Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.650
Filtrar
1.
Neurotherapeutics ; : e00431, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39153914

RESUMEN

Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.

2.
J Nanobiotechnology ; 22(1): 495, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164753

RESUMEN

BACKGROUND: The Hippo pathway is a conserved tumour suppressor signalling pathway, and its dysregulation is often associated with abnormal cell growth and tumorigenesis. We previously revealed that the transcriptional coactivator Yes-associated protein (YAP), the key effector of the Hippo pathway, is a molecular target for glioblastoma (GBM), the most common malignant brain tumour. Inhibiting YAP with small interfering RNA (siYAP) or the specific inhibitor verteporfin (VP) can diminish GBM growth to a certain degree. RESULTS: In this study, to enhance the anti-GBM effect of siYAP and VP, we designed stepwise-targeting and hypoxia-responsive liposomes (AMVY@NPs), which encapsulate hypoxia-responsive polymetronidazole-coated VP and DOTAP adsorbed siYAP, with angiopep-2 (A2) modification on the surface. AMVY@NPs exhibited excellent blood‒brain barrier crossing, GBM targeting, and hypoxia-responsive and efficient siYAP and VP release properties. By inhibiting the expression and function of YAP, AMVY@NPs synergistically inhibited both the growth and stemness of GBM in vitro. Moreover, AMVY@NPs strongly inhibited the growth of orthotopic U87 xenografts and improved the survival of tumour-bearing mice without adverse effects. CONCLUSION: Specific targeting of YAP with stepwise-targeting and hypoxia-responsive liposome AMVY@NPs carrying siYAP and VP efficiently inhibited GBM progression. This study provides a valuable drug delivery platform and creative insights for molecular targeted treatment of GBM in the future.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Liposomas , Ratones Desnudos , ARN Interferente Pequeño , Verteporfina , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Liposomas/química , Verteporfina/farmacología , Verteporfina/uso terapéutico , Animales , Humanos , Línea Celular Tumoral , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas Señalizadoras YAP , Nanopartículas/química , Ratones Endogámicos BALB C , Factores de Transcripción/metabolismo , Angiomotinas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Péptidos
3.
Acta Neuropathol Commun ; 12(1): 122, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164793

RESUMEN

Gliomas, particularly glioblastomas (GBMs), pose significant challenges due to their aggressiveness and poor prognosis. Early detection through biomarkers is critical for improving outcomes. This study aimed to identify novel biomarkers for gliomas, particularly GBMs, using chiral amino acid profiling. We used chiral amino acid analysis to measure amino acid L- and D-isomer levels in resected tissues (tumor and non-tumor), blood, and urine from 33 patients with primary gliomas and 24 healthy volunteers. The levels of D-amino acid oxidase (DAO), a D-amino acid-degrading enzyme, were evaluated to investigate the D-amino acid metabolism in brain tissue. The GBM mouse model was created by transplanting GBM cells into the brain to confirm whether gliomas affect blood and urine chiral amino acid profiles. We also assessed whether D-amino acids produced by GBM cells are involved in cell proliferation. D-asparagine (D-Asn) levels were higher and DAO expression was lower in glioma than in non-glioma tissues. Blood and urinary D-Asn levels were lower in patients with GBM than in healthy volunteers (p < 0.001), increasing after GBM removal (p < 0.05). Urinary D-Asn levels differentiated between healthy volunteers and patients with GBM (area under the curve: 0.93, sensitivity: 0.88, specificity: 0.92). GBM mouse model validated the decrease of urinary D-Asn in GBM. GBM cells used D-Asn for cell proliferation. Gliomas induce alterations in chiral amino acid profiles, affecting blood and urine levels. Urinary D-Asn emerges as a promising diagnostic biomarker for gliomas, reflecting tumor presence and severity.


Asunto(s)
Asparagina , Neoplasias Encefálicas , D-Aminoácido Oxidasa , Glioblastoma , Humanos , Glioblastoma/metabolismo , Glioblastoma/orina , Glioblastoma/patología , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/orina , Neoplasias Encefálicas/patología , Masculino , Persona de Mediana Edad , Femenino , Asparagina/orina , Asparagina/metabolismo , Adulto , D-Aminoácido Oxidasa/metabolismo , D-Aminoácido Oxidasa/genética , Ratones , Anciano , Biomarcadores de Tumor/orina , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proliferación Celular
4.
Heliyon ; 10(15): e33663, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170503

RESUMEN

Branched chain α-keto acid dehydrogenase kinase (BCKDK) is a key enzyme involved in the metabolism of branched-chain amino acids (BCAAs). Its potential as a therapeutic target and prognostic factor for a variety of cancers has been widely reported. In this study, we investigated the expression of BCKDK in clinical glioma samples and found that BCKDK was significantly overexpressed in glioblastoma (GBM) and was associated with its poor prognosis. We further found that BCKDK is phosphorylated by tyrosine protein kinase Fyn at Y151, which increases its catalytic activity and stability, and demonstrate through in vivo and in vitro experiments that BCKDK phosphorylation promotes GBM cell proliferation. In addition, we found that the levels of the metabolite N-acetyl-L-alanine (NAAL) in GBM cells with high BCKDK were higher than those in the silencing group, and silencing or inhibition of BCKDK promotes the expression of ACY1, an enzyme that catalyzes the hydrolysis of NAAL into acetic acid and alanine. Exogenous addition of NAAL can activate the ERK signaling pathway and promote the proliferation of GBM cells. Taken together, we identified a novel mechanism of BCKDK activation and found NAAL is a novel oncogenic metabolite. Our study confirms the importance of the Fyn-BCKDK-ACY1-NAAL signalling axis in the development of GBM and suggests that p-BCKDK (Y151) and NAAL can serve as potential predictors of GBM progression and prognosis.

5.
Clin Transl Med ; 14(9): e70014, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39192506

RESUMEN

A recent study outlines the phenotypes of brain border region macrophages in developing, normal and glioblastoma-affected brains. For the first time, the authors show in-vivo turnover of human brain border macrophages. The findings have implications for the understanding of brain border immunity and potential macrophage targeting therapies. KEYPOINTS: Human border region macrophages are distinct from microglia. These distinct phenotypes are established early during embryonal development - Brain border macrophages are partially replaced by bone marrow-derived myeloid cells. The transcriptional phenotypes of glioblastoma-associated macrophage are determined by the anatomical region.


Asunto(s)
Encéfalo , Macrófagos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Encéfalo/inmunología
6.
Front Immunol ; 15: 1439191, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39192971

RESUMEN

Glioblastoma-derived exosomes (GDEs), containing nucleic acids, proteins, fatty acids and other substances, perform multiple important functions in glioblastoma microenvironment. Tumor-derived exosomes serve as carriers of fatty acids and induce a shift in metabolism towards oxidative phosphorylation, thus driving immune dysfunction of dendritic cells (DCs). Lipid peroxidation is an important characteristic of ferroptosis. Nevertheless, it remains unclear whether GDEs can induce lipid accumulation and lipid oxidation to trigger ferroptosis in DCs. In our study, we investigate the impact of GDEs on lipid accumulation and oxidation in DCs by inhibiting GDEs secretion through knocking down the expression of Rab27a using a rat orthotopic glioblastoma model. The results show that inhibiting the secretion of GDEs can reduce lipid accumulation in infiltrating DCs in the brain and decrease mature dendritic cells (mDCs) lipid peroxidation levels, thereby suppressing glioblastoma growth. Mechanistically, we employed in vitro treatments of bone marrow-derived dendritic cells (BMDCs) with GDEs. The results indicate that GDEs decrease the viability of mDCs compared to immature dendritic cells (imDCs) and trigger ferroptosis in mDCs via the NRF2/GPX4 pathway. Overall, these findings provide new insights into the development of immune-suppressive glioblastoma microenvironment through the interaction of GDEs with DCs.


Asunto(s)
Neoplasias Encefálicas , Células Dendríticas , Exosomas , Ferroptosis , Glioblastoma , Metabolismo de los Lípidos , Factor 2 Relacionado con NF-E2 , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ferroptosis/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Exosomas/metabolismo , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Ratas , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Transducción de Señal , Humanos , Microambiente Tumoral/inmunología , Línea Celular Tumoral , Masculino , Peroxidación de Lípido
7.
Biology (Basel) ; 13(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39194524

RESUMEN

Brain tumors, and, in particular, glioblastoma (GBM), are among the most aggressive forms of cancer. In spite of the advancement in the available therapies, both diagnosis and treatments are still unable to ensure pathology-free survival of the GBM patients for more than 12-15 months. At the basis of the still poor ability to cope with brain tumors, we can consider: (i) intra-tumor heterogeneity; (ii) heterogeneity of the tumor properties when we compare different patients; (iii) the blood-brain barrier (BBB), which makes difficult both isolation of tumor-specific biomarkers and delivering of therapeutic drugs to the brain. Recently, it is becoming increasingly clear that cancer cells release large amounts of extracellular vesicles (EVs) that transport metabolites, proteins, different classes of RNAs, DNA, and lipids. These structures are involved in the pathological process and characterize any particular form of cancer. Moreover, EVs are able to cross the BBB in both directions. Starting from these observations, researchers are now evaluating the possibility to use EVs purified from organic fluids (first of all, blood and saliva), in order to obtain, through non-invasive methods (liquid biopsy), tumor biomarkers, and, perhaps, also for obtaining nanocarriers for the targeted delivering of drugs.

8.
Curr Issues Mol Biol ; 46(8): 7795-7811, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39194679

RESUMEN

Glioblastoma multiforme (GBM) is one of the deadliest human cancers with very limited treatment options available. The malignant behavior of GBM is manifested in a tumor which is highly invasive, resistant to standard cytotoxic chemotherapy, and strongly immunosuppressive. Immune checkpoint inhibitors have recently been introduced in the clinic and have yielded promising results in certain cancers. GBM, however, is largely refractory to these treatments. The immune checkpoint CD47 has recently gained attention as a potential target for intervention as it conveys a "don't eat me" signal to tumor-associated macrophages (TAMs) via the inhibitory SIRP alpha protein. In preclinical models, the administration of anti-CD47 monoclonal antibodies has shown impressive results with GBM and other tumor models. Several well-characterized oncogenic pathways have recently been shown to regulate CD47 expression in GBM cells and glioma stem cells (GSCs) including Epidermal Growth Factor Receptor (EGFR) beta catenin. Other macrophage pathways involved in regulating phagocytosis including TREM2 and glycan binding proteins are discussed as well. Finally, chimeric antigen receptor macrophages (CAR-Ms) could be leveraged for greatly enhancing the phagocytosis of GBM and repolarization of the microenvironment in general. Here, we comprehensively review the mechanisms that regulate the macrophage phagocytosis of GBM cells.

9.
Cells ; 13(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39195222

RESUMEN

Glioblastoma (GBM) is the most aggressive and common malignant and CNS tumor, accounting for 47.7% of total cases. Glioblastoma has an incidence rate of 3.21 cases per 100,000 people. The regulation of autophagy, a conserved cellular process involved in the degradation and recycling of cellular components, has been found to play an important role in GBM pathogenesis and response to therapy. Autophagy plays a dual role in promoting tumor survival and apoptosis, and here we discuss the complex interplay between autophagy and GBM. We summarize the mechanisms underlying autophagy dysregulation in GBM, including PI3K/AKT/mTOR signaling, which is most active in brain tumors, and EGFR and mutant EGFRvIII. We also review potential therapeutic strategies that target autophagy for the treatment of GBM, such as autophagy inhibitors used in combination with the standard of care, TMZ. We discuss our current understanding of how autophagy is involved in TMZ resistance and its role in glioblastoma development and survival.


Asunto(s)
Autofagia , Resistencia a Antineoplásicos , Glioblastoma , Temozolomida , Humanos , Autofagia/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Temozolomida/farmacología , Temozolomida/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Transducción de Señal/efectos de los fármacos , Animales
10.
J Neurooncol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192069

RESUMEN

PURPOSE: We present results of a retrospective population-based investigation of patterns of care and outcome of glioblastoma patients in Austria. PATIENTS AND METHODS: In this nation-wide cooperative project, all Austrian glioblastoma patients newly diagnosed between 2014 and 2018 and registered in the ABTR-SANOnet database were included. Histological typing used criteria of the WHO classification of CNS tumors, 4th edition 2016. Patterns of care were assessed, and all patients were followed until the end of 2019. RESULTS: 1,420 adult glioblastoma cases were identified. 813 (57.3%) patients were male and 607 (42.7%) female. Median age at diagnosis was 64 years (range: 18-88). Median overall survival (OS) was 11.6 months in the total cohort and 10.9 months in patients with proven IDH-wildtype. Median OS in the patient group ≤ 65 years receiving postoperative standard of care therapy was 16.1 months. In the patient group > 65 years with postoperative therapy, median OS was 11.2 months. Follow-up ≥ 5 years identified 13/264 (4.9%) long-term survivors. Brain tumor surgery frequently was assisted by 5-aminolevulinic acid (5-ALA) fluorescence (up to 55%). Postoperative treatment was initiated around one month after surgery (median: 31 days) following standardized protocols in 1,041/1,420 (73.3%) cases. In 830 patients (58.5%), concomitant radiochemotherapy was started according to the established standard of care. Treatment in case of progressive disease was considerably variable. 170/1,420 patients (12.0%) underwent a second surgical procedure, 467 (33.0%) received systemic treatment after progression, and 173 (12.2%) were re-irradiated. CONCLUSION: Our data illustrate and confirm nation-wide translation of effective standard of care to Austrian glioblastoma patients in the recent past. In the case of progressive disease, highly variable therapeutic approaches were used, most frequently accompanied by anti-angiogenic therapy. Long-term survival was observed in a minor proportion of mostly younger patients who typically had gross total tumor resection, a favorable postoperative ECOG score, and standard of care therapy.

11.
ACS Appl Mater Interfaces ; 16(34): 44518-44527, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39145481

RESUMEN

Glioblastoma (GBM) is the most common and aggressive malignant brain tumor. Standard therapy includes maximal surgical resection, radiotherapy, and adjuvant temozolomide (TMZ) administration. However, the rapid development of TMZ resistance and the impermeability of the blood-brain barrier (BBB) significantly hinder the therapeutic efficacy. Herein, we developed spatiotemporally controlled microneedle patches (BMNs) loaded with TMZ and niclosamide (NIC) to overcome GBM resistance. We found that hyaluronic acid (HA) increased the viscosity of bovine serum albumin (BSA) and evidenced that concentrations of BSA/HA exert an impact degradation rates exposure to high-temperature treatment, showing that the higher BSA/HA concentrations result in slower drug release. To optimize drug release rates and ensure synergistic antitumor effects, a 15% BSA/HA solution constituting the bottoms of BMNs was chosen to load TMZ, showing sustained drug release for over 28 days, guaranteeing long-term DNA damage in TMZ-resistant cells (U251-TR). Needle tips made from 10% BSA/HA solution loaded with NIC released the drug within 14 days, enhancing TMZ's efficacy by inhibiting the activity of O6-methylguanine-DNA methyltransferase (MGMT). BMNs exhibit superior mechanical properties, bypass the BBB, and gradually release the drug into the tumor periphery, thus significantly inhibiting tumor proliferation and expanding median survival in mice. The on-demand delivery of BMNs patches shows a strong translational potential for clinical applications, particularly in synergistic GBM treatment.


Asunto(s)
Glioblastoma , Ácido Hialurónico , Niclosamida , Albúmina Sérica Bovina , Temozolomida , Temozolomida/química , Temozolomida/farmacología , Temozolomida/farmacocinética , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Animales , Humanos , Ratones , Niclosamida/farmacología , Niclosamida/química , Niclosamida/farmacocinética , Albúmina Sérica Bovina/química , Ácido Hialurónico/química , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Agujas , Sistemas de Liberación de Medicamentos/instrumentación , Ratones Desnudos , Liberación de Fármacos
12.
Oncol Rep ; 52(4)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39155859

RESUMEN

It is well known how the precise localization of glioblastoma multiforme (GBM) predicts the direction of tumor spread in the surrounding neuronal structures. The aim of the present review is to reveal the lateralization of GBM by evaluating the anatomical regions where it is frequently located as well as the main molecular alterations observed in different brain regions. According to the literature, the precise or most frequent lateralization of GBM has yet to be determined. However, it can be said that GBM is more frequently observed in the frontal lobe. Tractus and fascicles involved in GBM appear to be focused on the corticospinal tract, superior longitudinal I, II and III fascicles, arcuate fascicle long segment, frontal strait tract, and inferior fronto­occipital fasciculus. Considering the anatomical features of GBM and its brain involvement, it is logical that the main brain regions involved are the frontal­temporal­parietal­occipital lobes, respectively. Although tumor volumes are higher in the right hemisphere, it has been determined that the prognosis of patients diagnosed with cancer in the left hemisphere is worse, probably reflecting the anatomical distribution of some detrimental alterations such as TP53 mutations, PTEN loss, EGFR amplification, and MGMT promoter methylation. There are theories stating that the right hemisphere is less exposed to external influences in its development as it is responsible for the functions necessary for survival while tumors in the left hemisphere may be more aggressive. To shed light on specific anatomical and molecular features of GBM in different brain regions, the present review article is aimed at describing the main lateralization pathways as well as gene mutations or epigenetic modifications associated with the development of brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Mutación , Glioma/genética , Glioma/patología , Glioma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Pronóstico , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo
13.
Neurooncol Adv ; 6(1): vdae115, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166256

RESUMEN

Background: Velcrins are molecular glues that kill cells by inducing the formation of a protein complex between the RNase SLFN12 and the phosphodiesterase PDE3A. Formation of the complex activates SLFN12, which cleaves tRNALeu(TAA) and induces apoptosis. Velcrins such as the clinical investigational compound, BAY 2666605, were found to have activity across multiple solid tumor cell lines from the cancer cell line encyclopedia, including glioblastoma cell lines. We therefore aim to characterize velcrins as novel therapeutic agents in glioblastoma. Materials and Methods: PDE3A and SLFN12 expression levels were measured in glioblastoma cell lines, the Cancer Genome Atlas (TCGA) tumor samples, and tumor neurospheres. Velcrin-treated cells were assayed for viability, induction of apoptosis, cell cycle phases, and global changes in translation. Transcriptional profiling of the cells was obtained. Xenograft-harboring mice treated with velcrins were also monitored for survival. Results: We identified several velcrin-sensitive glioblastoma cell lines and 4 velcrin-sensitive glioblastoma patient-derived models. We determined that BAY 2666605 crosses the blood-brain barrier and elicits full tumor regression in an orthotopic xenograft model of GB1 cells. We also determined that the velcrins BAY 2666605 and BRD3800 induce tumor regression in subcutaneous glioblastoma PDX models. Conclusions: Velcrins have antitumor activity in preclinical models of glioblastoma, warranting further investigation as potential therapeutic agents.

14.
BMC Res Notes ; 17(1): 235, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39180089

RESUMEN

OBJECTIVE: Inhibition and knockdown of GPR68 negatively affects glioblastoma cell survival in vitro by inducing ferroptosis. Herein, we aimed to demonstrate that inhibition of GPR68 reduces the survival of glioblastoma cells in vivo using two orthotopic larval xenograft models in Danio rerio, using GBM cell lines U87-MG and U138-MG. In vivo survival of the cancer cells was assessed in the setting of GPR68 inhibition or knockdown. RESULTS: In vitro, shRNA-mediated knockdown of GPR68 inhibition demonstrated potent cytotoxic effects against U87 and U138 glioblastoma cell lines. This effect was associated with increased intracellular lipid peroxidation, suggesting ferroptosis as the underlying mechanism of cell death. Translating these findings in vivo, we established a novel xenograft model in zebrafish by successfully grafting fluorescently labeled human glioblastoma cells, which were previously shown to overexpress GPR68. shRNA knockdown of GPR68 significantly reduced the viability of grafted GBM cells within this model. Additionally, treatment with ogremorphin (OGM), a highly specific small molecule inhibitor of GPR68, also reduced the viability of grafted GBM cells with limited toxicity to the developing zebrafish embryos. This study suggests that therapeutic targeting of GPR68 with small molecules like OGM represents a promising approach for the treatment of GBM.


Asunto(s)
Glioblastoma , Receptores Acoplados a Proteínas G , Pez Cebra , Animales , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , ARN Interferente Pequeño/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
15.
Int J Biol Macromol ; 278(Pt 4): 135054, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187114

RESUMEN

Glioblastoma (GBM) resection and medication treatment are limited, and local drug therapies are required. This study aims to create a hybrid system comprising liposome-like particles (LLP-DOX) encapsulated in chitosan/hyaluronic acid/polyethyleneimine (CHI/HA/PEI) hydrogels, enabling controlled local delivery of doxorubicin (DOX) into the resection cavity for treating GBM. CHI/HA/PEI hydrogels were characterized morphologically, physically, chemically, mechanically, and thermally. Findings revealed a high network and compact micro-network structure, along with enhanced physical and thermal stability compared to CHI/HA hydrogels. Simultaneously, drug release from CHI/HA/PEI/LLP-DOX hydrogels was assessed, revealing continuous and controlled release up to the 148th hour, with no significant burst release. Cell studies showed that CHI/HA/PEI hydrogels are biocompatible with low genotoxicity. Additionally, LLP-DOX-loaded CHI/HA/PEI hydrogels significantly decreased cell viability and gene expression levels compared to LLP-DOX alone. It was also observed that the viability of GBM spheroids decreased over time when interacting with CHI/HA/PEI/LLP-DOX hydrogels, accompanied by a reduction in total surface area and an increase in apoptotic tendencies. In this study, we hypothesized that creating a hybrid drug delivery system by encapsulating DOX-loaded LLPs within a CHI/HA/PEI hydrogel matrix could achieve sustained drug release, improve anticancer efficacy via localized treatment, and effectively mitigate GBM progression for 3D microtissues.

16.
IUBMB Life ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134088

RESUMEN

Glioblastoma (GB) is a lethal brain tumor that rapidly adapts to the dynamic changes of the tumor microenvironment (TME). Mesenchymal stem/stromal cells (MSCs) are one of the stromal components of the TME playing multiple roles in tumor progression. GB progression is prompted by the immunosuppressive microenvironment characterized by high concentrations of the nucleoside adenosine (ADO). ADO acts as a signaling molecule through adenosine receptors (ARs) but also as a genetic and metabolic regulator. Herein, the effects of high extracellular ADO concentrations were investigated in a human glioblastoma cellular model (U343MG) and MSCs. The modulation of the purinome machinery, i.e., the ADO production (CD39, CD73, and adenosine kinase [ADK]), transport (equilibrative nucleoside transporters 1 (ENT1) and 2 (ENT2)), and degradation (adenosine deaminase [ADA]) were investigated in both cell lines to evaluate if ADO could affect its cell management in a positive or negative feed-back loop. Results evidenced a different behavior of GB and MSC cells upon exposure to high extracellular ADO levels: U343MG were less sensitive to the ADO concentration and only a slight increase in ADK and ENT1 was evidenced. Conversely, in MSCs, the high extracellular ADO levels reduced the ADK, ENT1, and ENT2 expression, which further sustained the increase of extracellular ADO. Of note, MSCs primed with the GB-conditioned medium or co-cultured with U343MG cells were not affected by the increase of extracellular ADO. These results evidenced how long exposure to ADO could produce different effects on cancer cells with respect to MSCs, revealing a negative feedback loop that can support the GB immunosuppressive microenvironment. These results improve the knowledge of the ADO role in the maintenance of TME, which should be considered in the development of therapeutic strategies targeting adenosine pathways as well as cell-based strategies using MSCs.

17.
Cytopathology ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136219

RESUMEN

Epithelioid glioblastoma (eGB) is a rare GB subtype exhibiting characteristic morphology and genetic alterations. The efficacy of BRAF and MEK-1/2 inhibitors is demonstrated in eGB treatment, and therefore, considering eGB is important to enhance patient care and prognosis.

18.
Neurooncol Adv ; 6(1): vdae106, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114182

RESUMEN

Background: Molecular glioblastoma (molGB) does not exhibit the histologic hallmarks of a grade 4 glioma but is nevertheless diagnosed as glioblastoma when harboring specific molecular markers. MolGB can easily be mistaken for similar-appearing lower-grade astrocytomas. Here, we investigated how advanced imaging could reflect the underlying tumor biology. Methods: Clinical and imaging data were collected for 7 molGB grade 4, 9 astrocytomas grade 2, and 12 astrocytomas grade 3. Four neuroradiologists performed VASARI-scoring of conventional imaging, and their inter-reader agreement was assessed using Fleiss κ coefficient. To evaluate the potential of advanced imaging, 2-sample t test, 1-way ANOVA, Mann-Whitney U, and Kruskal-Wallis test were performed to test for significant differences between apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) that were extracted fully automatically from the whole tumor volume. Results: While conventional VASARI imaging features did not allow for reliable differentiation between glioma entities, rCBV was significantly higher in molGB compared to astrocytomas for the 5th and 95th percentile, mean, and median values (P < .05). ADC values were significantly lower in molGB than in astrocytomas for mean, median, and the 95th percentile (P < .05). Although no molGB showed contrast enhancement initially, we observed enhancement in the short-term follow-up of 1 patient. Discussion: Quantitative analysis of diffusion and perfusion parameters shows potential in reflecting the malignant tumor biology of molGB. It may increase awareness of molGB in a nonenhancing, "benign" appearing tumor. Our results support the emerging hypothesis that molGB might present glioblastoma captured at an early stage of gliomagenesis.

19.
Brain Commun ; 6(4): fcae241, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114330

RESUMEN

Previously, the tyrosine kinase inhibitor sunitinib failed to show clinical benefit in patients with recurrent glioblastoma. Low intratumoural sunitinib accumulation in glioblastoma patients was reported as a possible explanation for the lack of therapeutic benefit. We designed a randomized phase II/III trial to evaluate whether a high-dose intermittent sunitinib schedule, aimed to increase intratumoural drug concentrations, would result in improved clinical benefit compared to standard treatment with lomustine. Patients with recurrent glioblastoma were randomized 1:1 to high-dose intermittent sunitinib 300 mg once weekly (Q1W, part 1) or 700 mg once every two weeks (Q2W, part 2) or lomustine. The primary end-point was progression-free survival. Based on the pre-planned interim analysis, the trial was terminated for futility after including 26 and 29 patients in parts 1 and 2. Median progression-free survival of sunitinib 300 mg Q1W was 1.5 months (95% CI 1.4-1.7) compared to 1.5 months (95% CI 1.4-1.6) in the lomustine arm (P = 0.59). Median progression-free survival of sunitinib 700 mg Q2W was 1.4 months (95% CI 1.2-1.6) versus 1.6 months (95% CI 1.3-1.8) for lomustine (P = 0.70). Adverse events (≥grade 3) were observed in 25%, 21% and 31% of patients treated with sunitinib 300 mg Q1W, sunitinib 700 mg Q2W and lomustine, respectively (P = 0.92). To conclude, high-dose intermittent sunitinib treatment failed to improve the outcome of patients with recurrent glioblastoma when compared to standard lomustine therapy. Since lomustine remains a poor standard treatment strategy for glioblastoma, innovative treatment strategies are urgently needed.

20.
Cancer Sci ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119927

RESUMEN

A precise radiotherapy plan is crucial to ensure accurate segmentation of glioblastomas (GBMs) for radiation therapy. However, the traditional manual segmentation process is labor-intensive and heavily reliant on the experience of radiation oncologists. In this retrospective study, a novel auto-segmentation method is proposed to address these problems. To assess the method's applicability across diverse scenarios, we conducted its development and evaluation using a cohort of 148 eligible patients drawn from four multicenter datasets and retrospective data collection including noncontrast CT, multisequence MRI scans, and corresponding medical records. All patients were diagnosed with histologically confirmed high-grade glioma (HGG). A deep learning-based method (PKMI-Net) for automatically segmenting gross tumor volume (GTV) and clinical target volumes (CTV1 and CTV2) of GBMs was proposed by leveraging prior knowledge from multimodal imaging. The proposed PKMI-Net demonstrated high accuracy in segmenting, respectively, GTV, CTV1, and CTV2 in an 11-patient test set, achieving Dice similarity coefficients (DSC) of 0.94, 0.95, and 0.92; 95% Hausdorff distances (HD95) of 2.07, 1.18, and 3.95 mm; average surface distances (ASD) of 0.69, 0.39, and 1.17 mm; and relative volume differences (RVD) of 5.50%, 9.68%, and 3.97%. Moreover, the vast majority of GTV, CTV1, and CTV2 produced by PKMI-Net are clinically acceptable and require no revision for clinical practice. In our multicenter evaluation, the PKMI-Net exhibited consistent and robust generalizability across the various datasets, demonstrating its effectiveness in automatically segmenting GBMs. The proposed method using prior knowledge in multimodal imaging can improve the contouring accuracy of GBMs, which holds the potential to improve the quality and efficiency of GBMs' radiotherapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...