Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 573
Filtrar
1.
Front Microbiol ; 15: 1420305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165571

RESUMEN

The gut microbiome plays important roles in metabolic and immune system related to the health of host. This study applied non-invasive sampling and 16S rDNA high-throughput sequencing to study the gut microbiota structure of red pandas (Ailurus fulgens) for the first time under different geographical latitudes in captivity. The results showed that the two predominant phyla Firmicutes (59.30%) and Proteobacteria (38.58%) constituted 97.88% of the total microbiota in all the fecal samples from north group (red pandas from Tianjin Zoo and Jinan Zoo) and south group (red pandas from Nanjing Hongshan Forest Zoo). The relative abundance of Cyanobacteria in north group was significantly higher than that in south group. At the genus level, Escherichia-Shigella (24.82%) and Clostridium_sensu_stricto_1 (23.00%) were common dominant genera. The relative abundance of norank_f__norank_o__Chloroplast, Terrisporobacter and Anaeroplasma from south group was significantly higher than that of north group. Alpha and Beta analysis consistently showed significant differences between north group and south group, however, the main functions of intestinal microbiota were basically the same, which play an important role in metabolic pathways, biosynthesis of secondary metabolites, microbial metabolism in different environments, and amino acid biosynthesis. The variations in gut microbiota between the northern and southern populations of the same species, both kept in captivity, which are primarily driven by significant differences in climate and diet. These findings provide a deeper understanding of the gut microbiota in red pandas and have important implications for their conservation, particularly in optimizing diet and environmental conditions in captivity.

2.
J Wildl Dis ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39166333

RESUMEN

During the opening of diplomatic relations in the 1990s, South Africa gifted 20 southern white rhinoceros (Ceratotherium simum simum) to Kenya. The species is not indigenous to Kenya, and management of the introduction was not clearly addressed in the legislation. Responsibility was left to the private sector and local authorities. Ten of the animals were introduced to land contiguous with the Maasai Mara National Reserve, an area with tsetse-trypanosomiasis challenges, and with rare cases of human sleeping sickness. Mortalities had been previously documented when indigenous naïve black rhinoceros were introduced to areas with tsetse; hence there was no consensus on the management of this introduction. Feasibility was only explored once before with the introduction of two animals in a monitored and managed translocation from Lewa Downs, Laikipia in 1992-1994. Ultimately, Kenyan experts were co-opted to address risk after trypanosomiasis occurred in many animals. Unfortunately, this finding was followed by gradual mortalities of most rhinoceros with only a few being saved by removal to highland private sanctuaries. This event was complicated by many factors. Samples were only sporadically collected, and mainly from sick animals. With no clear responsibility by government agencies, a collaboration between veterinarians and researchers resulted in characterization of the disease challenge, and when invited, assessment of health status. Laboratory diagnostics revealed common and sometimes severe infections with Trypanosoma brucei, a normally infrequent trypanosome. Infection was associated with disturbances in erythropoiesis, especially anemia. Symptoms varied from sudden death associated with intestinal atony, to a semiparalyzed animal that was partially responsive to treatment for trypanosomes. This event should be used as a caution to future movements of this species that are planned or ongoing in Africa, for conservation or other purposes.

3.
J Fluoresc ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172326

RESUMEN

A fixed Nd3+ and varied Yb3+ ion concentration were incorporated in a Zinc-Silicate (SZNYX) composite solution using ex-situ sol-gel solution to fabricate a novel thin film (TF) on Si (100)-substrate. The upconversion luminescence (UCL) spectra of the thin films were measured under 980 nm laser excitation, with the most optimized result for Yb3+ ion concentration of 1.5 mol%. Additionally, a 2-D photoluminescence (PL) confocal mapping of the SZNY15-TF material confirmed uniform PL distribution throughout the space under the same excitation wavelength. Structural characterization via XRD revealed the tetragonal Zn2SiO4 nano-crystalline nature of the film at three distinct annealing temperatures. Morphological characterization using the Field-emission scanning electron Microscope (FESEM) coupled with energy dispersion spectrometer (EDS) affirmed the nanoflower structure and the purity of doping purity in the samples, respectively. These findings collectively confirm the promising UCL properties of the SZNYX-TF samples, suggesting potential applications in photonic.

4.
Artif Organs ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39157933

RESUMEN

BACKGROUND: Ex vivo machine perfusion (EVMP) has been established to extend viability of donor organs. However, EVMP protocols are inconsistent. We hypothesize that there is a significant relationship between specific parameters during EVMP and perfusion outcomes. METHODS: A meta-analysis of literature was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement. The search encompassed articles published before July 25, 2023. PubMed, Embase, and CENTRAL databases were screened using search terms "ex-vivo," "ex-situ," "machine," and "perfusion." Weight gain, an indicator of organ viability, was chosen to compare outcomes. Extracted variables included perfused organ, warm and cold ischemia time before perfusion, perfusion duration, perfusate flow, pressure, temperature, perfusate composition (presence of cellular or acellular oxygen carrier, colloids, and other supplements) and percent weight change. Data were analyzed using SPSS statistical software. RESULTS: Overall, 44 articles were included. Red blood cell-based perfusates resulted in significantly lower weight gain compared to acellular perfusates without oxygen carriers (11.3% vs. 27.0%, p < 0.001). Hemoglobin-based oxygen carriers resulted in significantly lower weight gain compared to acellular perfusates (16.5% vs. 27%, p = 0.006). Normothermic perfusion led to the least weight gain (14.6%), significantly different from hypothermic (24.3%) and subnormothermic (25.0%) conditions (p < 0.001), with no significant difference between hypothermic and subnormothermic groups (24.3% vs. 25.0%, p = 0.952). There was a positive correlation between flow rate and weight gain (ß = 13.1, R = 0.390, p < 0.001). CONCLUSIONS: Oxygen carriers, low flow rates, and normothermic perfusate temperature appear to improve outcomes in EVMP. These findings offer opportunities for improving organ transplantation outcomes.

5.
Transpl Int ; 37: 12982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055346

RESUMEN

Ex situ heart perfusion (ESHP) has emerged as an important strategy to preserve donation after brain death (DBD) and donation after circulatory death (DCD) donor hearts. Clinically, both DBD and DCD hearts are successfully preserved using ESHP. Viability assessment is currently based on biochemical values, while a reliable method for graft function assessment in a physiologic working mode is unavailable. As functional assessment during ESHP has demonstrated the highest predictive value of outcome post-transplantation, this is an important area for improvement. In this study, a novel method for ex situ assessment of left ventricular function with pressure-volume loop analyses is evaluated. Ovine hearts were functionally evaluated during normothermic ESHP with the novel pressure-volume loop system. This system provides an afterload and adjustable preload to the left ventricle. By increasing the preload and measuring end-systolic elastance, the system could successfully assess the left ventricular function. End-systolic elastance at 60 min and 120 min was 2.8 ± 1.8 mmHg/mL and 2.7 ± 0.7 mmHg/mL, respectively. In this study we show a novel method for functional graft assessment with ex situ pressure-loop analyses during ESHP. When further validated, this method for pressure-volume assessments, could be used for better graft selection in both DBD and DCD donor hearts.


Asunto(s)
Trasplante de Corazón , Preservación de Órganos , Función Ventricular Izquierda , Animales , Ovinos , Función Ventricular Izquierda/fisiología , Preservación de Órganos/métodos , Donantes de Tejidos , Modelos Animales , Perfusión/métodos , Presión Ventricular , Prueba de Estudio Conceptual , Corazón/fisiología
7.
Microorganisms ; 12(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39065187

RESUMEN

The long-tailed goral is close to extinction, and ex situ conservation is essential to prevent this phenomenon. Studies on the gut microbiome of the long-tailed goral are important for understanding the ecology of this species. We amplified DNA from the 16S rRNA regions and compared the microbiomes of wild long-tailed gorals and two types of captive long-tailed gorals. Our findings revealed that the gut microbiome diversity of wild long-tailed gorals is greatly reduced when they are reared in captivity. A comparison of the two types of captive long-tailed gorals confirmed that animals with a more diverse diet exhibit greater gut microbiome diversity. Redundancy analysis confirmed that wild long-tailed gorals are distributed throughout the highlands, midlands, and lowlands. For the first time, it was revealed that the long-tailed goral are divided into three groups depending on the height of their habitat, and that the gut bacterial community changes significantly when long-tailed gorals are raised through ex situ conservation. This provides for the first time a perspective on the diversity of food plants associated with mountain height that will be available to long-tailed goral in the future.

8.
J Surg Case Rep ; 2024(6): rjae410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38868544

RESUMEN

Echinococcus multilocularis, the fox dwarf tapeworm, causes alveolar echinococcosis (AE), a critical and life-threatening condition. A radical surgical approach represents the only curative option. In this case study, we present a 37-year-old man diagnosed with extensive hepatic AE requiring ex-situ extended right-sided liver resection including the caudate lobe and retro-hepatic vena cava. The left liver segments were auto-transplanted with reconstruction of the left hepatic vein and an inferior vena cava graft. In the post-operative course, the patient developed a bile leak, which was successfully managed with endoscopic stent intervention. He was discharged after a three-week hospitalization. Medical treatment with albendazole was initiated preoperatively and continued postoperatively.

9.
Plants (Basel) ; 13(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38931107

RESUMEN

The National Park of Gran Sasso and Monti della Laga (PNGSL) is located in Central Italy and covers an area of 143.311 ha across three administrative regions (Abruzzo, Marche, and Lazio). It is the protected area hosting the highest number of vascular plants in both Europe and the Mediterranean basin. The plan of the park recognizes the need to establish a list of plants of conservation interest to prioritize for protection. The aim of this study is to identify plants (vascular and bryophytes) for inclusion on a protection list, taking into account their phytogeographic importance as well as the threat of extinction, and subsequently propose an original categorization (protection classes) suggesting specific conservation actions and measures. We used original criteria to select plants of conservation interest among the 2678 plant taxa listed in the national park. We identified 564 vascular plant species and subspecies (including nine hybrids) and one bryophyte to be included in the proposed protection list. The case study of the PNGSL could be a model for other protected areas.

10.
J Hered ; 115(5): 575-587, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38881254

RESUMEN

Strong gene flow from outcrossing relatives tends to blur species boundaries, while divergent ecological selection can counteract gene flow. To better understand how these two forces affect the maintenance of species boundaries, we focused on a species complex including a rare species, maple-leaf oak (Quercus acerifolia), which is found in only four disjunct ridges in Arkansas. Its limited range and geographic proximity to co-occurring close relatives create the possibility for genetic swamping. In this study, we gathered genome-wide single nucleotide polymorphisms (SNPs) using restriction-site-associated DNA sequencing (RADseq) from 190 samples of Q. acerifolia and three of its close relatives, Q. shumardii, Q. buckleyi, and Q. rubra. We found that Q. shumardii and Q. acerifolia are reciprocally monophyletic with low support, suggesting incomplete lineage sorting, introgression between Q. shumardii and Q. acerifolia, or both. Analyses that model allele distributions demonstrate that admixture contributes strongly to this pattern. Populations of Q. acerifolia experience gene flow from Q. shumardii and Q. rubra, but we found evidence that divergent selection is likely maintaining species boundaries: 1) ex situ collections of Q. acerifolia have a higher proportion of hybrids compared to the mature trees of the wild populations, suggesting ecological selection against hybrids at the seed/seedling stage; 2) ecological traits co-vary with genomic composition; and 3) Q. acerifolia shows genetic differentiation at loci hypothesized to influence tolerance of radiation, drought, and high temperature. Our findings strongly suggest that in maple-leaf oak, selection results in higher divergence at regions of the genome despite gene flow from close relatives.


Asunto(s)
Flujo Génico , Polimorfismo de Nucleótido Simple , Quercus , Selección Genética , Quercus/genética , Genética de Población , Arkansas , Filogenia , Genoma de Planta
11.
Appl Plant Sci ; 12(3): e11589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912126

RESUMEN

Premise: Although ex situ collections of threatened plants are most useful when they contain maximal genetic variation, the conservation and maintenance of genetic diversity in collections are often poorly known. We present a case study using population genomic analyses of an ex situ collection of Karomia gigas, a critically endangered tropical tree from Tanzania. Only ~43 individuals are known in two wild populations, and ex situ collections containing 34 individuals were established in two sites from wild-collected seed. The study aimed to understand how much diversity is represented in the collection, analyze the parentage of ex situ individuals, and identify efficient strategies to capture and maintain genetic diversity. Methods: We genotyped all known individuals using a 2b-RADseq approach, compared genetic diversity in wild populations and ex situ collections, and conducted parentage analysis of the collections. Results: Wild populations were found to have greater levels of genetic diversity than ex situ populations as measured by number of private alleles, number of polymorphic sites, observed and expected heterozygosity, nucleotide diversity, and allelic richness. In addition, only 32.6% of wild individuals are represented ex situ and many individuals were found to be the product of selfing by a single wild individual. Discussion: Population genomic analyses provided important insights into the conservation of genetic diversity in K. gigas, identifying gaps and inefficiencies, but also highlighting strategies to conserve genetic diversity ex situ. Genomic analyses provide essential information to ensure that collections effectively conserve genetic diversity in threatened tropical trees.

12.
Appl Plant Sci ; 12(3): e11561, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912130

RESUMEN

Premise: In this study, we use simulations to determine how pollen flow and sampling constraints can influence the genetic conservation found in seed collections. Methods: We simulated genotypes of parental individuals and crossed the parentals based on three different ranges of pollen flow (panmictic, limited, and highly limited) to create new seed sets for sampling. We tested a variety of sampling scenarios modeled on those occurring in nature and calculated the proportion of alleles conserved in each scenario. Results: We found that pollen flow greatly influences collection outcomes, with panmictic pollen flow resulting in seed sets containing 21.6% more alleles than limited pollen flow and 48.6% more alleles than highly limited pollen flow, although this impact diminishes when large numbers of maternal plants are sampled. Simulations of realistic seed sampling (sampling more seed from some plants and fewer from others) showed a relatively minor impact (<2.5%) on genetic diversity conserved compared to ideal sampling (uniform sampling across all maternal plants). Discussion: We conclude that future work must consider limited pollen flow, but collectors can be flexible with their sampling in the field as long as many unique maternal plants are sampled. Simulations remain a fruitful method to advance ex situ sampling guidelines.

13.
Angew Chem Int Ed Engl ; 63(30): e202405344, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-38753429

RESUMEN

Peptide cyclization has dramatic effects on a variety of important properties, enhancing metabolic stability, limiting conformational flexibility, and altering cellular entry and intracellular localization. The hydrophilic, polyfunctional nature of peptides creates chemoselectivity challenges in macrocyclization, especially for natural sequences without biorthogonal handles. Herein, we describe a gaseous sulfonyl chloride derived reagent that achieves amine-amine, amine-phenol, and amine-aniline crosslinking through a minimalist linchpin strategy that affords macrocyclic urea or carbamate products. The cyclization reaction is metal-mediated and involves a novel application of sulfine species that remains unexplored in aqueous or biological contexts. The aqueous method delivers unique cyclic or bicyclic topologies directly from a variety of natural bioactive peptides without the need for protecting-group strategies.


Asunto(s)
Aminas , Ciclización , Aminas/química , Péptidos/química , Gases/química , Péptidos Cíclicos/química , Péptidos Cíclicos/síntesis química , Indicadores y Reactivos/química
14.
Appl Spectrosc ; 78(7): 680-691, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38717618

RESUMEN

Oxidized organosulfur compounds and, in particular, sulfoxides are of interest as solvents in the semiconductor and pharmaceutical industry, environmental contaminants, and simulants in deactivation of chemical warfare agents. An experimental study is reported of the interaction of porphyrin aluminum metal-organic framework Al-MOF-TCPPH2 (Compound 2) with diethyl sulfoxide (DESO) in pure form and in aqueous solution. First, the suitability of Compound 2 as sorbent in aqueous solution was assessed; namely, its long-term stability (up to 15 days) in liquid water has been investigated at room temperature and under stirring. Here, a novel facile spectroscopic method has been used, a periodic micro-sampling of sorbent from suspension, followed by vacuum mini-filtration and an ex situ time-dependent attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) analysis. Next, the interaction of Compound 2 with pure liquid DESO under ambient conditions was investigated, which yields the stoichiometric adsorption complex (Al-MOF-TCPPH2)1(DESO)2 denoted Compound 3. In this adsorption complex, molecules of DESO interact with the OH group and carboxylate group of the sorbent. Then, the removal of DESO from Compound 3 was assessed, using facile treatment with warm water in the micro Soxhlet apparatus followed by the ATR FT-IR analysis. Finally, Compound 2 was tested in sorption of DESO from diluted aqueous solution. In the initial step, the sorption proceeds very quickly (in <1 min the concentration of DESO decreases by about 20%) followed by a much slower step. The maximum amount of adsorbed DESO corresponds to half of the amount adsorbed from pure DESO as found by the high-performance liquid chromatography-ultraviolet detection method. This adsorbed amount corresponds to 1 mol DESO adsorbate per mol of sorbent. Porphyrin aluminum metal-organic framework Compound 2 is promising for the removal of DESO from diluted aqueous solution, and it is of interest for the removal of similar oxidized organosulfur compounds.

15.
Artif Organs ; 48(7): 794-799, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38693706

RESUMEN

The American Transplant Congress (ATC) 2023, held in San Diego, California, emerged as a pivotal platform showcasing the latest advancements in organ machine perfusion, a key area in solid organ and tissue transplantation. This year's congress, attended by over 4500 participants, including leading experts, emphasized innovations in machine perfusion technologies across various organ types, including liver, kidney, heart, and lung. A total of 85 abstracts on organ machine perfusion were identified. Noteworthy advancements included the use of normothermic machine perfusion in mitigating ex-situ reperfusion injury in liver transplantation, the potential of biomarkers in assessing organ quality, and the impact of machine perfusion on graft survival and ischemic cholangiopathy incidence. Kidney transplantation saw promising developments in novel preservation methods, such as subzero storage and pulsatile perfusion. Heart and lung sessions revealed significant progress in preservation techniques, including metabolic alterations to extend organ preservation time. The conference also highlighted the growing interest in machine perfusion applications in pediatric transplantation, multi-visceral organ recovery, Vascularized Composite Allotransplantation, and discussions on novel technologies for monitoring and optimizing perfusion protocols. Additionally, ATC 2023 included critical discussions on ethical concerns, legal implications, and the evolving definition of death in the era of machine preservation, illustrating the complex landscape of transplantation science. Overall, ATC 2023 showcased significant strides in machine perfusion and continued its tradition of fostering global knowledge exchange, further cementing machine perfusion's role as a transformative force in improving transplant outcomes and expanding the donor pool.


Asunto(s)
Preservación de Órganos , Trasplante de Órganos , Perfusión , Humanos , Preservación de Órganos/métodos , Preservación de Órganos/instrumentación , Trasplante de Órganos/métodos , Perfusión/métodos , Perfusión/instrumentación
16.
Int J Biol Macromol ; 269(Pt 1): 131951, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38710253

RESUMEN

Bacterial nanocellulose (BNC) is a promising material for heart valve prostheses. However, its low strength properties limit its applicability in cardiovascular surgery. To overcome these limitations, the mechanical properties of BNC can be improved through modifications. The aim of the research was to investigate the extent to which the mechanical properties of BNC can be altered by modifying its structure during its production and after synthesis. The study presents the results of various analyses, including tensile tests, nanoindentation tests, X-ray diffraction (XRD) tests, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy, conducted on BNC chemically modified in situ with hyaluronic acid (BNC/HA) and physically modified ex situ through a dehydration/rehydration process (BNC 25DR, BNC105DR, BNC FDR and BNC/HA 25DR, BNC/HA 105DR, BNC/HA FDR). The results demonstrate that both chemical and physical modifications can effectively shape the mechanical properties of BNC. These modifications induce changes in the crystalline structure, pore size and distribution, and residual stresses of BNC. Results show the effect of the crystalline structure of BNC on its mechanical properties. There is correlation between hardness and Young's modulus and Iα/Iß index for BNC/HA and between creep rate of BNC/HA, and Young's modulus for BNC vs Iα/Iß index.


Asunto(s)
Celulosa , Celulosa/química , Prótesis Valvulares Cardíacas , Resistencia a la Tracción , Difracción de Rayos X , Nanoestructuras/química , Espectroscopía Infrarroja por Transformada de Fourier , Ensayo de Materiales , Ácido Hialurónico/química , Fenómenos Mecánicos , Válvulas Cardíacas/química
17.
ACS Nano ; 18(19): 12284-12294, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38698720

RESUMEN

Multiwall WS2 nanotubes have been synthesized from W18O49 nanowhiskers in substantial amounts for more than a decade. The established growth model is based on the "surface-inward" mechanism, whereby the high-temperature reaction with H2S starts on the nanowhisker surface, and the oxide-to-sulfide conversion progresses inward until hollow-core multiwall WS2 nanotubes are obtained. In the present work, an upgraded in situ SEM µReactor with H2 and H2S sources has been conceived to study the growth mechanism in detail. A hitherto undescribed growth mechanism, named "receding oxide core", which complements the "surface-inward" model, is observed and kinetically evaluated. Initially, the nanowhisker is passivated by several WS2 layers via the surface-inward reaction. At this point, the diffusion of H2S through the already existing outer layers becomes exceedingly sluggish, and the surface-inward reaction is slowed down appreciably. Subsequently, the tungsten suboxide core is anisotropically volatilized within the core close to its tips. The oxide vapors within the core lead to its partial out-diffusion, partially forming a cavity that expands with reaction time. Additionally, the oxide vapors react with the internalized H2S gas, forming fresh WS2 layers in the cavity of the nascent nanotube. The rate of the receding oxide core mode increases with temperatures above 900 °C. The growth of nanotubes in the atmospheric pressure flow reactor is carried out as well, showing that the proposed growth model (receding oxide core) is also relevant under regular reaction parameters. The current study comprehensively explains the WS2 nanotube growth mechanism, combining the known model with contemporary insight.

18.
J Am Heart Assoc ; 13(8): e033503, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38606732

RESUMEN

BACKGROUND: Cardiac donation after circulatory death is a promising option to increase graft availability. Graft preservation with 30 minutes of hypothermic oxygenated perfusion (HOPE) before normothermic machine perfusion may improve cardiac recovery as compared with cold static storage, the current clinical standard. We investigated the role of preserved nitric oxide synthase activity during HOPE on its beneficial effects. METHODS AND RESULTS: Using a rat model of donation after circulatory death, hearts underwent in situ ischemia (21 minutes), were explanted for a cold storage period (30 minutes), and then reperfused under normothermic conditions (60 minutes) with left ventricular loading. Three cold storage conditions were compared: cold static storage, HOPE, and HOPE with Nω-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor). To evaluate potential confounding effects of high coronary flow during early reperfusion in HOPE hearts, bradykinin was administered to normalize coronary flow to HOPE levels in 2 additional groups (cold static storage and HOPE with Nω-nitro-L-arginine methyl ester). Cardiac recovery was significantly improved in HOPE versus cold static storage hearts, as determined by cardiac output, left ventricular work, contraction and relaxation rates, and coronary flow (P<0.05). Furthermore, HOPE attenuated postreperfusion calcium overload. Strikingly, the addition of Nω-nitro-L-arginine methyl ester during HOPE largely abolished its beneficial effects, even when early reperfusion coronary flow was normalized to HOPE levels. CONCLUSIONS: HOPE provides superior preservation of ventricular and vascular function compared with the current clinical standard. Importantly, HOPE's beneficial effects require preservation of nitric oxide synthase activity during the cold storage. Therefore, the application of HOPE before normothermic machine perfusion is a promising approach to optimize graft recovery in donation after circulatory death cardiac grafts.


Asunto(s)
Trasplante de Corazón , Animales , Ratas , Humanos , Trasplante de Corazón/métodos , Óxido Nítrico , Donantes de Tejidos , Perfusión/métodos , Óxido Nítrico Sintasa
19.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673737

RESUMEN

Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.


Asunto(s)
Trasplante de Corazón , Humanos , Trasplante de Corazón/métodos , Preservación de Órganos/métodos , Obtención de Tejidos y Órganos/métodos , Animales , Perfusión/métodos , Donantes de Tejidos , Metabolismo Energético
20.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652092

RESUMEN

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Asunto(s)
Vesículas Extracelulares , Trasplante de Corazón , Macrófagos , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Ratas , Macrófagos/metabolismo , Masculino , Trasplante de Corazón/métodos , Glucosa/metabolismo , Miocardio/metabolismo , Modelos Animales de Enfermedad , Recuperación de la Función , Glucólisis , Corazón/fisiopatología , Corazón/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA