Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
1.
Neural Netw ; 181: 106754, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39362185

RESUMEN

Accurate segmentation of thyroid nodules is essential for early screening and diagnosis, but it can be challenging due to the nodules' varying sizes and positions. To address this issue, we propose a multi-attention guided UNet (MAUNet) for thyroid nodule segmentation. We use a multi-scale cross attention (MSCA) module for initial image feature extraction. By integrating interactions between features at different scales, the impact of thyroid nodule shape and size on the segmentation results has been reduced. Additionally, we incorporate a dual attention (DA) module into the skip-connection step of the UNet network, which promotes information exchange and fusion between the encoder and decoder. To test the model's robustness and effectiveness, we conduct the extensive experiments on multi-center ultrasound images provided by 17 local hospitals. The model is trained using the federal learning mechanism to ensure privacy protection. The experimental results show that the Dice scores of the model on the data sets from the three centers are 0.908, 0.912 and 0.887, respectively. Compared to existing methods, our method demonstrates higher generalization ability on multi-center datasets and achieves better segmentation results.

2.
Euro Surveill ; 29(38)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39301744

RESUMEN

BackgroundThe wide application of machine learning (ML) holds great potential to improve public health by supporting data analysis informing policy and practice. Its application, however, is often hampered by data fragmentation across organisations and strict regulation by the General Data Protection Regulation (GDPR). Federated learning (FL), as a decentralised approach to ML, has received considerable interest as a means to overcome the fragmentation of data, but it is yet unclear to which extent this approach complies with the GDPR.AimOur aim was to understand the potential data protection implications of the use of federated learning for public health purposes.MethodsBuilding upon semi-structured interviews (n = 14) and a panel discussion (n = 5) with key opinion leaders in Europe, including both FL and GDPR experts, we explored how GDPR principles would apply to the implementation of FL within public health.ResultsWhereas this study found that FL offers substantial benefits such as data minimisation, storage limitation and effective mitigation of many of the privacy risks of sharing personal data, it also identified various challenges. These challenges mostly relate to the increased difficulty of checking data at the source and the limited understanding of potential adverse outcomes of the technology.ConclusionSince FL is still in its early phase and under rapid development, it is expected that knowledge on its impracticalities will increase rapidly, potentially addressing remaining challenges. In the meantime, this study reflects on the potential of FL to align with data protection objectives and offers guidance on GDPR compliance.


Asunto(s)
Salud Pública , Humanos , Europa (Continente) , Investigación Cualitativa , Aprendizaje Automático , Seguridad Computacional , Difusión de la Información
3.
J Med Imaging (Bellingham) ; 11(5): 054502, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39308760

RESUMEN

Purpose: Distributed learning is widely used to comply with data-sharing regulations and access diverse datasets for training machine learning (ML) models. The traveling model (TM) is a distributed learning approach that sequentially trains with data from one center at a time, which is especially advantageous when dealing with limited local datasets. However, a critical concern emerges when centers utilize different scanners for data acquisition, which could potentially lead models to exploit these differences as shortcuts. Although data harmonization can mitigate this issue, current methods typically rely on large or paired datasets, which can be impractical to obtain in distributed setups. Approach: We introduced HarmonyTM, a data harmonization method tailored for the TM. HarmonyTM effectively mitigates bias in the model's feature representation while retaining crucial disease-related information, all without requiring extensive datasets. Specifically, we employed adversarial training to "unlearn" bias from the features used in the model for classifying Parkinson's disease (PD). We evaluated HarmonyTM using multi-center three-dimensional (3D) neuroimaging datasets from 83 centers using 23 different scanners. Results: Our results show that HarmonyTM improved PD classification accuracy from 72% to 76% and reduced (unwanted) scanner classification accuracy from 53% to 30% in the TM setup. Conclusion: HarmonyTM is a method tailored for harmonizing 3D neuroimaging data within the TM approach, aiming to minimize shortcut learning in distributed setups. This prevents the disease classifier from leveraging scanner-specific details to classify patients with or without PD-a key aspect for deploying ML models for clinical applications.

4.
Comput Struct Biotechnol J ; 23: 3281-3287, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39296807

RESUMEN

In recent years, decentralized machine learning has emerged as a significant advancement in biomedical applications, offering robust solutions for data privacy, security, and collaboration across diverse healthcare environments. In this review, we examine various decentralized learning methodologies, including federated learning, split learning, swarm learning, gossip learning, edge learning, and some of their applications in the biomedical field. We delve into the underlying principles, network topologies, and communication strategies of each approach, highlighting their advantages and limitations. Ultimately, the selection of a suitable method should be based on specific needs, infrastructures, and computational capabilities.

5.
Entropy (Basel) ; 26(9)2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39330053

RESUMEN

Federated learning (FL) facilitates the collaborative optimization of fault diagnosis models across multiple clients. However, the performance of the global model in the federated center is contingent upon the effectiveness of the local models. Low-quality local models participating in the federation can result in negative transfer within the FL framework. Traditional regularization-based FL methods can partially mitigate the performance disparity between local models. Nevertheless, they do not adequately address the inconsistency in model optimization directions caused by variations in fault information distribution under different working conditions, thereby diminishing the applicability of the global model. This paper proposes a federated adversarial fault diagnosis method driven by fault information discrepancy (FedAdv_ID) to address the challenge of constructing an optimal global model under multiple working conditions. A consistency evaluation metric is introduced to quantify the discrepancy between local and global average fault information, guiding the federated adversarial training mechanism between clients and the federated center to minimize feature discrepancy across clients. In addition, an optimal aggregation strategy is developed based on the information discrepancies among different clients, which adaptively learns the aggregation weights and model parameters needed to reduce global feature discrepancy, ultimately yielding an optimal global model. Experiments conducted on benchmark and real-world motor-bearing datasets demonstrate that FedAdv_ID achieves a fault diagnosis accuracy of 93.09% under various motor operating conditions, outperforming model regularization-based FL methods by 17.89%.

6.
Entropy (Basel) ; 26(9)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39330095

RESUMEN

Federated learning enables multiple devices to collaboratively train a high-performance model on the central server while keeping their data on the devices themselves. However, due to the significant variability in data distribution across devices, the aggregated global model's optimization direction may differ from that of the local models, making the clients lose their personality. To address this challenge, we propose a Bidirectional Decoupled Distillation For Heterogeneous Federated Learning (BDD-HFL) approach, which incorporates an additional private model within each local client. This design enables mutual knowledge exchange between the private and local models in a bidirectional manner. Specifically, previous one-way federated distillation methods mainly focused on learning features from the target class, which limits their ability to distill features from non-target classes and hinders the convergence of local models. To solve this limitation, we decompose the network output into target and non-target class logits and distill them separately using a joint optimization of cross-entropy and decoupled relative-entropy loss. We evaluate the effectiveness of BDD-HFL through extensive experiments on three benchmarks under IID, Non-IID, and unbalanced data distribution scenarios. Our results show that BDD-HFL outperforms state-of-the-art federated distillation methods across five baselines, achieving at most 3% improvement in average classification accuracy on the CIFAR-10, CIFAR-100, and MNIST datasets. The experiments demonstrate the superiority and generalization capability of BDD-HFL in addressing personalization challenges in federated learning.

7.
Curr Med Imaging ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39297463

RESUMEN

BACKGROUND: Brain tumours represent a diagnostic challenge, especially in the imaging area, where the differentiation of normal and pathologic tissues should be precise. The use of up-to-date machine learning techniques would be of great help in terms of brain tumor identification accuracy from MRI data. Objective This research paper aims to check the efficiency of a federated learning method that joins two classifiers, such as convolutional neural networks (CNNs) and random forests (R.F.F.), with dual U-Net segmentation for federated learning. This procedure benefits the image identification task on preprocessed MRI scan pictures that have already been categorized. METHODS: In addition to using a variety of datasets, federated learning was utilized to train the CNN-RF model while taking data privacy into account. The processed MRI images with Median, Gaussian, and Wiener filters are used to filter out the noise level and make the feature extraction process easy and efficient. The surgical part used a dual U-Net layout, and the performance assessment was based on precision, recall, F1-score, and accuracy. RESULTS: The model achieved excellent classification performance on local datasets as CRPs were high, from 91.28% to 95.52% for macro, micro, and weighted averages. Throughout the process of federated averaging, the collective model outperformed by reaching 97% accuracy compared to those of 99%, which were subjected to different clients. The correctness of how data is used helps the federated averaging method convert individual model insights into a consistent global model while keeping all personal data private. CONCLUSION: The combined structure of the federated learning framework, CNN-RF hybrid model, and dual U-Net segmentation is a robust and privacypreserving approach for identifying MRI images from brain tumors. The results of the present study exhibited that the technique is promising in improving the quality of brain tumor categorization and provides a pathway for practical utilization in clinical settings.

8.
Sensors (Basel) ; 24(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39275748

RESUMEN

The Internet of Things (IoT) is a significant technological advancement that allows for seamless device integration and data flow. The development of the IoT has led to the emergence of several solutions in various sectors. However, rapid popularization also has its challenges, and one of the most serious challenges is the security of the IoT. Security is a major concern, particularly routing attacks in the core network, which may cause severe damage due to information loss. Routing Protocol for Low-Power and Lossy Networks (RPL), a routing protocol used for IoT devices, is faced with selective forwarding attacks. In this paper, we present a federated learning-based detection technique for detecting selective forwarding attacks, termed FL-DSFA. A lightweight model involving the IoT Routing Attack Dataset (IRAD), which comprises Hello Flood (HF), Decreased Rank (DR), and Version Number (VN), is used in this technique to increase the detection efficiency. The attacks on IoT threaten the security of the IoT system since they mainly focus on essential elements of RPL. The components include control messages, routing topologies, repair procedures, and resources within sensor networks. Binary classification approaches have been used to assess the training efficiency of the proposed model. The training step includes the implementation of machine learning algorithms, including logistic regression (LR), K-nearest neighbors (KNN), support vector machine (SVM), and naive Bayes (NB). The comparative analysis illustrates that this study, with SVM and KNN classifiers, exhibits the highest accuracy during training and achieves the most efficient runtime performance. The proposed system demonstrates exceptional performance, achieving a prediction precision of 97.50%, an accuracy of 95%, a recall rate of 98.33%, and an F1 score of 97.01%. It outperforms the current leading research in this field, with its classification results, scalability, and enhanced privacy.

9.
Artif Intell Med ; 157: 102982, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277983

RESUMEN

In recent years, we have witnessed both artificial intelligence obtaining remarkable results in clinical decision support systems (CDSSs) and explainable artificial intelligence (XAI) improving the interpretability of these models. In turn, this fosters the adoption by medical personnel and improves trustworthiness of CDSSs. Among others, counterfactual explanations prove to be one such XAI technique particularly suitable for the healthcare domain due to its ease of interpretation, even for less technically proficient staff. However, the generation of high-quality counterfactuals relies on generative models for guidance. Unfortunately, training such models requires a huge amount of data that is beyond the means of ordinary hospitals. In this paper, we therefore propose to use federated learning to allow multiple hospitals to jointly train such generative models while maintaining full data privacy. We demonstrate the superiority of our approach compared to locally generated counterfactuals. Moreover, we prove that generative models for counterfactual generation that are trained using federated learning in a suitable environment perform only marginally worse compared to centrally trained ones while offering the benefit of data privacy preservation. Finally, we integrate our method into a prototypical CDSS for treatment recommendation for sepsis patients, thus providing a proof of concept for real-world application as well as insights and sanity checks from clinical application.

10.
Sci Rep ; 14(1): 22729, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349569

RESUMEN

Enhancing deep learning performance requires extensive datasets. Centralized training raises concerns about data ownership and security. Additionally, large models are often unsuitable for hospitals due to their limited resource capacities. Federated learning (FL) has been introduced to address these issues. However, FL faces challenges such as vulnerability to attacks, non-IID data, reliance on a central server, high communication overhead, and suboptimal model aggregation. Furthermore, FL is not optimized for realistic hospital database environments, where data are dynamically accumulated. To overcome these limitations, we propose federated influencer learning (FIL) as a secure and efficient collaborative learning paradigm. Unlike the server-client model of FL, FIL features an equal-status structure among participants, with an administrator overseeing the overall process. FIL comprises four stages: local training, qualification, screening, and influencing. Local training is similar to vanilla FL, except for the optional use of a shared dataset. In the qualification stage, participants are classified as influencers or followers. During the screening stage, the integrity of the logits from the influencer is examined. If the integrity is confirmed, the influencer shares their knowledge with the others. FIL is more secure than FL because it eliminates the need for model-parameter transactions, central servers, and generative models. Additionally, FIL supports model-agnostic training. These features make FIL particularly promising for fields such as healthcare, where maintaining confidentiality is crucial. Our experiments demonstrated the effectiveness of FIL, which outperformed several FL methods on large medical (X-ray, MRI, and PET) and natural (CIFAR-10) image dataset in a dynamically accumulating database environment, with consistently higher precision, recall, Dice score, and lower standard deviation between participants. In particular, in the PET dataset, FIL achieved about a 40% improvement in Dice score and recall.


Asunto(s)
Seguridad Computacional , Bases de Datos Factuales , Humanos , Conducta Cooperativa , Aprendizaje Profundo , Aprendizaje
11.
Sci Rep ; 14(1): 22354, 2024 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333305

RESUMEN

Expert system recommendation assists the healthcare system to develop in real-time monitoring and diagnosis of patient conditions over several healthcare institutions. Privacy concerns, however, present significant problems since patient data leaks can lead to big effects including financial losses for hospitals and invasions of personal privacy for people. To address these issues, the research introduces a privacy-preserving collaborative medical diagnosis (CMD) method on a federated learning (FL). FL maintains patient privacy and data localization by spreading only model parameters, therefore enabling training models on remote datasets. The combination of Partially Homomorphic Cryptosystem (PHC) and Residual Learning based Deep Belief Network (RDBN) ensures an accurate and safe classification of patient physiological data. Experimental results show that the proposed method is successful in maintaining the diagnostic accuracy over numerous healthcare institutions and protecting privacy. The results show that the RDBN and PHC computations requires around 1000 ms and 150 ms, respectively for classification and privacy; the data transmission from the user to server and from server to user is 5 MB and 4 MB, respectively. Finally with a 30% reduction in overhead, the proposed approach offers an average increase in classification accuracy of 10% over multiple datasets.


Asunto(s)
Privacidad , Humanos , Sistemas Especialistas , Algoritmos , Seguridad Computacional
12.
Sci Rep ; 14(1): 22525, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341870

RESUMEN

Federated learning (FL) stimulates distributed on-device computation systems to process an optimum technique efficiency by communicating local process upgrades and global method distribution from aggregation averaging procedure. On-device FL is a standard application in wireless environments, with several mobile devices participating as nodes in the FL network. Managing extensive multi-dimensional process upgrades and resource-constrained computations in large-scale heterogeneous IoT cellular networks can be challenging. This article introduces a Lifetime Maximization using Optimal Directed Acyclic Graph Federated Learning in IoT Communication Networks (LM-ODAGFL) technique. The proposed LM-ODAGFL technique utilizes FL and metaheuristic optimization algorithms for energy-effective IoT networks. The Direct Acyclic Graph (DAG) model addresses device asynchrony in FL while minimizing additional resource usage. The Archimedes Optimization Algorithm (AOA) is designed to optimize the DAG model by reducing both user energy consumption and the training loss of the FL model. The performance validation of the LM-ODAGFL technique is performed by utilizing a series of experimentations. The obtained results of the LM-ODAGFL model demonstrate superior performance by consuming significantly less energy than SDAGFL and ESDAGFL, with values ranging from 0.373 to 0.485 kJ per round on the FMNIST-Clustered dataset and 16.27 to 20.34 kJ per round on the Poets dataset, compared to 0.000 to 1.442 kJ and 0.00 to 63.89 kJ respectively.

13.
Front Neuroinform ; 18: 1430987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39315000

RESUMEN

Recent advancements in neuroimaging have led to greater data sharing among the scientific community. However, institutions frequently maintain control over their data, citing concerns related to research culture, privacy, and accountability. This creates a demand for innovative tools capable of analyzing amalgamated datasets without the need to transfer actual data between entities. To address this challenge, we propose a decentralized sparse federated learning (FL) strategy. This approach emphasizes local training of sparse models to facilitate efficient communication within such frameworks. By capitalizing on model sparsity and selectively sharing parameters between client sites during the training phase, our method significantly lowers communication overheads. This advantage becomes increasingly pronounced when dealing with larger models and accommodating the diverse resource capabilities of various sites. We demonstrate the effectiveness of our approach through the application to the Adolescent Brain Cognitive Development (ABCD) dataset.

14.
Heliyon ; 10(16): e35962, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224247

RESUMEN

The current popular traffic classification methods based on feature engineering and machine learning are difficult to obtain suitable traffic feature sets for multiple traffic classification tasks. Besides, data privacy policies prohibit network operators from collecting and sharing traffic data that might compromise user privacy. To address these challenges, we propose FedETC, a federated learning framework that allows multiple participants to learn global traffic classifiers, while keeping locally encrypted traffic invisible to other participants. In addition, FedETC adopts one-dimensional convolutional neural network as the base model, which avoids manual traffic feature design. In the experiments, we evaluate the FedETC framework for the tasks of both application identification and traffic characterization in a publicly available real-world dataset. The results show that FedETC can achieve promising accuracy rates that are close to centralized learning schemes.

15.
Health Inf Sci Syst ; 12(1): 49, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39282613

RESUMEN

Artificial intelligence has immense potential for applications in smart healthcare. Nowadays, a large amount of medical data collected by wearable or implantable devices has been accumulated in Body Area Networks. Unlocking the value of this data can better explore the applications of artificial intelligence in the smart healthcare field. To utilize these dispersed data, this paper proposes an innovative Federated Learning scheme, focusing on the challenges of explainability and security in smart healthcare. In the proposed scheme, the federated modeling process and explainability analysis are independent of each other. By introducing post-hoc explanation techniques to analyze the global model, the scheme avoids the performance degradation caused by pursuing explainability while understanding the mechanism of the model. In terms of security, firstly, a fair and efficient client private gradient evaluation method is introduced for explainable evaluation of gradient contributions, quantifying client contributions in federated learning and filtering the impact of low-quality data. Secondly, to address the privacy issues of medical health data collected by wireless Body Area Networks, a multi-server model is proposed to solve the secure aggregation problem in federated learning. Furthermore, by employing homomorphic secret sharing and homomorphic hashing techniques, a non-interactive, verifiable secure aggregation protocol is proposed, ensuring that client data privacy is protected and the correctness of the aggregation results is maintained even in the presence of up to t colluding malicious servers. Experimental results demonstrate that the proposed scheme's explainability is consistent with that of centralized training scenarios and shows competitive performance in terms of security and efficiency.

16.
Neural Netw ; 180: 106688, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39243508

RESUMEN

Federated unlearning (FUL) is a promising solution for removing negative influences from the global model. However, ensuring the reliability of local models in FL systems remains challenging. Existing FUL studies mainly focus on eliminating bad data influences and neglecting scenarios where other factors, such as adversarial attacks and communication constraints, also contribute to negative influences that require mitigation. In this paper, we introduce Local Model Refining (LMR), a FUL method designed to address the negative impacts of bad data as well as other factors on the global model. LMR consists of three components: (i) Identifying and categorizing unreliable local models into two classes based on their influence source: bad data or other factors. (ii) Bad Data Influence Unlearning (BDIU): BDIU is a client-side algorithm that identifies affected layers in unreliable models and employs gradient ascent to mitigate bad data influences. Boosting training is applied when necessary under specific conditions. (iii) Other Influence Unlearning (OIU): OIU is a server-side algorithm that identifies unaffected parameters in the unreliable local model and combines them with corresponding parameters of the previous global model to construct the updated local model. Finally, LMR aggregates updated local models with remaining local models to produce the unlearned global model. Extensive evaluation shows LMR enhances accuracy and accelerates average unlearning speed by 5x compared to comparison methods on MNIST, FMNIST, CIFAR-10, and CelebA datasets.

17.
Patterns (N Y) ; 5(8): 101031, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39233693

RESUMEN

The amount of biomedical data continues to grow rapidly. However, collecting data from multiple sites for joint analysis remains challenging due to security, privacy, and regulatory concerns. To overcome this challenge, we use federated learning, which enables distributed training of neural network models over multiple data sources without sharing data. Each site trains the neural network over its private data for some time and then shares the neural network parameters (i.e., weights and/or gradients) with a federation controller, which in turn aggregates the local models and sends the resulting community model back to each site, and the process repeats. Our federated learning architecture, MetisFL, provides strong security and privacy. First, sample data never leave a site. Second, neural network parameters are encrypted before transmission and the global neural model is computed under fully homomorphic encryption. Finally, we use information-theoretic methods to limit information leakage from the neural model to prevent a "curious" site from performing model inversion or membership attacks. We present a thorough evaluation of the performance of secure, private federated learning in neuroimaging tasks, including for predicting Alzheimer's disease and for brain age gap estimation (BrainAGE) from magnetic resonance imaging (MRI) studies in challenging, heterogeneous federated environments where sites have different amounts of data and statistical distributions.

18.
Sensors (Basel) ; 24(17)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39275403

RESUMEN

Advanced metering infrastructures (AMIs) aim to enhance the efficiency, reliability, and stability of electrical systems while offering advanced functionality. However, an AMI collects copious volumes of data and information, making the entire system sensitive and vulnerable to malicious attacks that may cause substantial damage, such as a deficit in national security, a disturbance of public order, or significant economic harm. As a result, it is critical to guarantee a steady and dependable supply of information and electricity. Furthermore, storing massive quantities of data in one central entity leads to compromised data privacy. As such, it is imperative to engineer decentralized, federated learning (FL) solutions. In this context, the performance of participating clients has a significant impact on global performance. Moreover, FL models have the potential for a Single Point of Failure (SPoF). These limitations contribute to system failure and performance degradation. This work aims to develop a performance-based hierarchical federated learning (HFL) anomaly detection system for an AMI through (1) developing a deep learning model that detects attacks against this critical infrastructure; (2) developing a novel aggregation strategy, FedAvg-P, to enhance global performance; and (3) proposing a peer-to-peer architecture guarding against a SPoF. The proposed system was employed in experiments on the CIC-IDS2017 dataset. The experimental results demonstrate that the proposed system can be used to develop a reliable anomaly detection system for AMI networks.

19.
Heliyon ; 10(17): e36743, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263113

RESUMEN

This review article offers a comprehensive analysis of current developments in the application of machine learning for cancer diagnostic systems. The effectiveness of machine learning approaches has become evident in improving the accuracy and speed of cancer detection, addressing the complexities of large and intricate medical datasets. This review aims to evaluate modern machine learning techniques employed in cancer diagnostics, covering various algorithms, including supervised and unsupervised learning, as well as deep learning and federated learning methodologies. Data acquisition and preprocessing methods for different types of data, such as imaging, genomics, and clinical records, are discussed. The paper also examines feature extraction and selection techniques specific to cancer diagnosis. Model training, evaluation metrics, and performance comparison methods are explored. Additionally, the review provides insights into the applications of machine learning in various cancer types and discusses challenges related to dataset limitations, model interpretability, multi-omics integration, and ethical considerations. The emerging field of explainable artificial intelligence (XAI) in cancer diagnosis is highlighted, emphasizing specific XAI techniques proposed to improve cancer diagnostics. These techniques include interactive visualization of model decisions and feature importance analysis tailored for enhanced clinical interpretation, aiming to enhance both diagnostic accuracy and transparency in medical decision-making. The paper concludes by outlining future directions, including personalized medicine, federated learning, deep learning advancements, and ethical considerations. This review aims to guide researchers, clinicians, and policymakers in the development of efficient and interpretable machine learning-based cancer diagnostic systems.

20.
J Biomed Inform ; 157: 104712, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39182631

RESUMEN

In today's era of rapid development of large models, the traditional drug development process is undergoing a profound transformation. The vast demand for data and consumption of computational resources are making independent drug discovery increasingly difficult. By integrating federated learning technology into the drug discovery field, we have found a solution that both protects privacy and shares computational power. However, the differences in data held by various pharmaceutical institutions and the diversity in drug design objectives have exacerbated the issue of data heterogeneity, making traditional federated learning consensus models unable to meet the personalized needs of all parties. In this study, we introduce and evaluate an innovative drug discovery framework, MolCFL, which utilizes a multi-layer perceptron (MLP) as the generator and a graph convolutional network (GCN) as the discriminator in a generative adversarial network (GAN). By learning the graph structure of molecules, it generates new molecules in a highly personalized manner and then optimizes the learning process by clustering federated learning, grouping compound data with high similarity. MolCFL not only enhances the model's ability to protect privacy but also significantly improves the efficiency and personalization of molecular design. MolCFL exhibits superior performance when handling non-independently and identically distributed data compared to traditional models. Experimental results show that the framework demonstrates outstanding performance on two benchmark datasets, with the generated new molecules achieving over 90% in Uniqueness and close to 100% in Novelty. MolCFL not only improves the quality and efficiency of drug molecule design but also, through its highly customized clustered federated learning environment, promotes collaboration and specialization in the drug discovery process while ensuring data privacy. These features make MolCFL a powerful tool suitable for addressing the various challenges faced in the modern drug research and development field.


Asunto(s)
Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Humanos , Redes Neurales de la Computación , Aprendizaje Automático , Algoritmos , Análisis por Conglomerados , Privacidad , Medicina de Precisión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA