biodiversidad , Secuestro de Carbono , Bosques , Árboles/fisiología , China , Factores de Tiempo
12.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2149-2155, 2018 Jul.
Artículo en Chino | MEDLINE | ID: mdl-30039651

RESUMEN

Subtropical evergreen broad-leaved forests were selected along an urban (Guangzhou) - suburban (Dinghushan) - rural (Huaiji) gradient in the Pearl River Delta, from which soil samples in different layers were collected. The changes in total organic carbon (TOC), recalcitrant organic carbon (ROC), and active organic carbon (AOC) including readily oxidizable organic carbon (ROOC), microbial biomass carbon (MBC), and water-soluble organic carbon (WSOC) of samples were examined along this urbanization gradient to reveal the influence of urbanization on forest soil organic carbon. Results showed that no significant differences in both TOC and ROC contents were observed in 0-5 cm soil layer along the gradient. In 5-60 cm soil layer, the TOC content was significantly higher in the rural forest than that in the suburban and urban forests, the ROC content was the highest in the suburban forest and no significant difference was observed between the urban and rural forests. The ROOC content was significantly lower in the suburban forest than in the rural (0-60 cm soil layer) and urban (0-10 cm soil layer) forests. The MBC content was significantly lower in the urban forest than that in the suburban and rural forests. The suburban forest had significantly lower WSOC than the urban forest (0-10 cm soil layer). In 0-20 cm layer, the percentage of AOC to TOC of the urban and rural forests was significantly higher than those of the suburban forest, while the percentage of ROC to TOC was the lowest in the rural forest. The significant difference in the percentage of ROC to TOC was only observed in 5-10 cm depth layer between the suburban and urban forests. The results indicated that urbanization increased the active components of soil organic carbon and reduced the stable ones, which could be detrimental to organic carbon accumulation in soils. The rural forest soils were more sensitive to the urbanization.


Asunto(s)
Carbono/análisis , Bosques , Urbanización , Biomasa , Carbono/química , China , Suelo/química
13.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2139-2148, 2018 Jul.
Artículo en Chino | MEDLINE | ID: mdl-30039650

RESUMEN

Selecting the optimal sample size accurately is important for improving the measurement precision of soil physicochemical properties. In this study, we examined the within-site heterogeneity of soil physical and chemical properties in an evergreen broad-leaved forest and a Chinese fir (Cunninghamia lanceolata) plantation in subtropical China. We applied both traditional and bootstrapping technique to determine the optimal sample size, the number of observation (n), for predicting soil nutrient content with an allowable error of 10% at a 95% confidence level for both forest types. The results showed that soil pH and C/N had low variation, while the soil nutrients had a moderate variation in both forests. The coefficients of variation (CV) of total element concentration in the evergreen broad-leaved forest, such as total carbon and total nitrogen, were significantly larger than those in the Chinese fir plantation, while the CVs of available nutrients were similar between two forests. The evaluation error of all soil properties in two forests showed a stable trend after a sharp decline with the increase of sample size. The mean values also changed from violent fluctuation to stable, and extravagant sample could not effectively improve the accuracy of mean value measurement. The sample sizes of soil water content, total carbon, total nitrogen, nitrate (NO3--N), total potassium, total calcium, and total magnesium in the evergreen broad-leaved forest were signifi-cantly larger than those in the Chinese fir plantation, while the sample size for ammonium (NH4+-N) showed opposite pattern, and the others had no significant difference. In addition, the sample sizes of different soil physicochemical properties varied significantly in the same forest. The available elements, such as NH4+-N and NO3--N, needed a larger sample size than total elements in both forests. Accordingly, we proposed that the heterogeneity and sample size of soil physicochemical properties should be considered before soil survey. An adequate sample size may be varied according to the purpose of sample and the site-specific variation of soil characters.


Asunto(s)
Bosques , Suelo/química , China , Cunninghamia , Nitrógeno , Árboles
14.
Ying Yong Sheng Tai Xue Bao ; 29(7): 2243-2250, 2018 Jul.
Artículo en Chino | MEDLINE | ID: mdl-30039662

RESUMEN

To examine the effects of nitrogen and sulfur deposition on litter decomposition rate, a one-year field experiment was conducted with the litter bag method from April 2013 to April 2014 in an evergreen broad-leaved forest in the Rainy Area of Western China. There were nine treatments with three nitrogen levels and three sulfur levels, including control (CK), low nitrogen deposition (LN, 50 kg N·hm-2·a-1), high nitrogen deposition (HN, 150 kg N·hm-2·a-1), low sulfur deposition (LS, 200 kg S·hm-2·a-1), high sulfur deposition (HS, 400 kg S·hm-2·a-1), low nitrogen and low sulfur deposition (LNLS), high nitrogen and low sulfur deposition (HSLS), low nitrogen and high sulfur deposition (LNHS), and high nitrogen and high sulfur deposition (HNHS). The results showed that the leaf litter residual rate ranged from 57.0% to 70.7% after one year decomposition. The time of half mass loss ranged from 1.47 to 2.08 years, while the time of 95% mass loss ranged from 6.33 to 9.01 years. Nitrogen deposition had no significant effect on litter decomposition rate. The decomposition rate was significantly increased in LS treatment but significan-tly reduced in HS treatment. The rate was significantly affected by LNHS and HNHS, but unaffected by LNLS and HNLS. In addition, simulated nitrogen and sulfur deposition interacted to affect litter decomposition rate, with antagonistic effects between nitrogen deposition and low-sulfur composite deposition and synergistic effects between nitrogen deposition and high-sulfur composite deposition. In conclusion, sulfur deposition and the combined nitrogen and sulfur deposition affected leaf litter decomposition rate in the evergreen broad-leaved forest, with consequences on the litter decomposition process.


Asunto(s)
Bosques , Nitrógeno/análisis , Azufre/análisis , China , Hojas de la Planta , Lluvia , Suelo , Árboles
15.
Int J Syst Evol Microbiol ; 67(11): 4639-4645, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28984557

RESUMEN

A Gram-stain-negative, rod-shaped, aerobic, non-motile bacterial strain, 4GSH07T, was originally isolated from the monsoon evergreen broad-leaved forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China (112° 31' E 23° 10' N). It grew optimally at 28-33 °C and pH 4.0. The 16S rRNA gene sequence analysis showed that strain 4GSH07T had the highest sequence similarity of 94.0 % to Parasegetibacter terrae JCM 19942T, and formed an independent lineage separable from other described genera of the family Chitinophagaceae. The main fatty acids (>5 %) were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 0 3-OH, summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c) and C15 : 0 2-OH. The organism contained MK-7 as the predominant respiratory quinone, and the total DNA G+C content was 50.3 mol%. The phenotypic, chemotaxonomic and phylogenetic data showed consistently that strain 4GSH07T represents a novel species of a novel genus of the family Chitinophagaceae, for which the name Puia dinghuensis gen. nov., sp. nov., is proposed, with 4GSH07T (=CGMCC 1.15448T=LMG 29214T) as the type strain.


Asunto(s)
Bacteroidetes/clasificación , Bosques , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , China , ADN Bacteriano/genética , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
16.
Ying Yong Sheng Tai Xue Bao ; 28(10): 3155-3162, 2017 Oct.
Artículo en Chino | MEDLINE | ID: mdl-29692132

RESUMEN

The effects of Phyllostachys edulis and Oligostachyum oedogonatum expansion on species diversity of broad-leaved forests were investigated in Wuyishan National Nature Reserve, Jiangxi Province, China. Ph. edulis and/or O. oedogonatum expansion changed community structure and species composition. The co expansion of the two bamboos in high intensity (Ph. edulis was 30-50 ind·100 m-2, O. oedogonatum was 300-500 ind·100 m-2) changed the density ratio of arbor and shrub from 2:8 to 1:9, and density ratio of bamboo and tree from 0:10 to 9:1. The main effects of Ph. edulis and O. oedogonatum on the species diversity were significant. Ph. edulis mainly influe-nced arbor layer, while O. oedogonatum influenced shrub layer more, and the interaction effect of two bamboos was not remarkable. There existed addition effects between Ph. edulis and O. oedogonatum on species diversity. The co-occurrence of two bamboos in high intensity decreased the Shannon index of community by 91.3%. Ph. edulis and O. oedogonatum did not compete obviously unless in high density. It was addition effect rather than interaction effect that changed the community structure and reduced species diversity when broad leaved forest suffered invasion by Ph. edulis and O. oedogonatum.


Asunto(s)
Biodiversidad , Bosques , Poaceae , China , Árboles
17.
Ying Yong Sheng Tai Xue Bao ; 28(1): 12-18, 2017 Jan.
Artículo en Chino | MEDLINE | ID: mdl-29749183

RESUMEN

To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m-2·a-1), low nitrogen (L, 5 g N·m-2·a-1), medium nitrogen (M, 15 g N·m-2·a-1), and high nitrogen (H, 30 g N·m-2·a-1). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.


Asunto(s)
Bosques , Nitrógeno , Suelo , Biomasa , Carbono , China , Microbiología del Suelo
18.
Plant Divers ; 38(3): 142-148, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30159458

RESUMEN

Yunnan's biodiversity is under considerable pressure and subtropical evergreen broad-leaved forests in this area have become increasingly fragmented through agriculture, logging, planting of economic plants, mining activities and changing environment. The aims of the study are to investigate climate change-induced changes of subtropical evergreen broad-leaved forests in Yunnan and identify areas of current species richness centers for conservation preparation. Stacked species distribution models were created to generate ensemble forecasting of species distributions, alpha diversity and beta diversity for Yunnan's subtropical evergreen broad-leaved forests in both current and future climate scenarios. Under stacked species distribution models in rapid climate changes scenarios, changes of water-energy dynamics may possibly reduce beta diversity and increase alpha diversity. This point provides insight for future conservation of evergreen broad-leaved forest in Yunnan, highlighting the need to fully consider the problem of vegetation homogenization caused by transformation of water-energy dynamics.

19.
Plant Divers ; 38(6): 295-302, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30159481

RESUMEN

The upper montane evergreen broad-leaved forest in Yunnan occurs mainly in the zone of persistent cloud and has a discontinuous, island-like, distribution. It is diverse, rich in endemic species, and likely to be sensitive to climate change. Six 1-ha sampling plots were established across the main distribution area of the upper montane evergreen broad-leaved forest in Yunnan. All trees with d.b.h. > 1 cm in each plot were identified. Patterns of seed plant distributions were quantified at the specific, generic and family levels. The forests are dominated by the families Fagaceae, Lauraceae, Theaceae and Magnoliaceae, but are very diverse with only a few species shared between sites. Floristic similarities at the family and generic level were high, but they were low at the specific level, with species complementarity between plots. Diversity varied greatly among sites, with greater species richness and more rare species in western Yunnan than central Yunnan. The flora is dominated by tropical biogeographical elements, mainly the pantropic and the tropical Asian distributions at the family and genus levels. In contrast, at the species level, the flora is dominated by the southwest or the southeast China distributions, including Yunnan endemics. This suggests that the flora of the upper montane forest in Yunnan could have a tropical floristic origin, and has adapted to cooler temperatures with the uplift of the Himalayas. Due to great sensitivity to climate, high endemism and species complementarity, as well as the discontinuous, island-like, distribution patterns of the upper montane forest in Yunnan, the regional conservation of the forest is especially needed.

20.
Ying Yong Sheng Tai Xue Bao ; 27(5): 1368-1374, 2016 May.
Artículo en Chino | MEDLINE | ID: mdl-29732796

RESUMEN

In order to detect the effects of simulated nitrogen deposition on litter decomposition and degradation of lignin and cellulose, a one-year field experiment of simulated nitrogen deposition has been conducted using litter bag method from November 2013 to November 2014 in an evergreen broad-leaved forest, Rainy Area of West China. Four levels of nitrogen deposition were set, i.e., control (0 g N·m-2·a-1), low (5 g N·m-2·a-1), medium (15 g N·m-2·a-1) and high (30 g N·m-2·a-1) nitrogen deposition. The results indicated that foliar litter decomposed faster in summer, obviously faster than in the other seasons. N deposition significantly inhibited the decomposition of foliar litter in this evergreen broad-leaved forest. As N deposition increased, the inhibition effect was enhanced. The time of 95% mass loss (T95%) of foliar litter due to simulated N deposition was increased by 0.53-1.88 years compared with T95% of control (4.81 years). N deposition significantly inhibited the degradation of lignin and cellulose. The mass remaining after one year of decomposition of lignin and cellulose in the medium and high nitrogen deposition treatments were significantly higher than that in the control. There was a significant positive linear relationship among mass remaining rate and lignin and cellulose remaining rates. The inhibiting effects of inorga-nic N on degradation of lignin and cellulose explained the inhibitory effect of N on foliar litter decomposition.


Asunto(s)
Celulosa/química , Bosques , Lignina/química , Nitrógeno/química , Hojas de la Planta/química , China , Lluvia , Estaciones del Año , Suelo , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA