Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Sci Rep ; 14(1): 20702, 2024 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237662

RESUMEN

The use of skin barrier-enhancing topical medication is a favorable approach for the treatment of occupational hand dermatitis (OHD). Cocos nucifera or coconut oil is one of the best sources of lipid enriched with laurate acid, and glycerin is a well-known humectant that improves skin hydration. This study is aimed is to evaluate the effectiveness of C. nucifera and glycerin for secondary prevention of OHD among batik (Indonesian traditional fabric) workers. In a randomized, double-blind, crossover trial, the effect of glycerine-C. nucifera cream versus glycerin-only was considered with multiple afterwork applications of moisturizer over a 2-week period on batik workers with OHD. Assessment of trans-epidermal water loss (TEWL), skin capacitance, and a clinical assessment using the Hand Eczema Severity Index (HECSI) were carried out at day 0 and 14. The results show thirty-two batik dyeing and/or rinsing workers were enrolled in the study with mild to moderate OHD. Clinical improvement was demonstrated by 20% decrease in HECSI and TEWL, and 20% increase in skin capacitance. Both moisturizers were equally effective for the secondary prevention of OHD. As a conclusion, glycerine-C. nucifera and glycerin-only cream are equally effective for secondary prevention for OHD among batik worker to reduce the prevalence of hand dermatitis.


Asunto(s)
Cocos , Estudios Cruzados , Emolientes , Glicerol , Humanos , Adulto , Masculino , Método Doble Ciego , Femenino , Cocos/química , Emolientes/administración & dosificación , Emolientes/uso terapéutico , Persona de Mediana Edad , Dermatitis Profesional/prevención & control , Dermatitis Profesional/etiología , Dermatosis de la Mano/prevención & control , Dermatosis de la Mano/tratamiento farmacológico , Crema para la Piel/administración & dosificación , Crema para la Piel/uso terapéutico , Prevención Secundaria/métodos
2.
Cureus ; 16(8): e66068, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39229398

RESUMEN

This comprehensive review deals with the multifaceted aspects of electronic cigarettes (e-cigarettes), examining their composition, health implications, regulatory challenges, and market dynamics. E-cigarettes, also known as vaping devices, function by warming a solution of liquid containing flavors, nicotine, and various other compounds to produce an aerosol for users to inhale. This review underscores the evolution and widespread adoption of e-cigarettes since their introduction in 2003, highlighting their appeal as alternatives to traditional tobacco smoking. The essential parts of e-cigarettes are the battery, heating element, e-liquid (or e-juice), and mouthpiece. Propylene glycol and vegetable glycerin are common ingredients in e-liquids, along with nicotine and other flavors. Concerns over the health impacts of e-cigarettes have grown, particularly in light of incidents like the e-cigarette or vaping-associated lung injury outbreak in 2019 linked to vaping-associated lung injuries. Evidence suggests that while e-cigarettes may pose fewer risks than conventional cigarettes, they are not without health consequences, including potential respiratory and cardiovascular effects. Regulatory efforts worldwide have struggled to keep pace with the rapid evolution of e-cigarettes, exacerbated by their diverse flavors and marketing strategies that appeal to youth. The review discusses global regulatory responses, including bans and restrictions, to curb youth uptake and address public health concerns. Furthermore, the rise of a black market for e-cigarettes poses additional challenges to effective regulation and tobacco control efforts. In conclusion, while e-cigarettes offer potential harm reduction benefits for adult smokers seeking alternatives to traditional tobacco products, their widespread availability and evolving landscape necessitate vigilant regulatory oversight to protect public health, especially among youth. Future research should continue to explore the long-term health impacts and efficacy of e-cigarettes as smoking elimination aids, informing evidence-based policies and interventions.

3.
Indian J Microbiol ; 64(3): 983-989, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39282186

RESUMEN

Foodborne disease is caused by consuming pathogenic microorganism-contaminated food that generates poisoning. Escherichia coli is a bacterium that causes foodborne disease, which is neutralized using gel hand sanitizer containing a bacteriophage with hydroxypropyl methylcellulose (HPMC) and active glycerin ingredients. Phages are viruses that infect bacteria naturally. This study aims to examine the effect of HPMC and glycerin on the physical properties and activity of bacteriophage ɸPT1b-based hand sanitizer gel, as well as determining the optimum composition of the combination of HPMC and glycerin in the same. The results of the study shows that the HPMC and glycerin factors show a positive value for inhibitory response, with the HPMC factor showing the best results. The optimum formula results using Design Expert 12.0 software were 0.75% for HPMC and 7.5% for glycerin, while the values for viscosity, dispersal power, and inhibitory power were 32,500 dPas, 7,737 cm, and 1.300 cm, respectively. In conclusion, an increase in HPMC concentration affects the increment of the viscosity score and decreases spread response. However, the glycerin concentration increment reduces the viscosity score but raises the spread value.

4.
Virol J ; 21(1): 189, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155366

RESUMEN

BACKGROUND: The rapid transmission and high pathogenicity of respiratory viruses significantly impact the health of both children and adults. Extracting and detecting their nucleic acid is crucial for disease prevention and treatment strategies. However, current extraction methods are laborious and time-consuming and show significant variations in nucleic acid content and purity among different kits, affecting detection sensitivity and efficiency. Our aim is to develop a novel method that reduces extraction time, simplifies operational steps, and ensures high-quality acquisition of respiratory viral nucleic acid. METHODS: We extracted respiratory syncytial virus (RSV) nucleic acid using reagents with different components and analyzed cycle threshold (Ct) values via quantitative real-time polymerase chain reaction (qRT-PCR) to optimize and validate the novel lysis and washing solution. The performance of this method was compared against magnetic bead, spin column, and precipitation methods for extracting nucleic acid from various respiratory viruses. The clinical utility of this method was confirmed by comparing it to the standard magnetic bead method for extracting clinical specimens of influenza A virus (IAV). RESULTS: The solution, composed of equal parts glycerin and ethanol (50% each), offers an innovative washing approach that achieved comparable efficacy to conventional methods in a single abbreviated cycle. When combined with our A Plus lysis solution, our novel five-minute nucleic acid extraction (FME) method for respiratory viruses yielded superior RNA concentrations and purity compared to traditional methods. FME, when used with a universal automatic nucleic acid extractor, demonstrated similar efficiency as various conventional methods in analyzing diverse concentrations of respiratory viruses. In detecting respiratory specimens from 525 patients suspected of IAV infection, the FME method showed an equivalent detection rate to the standard magnetic bead method, with a total coincidence rate of 95.43% and a kappa statistic of 0.901 (P < 0.001). CONCLUSIONS: The FME developed in this study enables the rapid and efficient extraction of nucleic acid from respiratory samples, laying a crucial foundation for the implementation of expedited molecular diagnosis.


Asunto(s)
ARN Viral , Reacción en Cadena en Tiempo Real de la Polimerasa , Humanos , ARN Viral/aislamiento & purificación , ARN Viral/genética , ARN Viral/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/genética , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/diagnóstico , Manejo de Especímenes/métodos , Factores de Tiempo , Virus/aislamiento & purificación , Virus/genética , Gripe Humana/diagnóstico , Gripe Humana/virología , Técnicas de Diagnóstico Molecular/métodos
5.
FASEB J ; 38(17): e70017, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39213037

RESUMEN

The use of traditional nicotine delivery products such as tobacco has long been linked to detrimental health effects. However, little work to date has focused on the emerging market of aerosolized nicotine delivery known as electronic nicotine delivery systems (ENDS) or electronic cigarettes, and their potential for new effects on human health. Challenges studying these devices include heterogeneity in the formulation of the common components of most available ENDS, including nicotine and a carrier (commonly composed of propylene glycol and vegetable glycerin, or PG/VG). In the present study, we report on experiments interrogating the effects of major identified components in e-cigarettes. Specifically, the potential concomitant effects of nicotine and common carrier ingredients in commercial "vape" products are explored in vitro to inform the potential health effects on the craniofacial skeleton through novel vectors as compared to traditional tobacco products. MC3T3-E1 murine pre-osteoblast cells were cultured in vitro with clinically relevant liquid concentrations of nicotine, propylene glycol (PG), vegetable glycerin (VG), Nicotine+PG/VG, and the vape liquid of a commercial product (Juul). Cells were treated acutely for 24 h and RNA-Seq was utilized to determine segregating alteration in mRNA signaling. Influential gene targets identified with sparse partial least squares discriminant analysis (sPLS-DA) implemented in mixOmics were assessed using the PANTHER Classification system for molecular functions, biological processes, cellular components, and pathways of effect. Additional endpoint functional analyses were used to confirm cell cycle changes. The initial excitatory concentration (EC50) studied defined a target concentration of carrier PG/VG liquid that altered the cell cycle of the calvarial cells. Initial sPLS-DA analysis demonstrated the segregation of nicotine and non-nicotine exposures utilized in our in vitro modeling. Pathway analysis suggests a strong influence of nicotine exposures on cellular processes including metabolic processes and response to stimuli including autophagic flux. Further interrogation of the individual treatment conditions demonstrated segregation by treatment modality (Control, Nicotine, Carrier (PG+VG), Nicotine+PG/VG) along three dimensions best characterized by: latent variable 1 (PLSDA-1) showing strong segregation based on nicotine influence on cellular processes associated with cellular adhesion to collagen, osteoblast differentiation, and calcium binding and metabolism; latent variable 2 (PLSDA-2) showing strong segregation of influence based on PG+VG and Control influence on cell migration, survival, and cycle regulation; and latent variable 3 (PLSDA-3) showing strong segregation based on Nicotine and Control exposure influence on cell activity and growth and developmental processes. Further, gene co-expression network analysis implicates targets of the major pathway genes associated with bone growth and development, particularly craniofacial (FGF, Notch, TGFß, WNT) and analysis of active subnetwork pathways found these additionally overrepresented in the Juul exposure relative to Nicotine+PG/VG. Finally, experimentation confirmed alterations in cell count, and increased evidence of cell stress (markers of autophagy), but no alteration in apoptosis. These data suggest concomitant treatment with Nicotine+PG/VG drives alterations in pre-osteoblast cell cycle signaling, specifically transcriptomic targets related to cell cycle and potentially cell stress. Although we suspected cell stress and well as cytotoxic effects of Nicotine+PG/VG, no great influence on apoptotic factors was observed. Further RNA-Seq analysis allowed for the direct interrogation of molecular targets of major pathways involved in bone and craniofacial development, each demonstrating segregation (altered signaling) due to e-cigarette-type exposure. These data have implications directed toward ENDS formulation as synergistic effects of Nicotine+PG/VG are evidenced here. Thus, future research will continue to interrogate how varied formulation of Nicotine+PG/VG affects overall cell functions in multiple vital systems.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Nicotina , Osteoblastos , Animales , Ratones , Nicotina/farmacología , Osteoblastos/metabolismo , Osteoblastos/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Propilenglicol , Línea Celular
6.
Animals (Basel) ; 14(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39123724

RESUMEN

The addition of glycerin, vitamin C, and niacinamide to pig diets increased the redness of longissimus dorsi; however, it remains unclear how these supplements affect gut microbiota and metabolites. A total of 84 piglets (20.35 ± 2.14 kg) were randomly allotted to groups A (control), B (glycerin-supplemented), C (vitamin C and niacinamide-supplemented), and D (glycerin, vitamin C and niacinamide-supplemented) during a feeding experiment. Metagenomic and metabolomic technologies were used to analyze the fecal compositions of bile acids, metabolites, and microbiota. The results showed that compared to pigs in group A, pigs in group D had lower virulence factor expressions of lipopolysaccharide (p < 0.05), fatty acid resistance system (p < 0.05), and capsule (p < 0.01); higher fecal levels of ferric ion (p < 0.05), allolithocholic acid (p < 0.01), deoxycholic acid (p < 0.05), tauroursodeoxycholic acid dihydrate (p < 0.01), glycodeoxycholic acid (p < 0.05), L-proline (p < 0.01) and calcitriol (p < 0.01); and higher (p < 0.05) abundances of iron-acquiring microbiota (Methanobrevibacter, Clostridium, Clostridiaceae, Clostridium_sp_CAG_1000, Faecalibacterium_sp_CAG_74_58_120, Eubacteriales_Family_XIII_Incertae_Sedis, Alistipes_sp_CAG_435, Alistipes_sp_CAG_514 and Methanobrevibacter_sp_YE315). Supplementation with glycerin, vitamin C, and niacinamide to pigs significantly promoted the growth of iron-acquiring microbiota in feces, reduced the expression of some virulence factor genes of fecal pathogens, and increased the fecal levels of ferric ion, L-proline, and some secondary bile acids. The administration of glycerol, vitamin C, and niacinamide to pigs may serve as an effective measure for muscle redness improvement by altering the compositions of fecal microbiota and metabolites.

7.
Metabolites ; 14(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38921443

RESUMEN

Glycerin contributes to the animal's energy metabolism as an important structural component of triglycerides and phospholipids. The present study was carried out to evaluate the effect of replacing corn with 0, 5, 10, and 15% of glycerin in terms of performance, digestibility, carcass yield, relative weights of gastrointestinal tract (GIT) organs, and nutrient metabolism. Four hundred chickens (40.0 g ± 0.05 g) were distributed in a completely randomized design with four treatments and five replicates. Growth parameters were measured at 7, 14, 21, and 42 days. Digestibility of crude protein and fat, carcass yield, relative weights of GIT organs, and biochemical blood profile were measured. The results were subject to an analysis of variance by Tukey's HSD test (p > 0.05). The inclusion of 5%, 10%, or 15% of glycerin did not influence performance or affect the crude protein and fat digestibility in broilers (p > 0.05) when compared to that of the basal (0%) diet. Similarly, the supplementation of glycerin levels showed no significant influence (p > 0.05) on the relative GIT organ weights, carcass yield, or nutrient metabolism. Thus, we concluded that glycerin may be included in the broilers' diets in rations of up to 15%.

8.
Adv Mater ; 36(32): e2406460, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837488

RESUMEN

Solar fuel synthesis is intriguing because solar energy is abundant and this method compensates for its intermittency. However, most photocatalysts can only absorb UV-to-visible light, while near-infrared (NIR) light remains unexploited. Surprisingly, the charge transfer between ZnO and CuInS2 quantum dots (QDs) can transform a NIR-inactive ZnO into a NIR-active composite. This strong response is attributed to the increased concentration of free charge carriers in the p-type semiconductor at the interface after the charge migration between ZnO and CuInS2, enhancing the localized surface plasmon resonance (LSPR) effect and the NIR response of CuInS2. As a paradigm, this ZnO/CuInS2 heterojunction is used for H2O2 production coupled with glycerin oxidation and demonstrates supreme performance, corroborating the importance of NIR response and efficient charge transfer. Mechanistic studies through contact potential difference (CPD), Hall effect test, and finite element method (FEM) calculation allow for the direct correlation between the NIR response and charge transfer. This approach bypasses the general light response issues, thereby stepping forward to the ambitious goal of harnessing the entire solar spectrum.

9.
Food Chem ; 453: 139689, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781902

RESUMEN

In this study, based on the discovery of thymol/glycerol monolaurate (GML) eutectic solvent, we studied the effect of GML as a multi-functional component (ripening inhibitor and antibacterial agent) on the formation, stability and antibacterial activity of eutectic nanoemulsions, and investigated the preservation of nanoemulsion in fresh pork. These results indicated that the formation of eutectic solvent was due to the hydrogen bonding between thymol and GML in the molten state. And eutectic nanoemulsions prepared with medium GML concentrations (20%, 40%, and 60%) of eutectic solvents as oil phases had small droplet diameters (<150 nm), exhibited sustained-release characteristics, and had excellent physicochemical stability. Moreover, the addition of GML enhanced the antibacterial activity of thymol nanoemulsion against S. aureus. as seen by their ability to inhibit affect formation more effectively. Treatment of fresh pork with optimized eutectic nanoemulsions (40% thymol/60% GML) extended its shelf life during refrigeration, which was mainly attributed to the ability of the encapsulated essential oil to inhibit microbial growth and lipid oxidation. These results provide a novel strategy to control Ostwald ripening and maintain the high antibacterial activity of thymol in nanoemulsion-based delivery systems.


Asunto(s)
Antibacterianos , Emulsiones , Lauratos , Monoglicéridos , Staphylococcus aureus , Timol , Timol/química , Timol/farmacología , Emulsiones/química , Emulsiones/farmacología , Lauratos/química , Lauratos/farmacología , Monoglicéridos/química , Monoglicéridos/farmacología , Porcinos , Animales , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Antibacterianos/farmacología , Antibacterianos/química , Conservación de Alimentos
10.
J Am Soc Mass Spectrom ; 35(6): 1261-1271, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38780179

RESUMEN

We investigated the applicability of proton transfer reaction-time-of-flight mass spectrometry (PTR-TOF-MS) for quantitative analysis of mixtures comprising glycerin, acetol, glycidol, acetaldehyde, acetone, and propylene glycol. While PTR-TOF-MS offers real-time simultaneous determination, the method selectivity is limited when analyzing compounds with identical elemental compositions or when labile compounds present in the mixture produce fragments that generate overlapping ions with other matrix components. In this study, we observed significant fragmentation of glycerin, acetol, glycidol, and propylene glycol during protonation via hydronium ions (H3O+). Nevertheless, specific ions generated by glycerin (m/z 93.055) and propylene glycol (m/z 77.060) enabled their selective detection. To thoroughly investigate the selectivity of the method, various mixtures containing both isotope-labeled and unlabeled compounds were utilized. The experimental findings demonstrated that when samples contained high levels of glycerin, it was not feasible to perform time-resolved analysis in H3O+ mode for acetaldehyde, acetol, and glycidol. To overcome the observed selectivity limitations associated with the H3O+ reagent ions, alternative ionization modes were investigated. The ammonium ion mode proved appropriate for analyzing propylene glycol (m/z 94.086) and acetone (m/z 76.076) mixtures. Concerning the nitric oxide mode, specific m/z were identified for acetaldehyde (m/z 43.018), acetone (m/z 88.039), glycidol (m/z 73.028), and propylene glycol (m/z 75.044). It was concluded that considering the presence of multiple product ions and the potential influence of other compounds, it is crucial to conduct a thorough selectivity assessment when employing PTR-TOF-MS as the sole method for analyzing compounds in complex matrices of unknown composition.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Espectrometría de Masas , Nicotiana , Compuestos Orgánicos Volátiles , Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Nicotiana/química , Propilenglicol/análisis , Propilenglicol/química , Acetaldehído/análisis , Acetaldehído/química , Acetona/análisis , Acetona/química , Acetona/análogos & derivados , Glicerol/análisis , Glicerol/química , Calor , Compuestos Epoxi/química , Compuestos Epoxi/análisis , Propanoles/química , Propanoles/análisis
11.
Artículo en Inglés | MEDLINE | ID: mdl-38605273

RESUMEN

Microalgal biomass (MB) is a promising feedstock for bioenergy production. Nonetheless, the cell recalcitrance and the low C/N ratio limit the methane yield during anaerobic digestion. As an alternative to overcome these challenges, MB co-digestion with different feedstocks has been proposed. Thus, this study evaluated the anaerobic co-digestion (AcoD) of MB cultivated in wastewater with sugarcane vinasse (VIN) and residual glycerol from biodiesel production (GLY). Batch tests were conducted using augmented simplex-centroid mixture design to investigate the impact of AcoD on methane production (SMP), synergistic effects, and the influence on microbial community. When compared to MB digestion, 150 NmL CH4.g-1VS, binary and ternary AcoD achieved SMP increases from 120 to 337%. The combination of 16.7:16.7:66.7 (MB:VIN:GLY) showed the highest SMP for a ternary mixture (631 NmL CH4.g-1VS). Optimal synergies ranged from 1.3 to 1.4 and were primarily found for the MB:GLY AcoD. Acetoclastic Methanosaeta genus was predominant, regardless the combination between substrates. Despite the largest SMP obtained from the MB:GLY AcoD, other ternary mixtures were also highly synergetic and therefore had strong potential as a strategic renewable energy source.

12.
Food Chem ; 448: 139135, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569405

RESUMEN

The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.


Asunto(s)
Cápsulas , Emulsiones , Ácidos Grasos Omega-3 , Aceites de Pescado , Gelatina , Emulsiones/química , Cápsulas/química , Gelatina/química , Ácidos Grasos Omega-3/química , Aceites de Pescado/química , Animales , Tamaño de la Partícula , Glicerol/química , Atún , Glicéridos/química , Interacciones Hidrofóbicas e Hidrofílicas , Biocatálisis
13.
Iran J Otorhinolaryngol ; 36(2): 415-420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476567

RESUMEN

Introduction: Accumulated and compacted ear wax or cerumen can cause conductive hearing loss, discomfort and vertigo, and infection. This study investigates the effect of Carbamide peroxide (CP) compared with Phenol glycerin (PG) ear drops on cerumen. Materials and Methods: This experimental study investigated the effect of PG and CP ear drops on cerumen in ex vivo and in vivo phases. In the ex vivo phase cerumen degredation was scored following PG and CP treatments. In the in vivo phase, 29 patients with bilateral cerumen impaction were randomly entered the study. PG and CP were applied 3 times a day (each time 5 drops) for 4 days by patients. After treatments, the time of cerumen removal was measured. Results: Instant changes showing degredation of cerumen (grade 1) was evident when it was exposed to CP, on the other hand degredation changes (grade 1) in cerumen treated with PG was only evident after 20 min incubation at 37 oC, while grade 3 degredation was evident in cerumen treated with CP after the same time incubation. Although the time needed for removal of cerumen was lower in CP treatment (54.10±31.77) compared to PG treatment (67.10±35.54), the difference was not statistically significant. Conclusion: Based on the literature and our results, carbamide peroxide is suggested as a proper treatment for patients with EAC obstruction caused by cerumen compaction, because not only it is significantly effective in cerumen degredation, but also no side effects have been reported.

14.
Int J Biol Macromol ; 259(Pt 1): 128337, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000616

RESUMEN

This study developed a pore-connected PP-CA membrane by coating cellulose acetate onto a polypropylene filter. A new method was proposed to attach a CA/glycerin coating layer to a porous PP support without a separate binder. The pores of CA and PP were interconnected using a vacuum filtration device. By adding glycerin to the CA chains, the membrane region became more flexible due to glycerin plasticization. Water passed through the membrane under pressure differences, resulting in the formation of interconnected pores between cellulose acetate and polypropylene. The pore size and quantity could be adjusted by varying the molar ratio of glycerin. Fourier transform infrared spectroscopy revealed the interaction between CA and glycerin, while thermogravimetric analysis showed that the membrane's thermal stability increased by approximately 20 °C after vacuum filtration. This simple and cost-effective manufacturing process holds potential for mass-producing separators in the lithium-ion battery industry.


Asunto(s)
Glicerol , Polipropilenos , Celulosa/química , Filtración/métodos , Porosidad
15.
Int J Biol Macromol ; 256(Pt 1): 128439, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013076

RESUMEN

Low-moisture extrusion (LME) can modify starch structures and enrich their functionality. These LME-made starches may efficiently form inclusion complexes (ICs) with hydrophobic guest molecules, which is profoundly impacted by the guest molecule concentration. In this work, the influence of glycerin monostearin (GMS) concentration on the structure and in vitro digestibility of pre-extruded starch-GMS complexes was investigated. The results showed that LME pretreatment increased the complex index of high-amylose starch with GMS by 13 %. The appropriate GMS concentrations produced ICs with high crystallinity and excellent thermostability. The presence of IC retarded amylose retrogradation and dominated bound water in starches. In addition, highly crystallized ICs were resistant to enzymolysis and had a higher proportion of resistant starch. The acquired knowledge would provide a better understanding of the LME-modified starch and GMS concentration-regulated IC formation.


Asunto(s)
Amilosa , Almidón , Almidón/química , Amilosa/química , Glicerol , Glicéridos/química
17.
Materials (Basel) ; 16(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067994

RESUMEN

Developing a new type of polyurethane is essential because conventional options often exhibit shortcomings in terms of environmental sustainability, cost-effectiveness, and performance in specialized applications. A novel polyurethane adhesive derived from a simple mixture of castor oil (CO) and crude glycerin (CG) holds promise as it reduces reliance on fossil fuels and harnesses renewable resources, making it environmentally friendly. Simple CO/CG mixtures, adjusted at three different weight fractions, were used as bio-based polyester polyols to produce polyurethane adhesive for wood bonding. The resulting products are yellowish liquids with moderate-to-high viscosity, measuring 19,800-21,000 cP at 25 °C. The chemical structure of the polyester polyols was characterized using infrared spectroscopy (FTIR), thermogravimetry (TG), and differential scanning calorimetry (DSC). These polyols reacted with polymeric 4,4-methylene diphenyl diisocyanate (p-MDI) at a consistent isocyanate index of 1.3, resulting in the formation of polyurethane adhesives. Crucially, all final adhesives met the adhesive strength requirements specified by ASTM D-5751 standards, underscoring their suitability for wood bonding applications. The addition of CG enhanced the surface and volumetric hydrophobicity of the cured adhesives, resulting in adhesive properties that are not only stronger but also more weather-resistant. Although the thermal stability of the adhesives decreased with the inclusion of CG, FTIR analysis confirmed proper polyurethane polymer formation. The adhesive adjusted for a 2:1 CO:CG weight ratio promoted wood-wood bonding with the highest shear strength, likely due to a higher formation of urethane linkages between hydroxyl groups from the blend of polyols and isocyanate groups from the p-MDI.

18.
Animals (Basel) ; 13(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38066986

RESUMEN

The objective of this study was to determine the influence of supplementing the diet of growing-finishing pigs with glycerin and/or a mixture of vitamin C and niacinamide on carcass traits and pork quality. Eighty-four weaned piglets with an initial average body weight of 20.35 ± 2.14 kg were assigned, at random, to four groups for a 103-day feeding experiment: control; glycerin-supplemented group; vitamin C and niacinamide-supplemented group; and glycerin, vitamin C and niacinamide-supplemented group. At the end of the experiment, three pigs/group were randomly selected and slaughtered, and samples were collected for analysis. The results indicated that supplementing crossbred pigs with glycerin, vitamin C and niacinamide simultaneously increased the redness (a*) value (p < 0.05), glycerol content (p < 0.01) and myristoleic acid content (p < 0.01) in the longissimus dorsi and tended to increase the level of flavor amino acids, linoleic acid, linolenic acid and erucic acid, as well as the percentage and density of type I myofibers in the longissimus dorsi and the semimembranosus muscle. Glycerin had an influence (p < 0.01) on the erucic acid content in the longissimus dorsi and the semimembranosus muscle, and vitamin C and niacinamide had an interaction effect (p < 0.05) on the redness (a*) value of the longissimus dorsi. Glycerin, vitamin C and niacinamide supplementation in the diet of crossbred pigs improved the color, flavor and nutritional value of pork, which contributed to an increased intent to purchase this product.

19.
J Environ Manage ; 348: 119215, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37827083

RESUMEN

Anaerobic digestion has emerged as the most appealing waste management strategy in biorefineries. Particularly, recent studies have highlighted the energy advantages of waste co-digestion in industrial biorefineries and the use of two-stage systems. However, there are some concerns about moving the system from laboratory testing to industrial scale. One of them is the high level of investment that is required. Therefore, this study carried out a techno-economic analysis (scale-up and energy production, economic and risk analysis, and factorial design) to assess the feasibility of single- and two-stage systems in the treatment of cheese whey and glycerin for the production of hydrogen and methane. Scenarios (S1 to S9) considered thermophilic and mesophilic single and two-stage systems with different applied organic loading rates (OLRA). The analyses of scale-up and energy production revealed that S3 (a thermophilic single-stage system operated at high OLRA 17.3 kg-COD.m-3.d-1) and S9 (a thermophilic-mesophilic two-stage system operated at high OLRA 134.8 kg-COD.m-3.d-1 and 20.5 kg-COD.m-3.d-1, respectively) were more compact and required lower initial investment compared to other scenarios. The risk analysis performed by a Monte Carlo simulation showed low investment risks (10 and 11%) for S3 and S9, respectively, being the electricity sales price, the key determining factor to define whether the project in the baseline scenario will result in profit or loss. Lastly, the factorial design revealed that while the net present value (NPV) is positively impacted by rising inflation and electricity sales price, it is negatively impacted by rising capitalization rate. Such assessments assist in making decisions regarding which system can be fully implemented, the best market circumstances for the investment, and how market changes may favorably or unfavorably affect the NPV and the internal rate of return (IRR).


Asunto(s)
Reactores Biológicos , Metano , Anaerobiosis , Hidrógeno , Medición de Riesgo
20.
Anat Sci Educ ; 16(6): 1144-1157, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37337999

RESUMEN

Anatomical dissection is known to serve as an integral tool in teaching gross anatomy, including postgraduate training. A variety of embalming techniques exist, resulting in different haptic and optical tissue properties. This study aimed to objectify learning outcomes and medical student perceptions related to the use of two widely used embalming techniques, namely Thiel and ethanol-glycerin embalming. Between 2020 and 2022, first- and second-year medical students enrolled in the course on topographic anatomy participated in this study. Objective structured practical examinations were carried out for the head, neck, thorax, abdomen, pelvis, and extremity regions following regional dissection just before the oral examinations began. Six to ten numbered tags were marked in prosections of each region in Thiel- and ethanol-glycerin-embalmed specimens. Following the examinations, the students were surveyed regarding the suitability of the two embalming techniques with respect to preservation, colorfastness, tissue pliability, and the suitability in preparing for their anatomy examinations. Consistently higher scores were achieved for the thoracic and abdominal regions in ethanol-glycerin-embalmed specimens when compared to Thiel. No benefit was found for Thiel-embalmed upper or lower extremities. Tissues embalmed with ethanol-glycerin were rated higher for preservation and suitability to achieve the learning objectives, tissue pliability was rated higher for Thiel-embalmed tissues. Ethanol-glycerin embalming appears to offer certain advantages for undergraduate students in recognizing visceral structures, which may align with students' ideas on tissue suitability for their learning. Consequently, the benefits reported for Thiel embalming for postgraduate study unlikely reflect its suitability for novices.


Asunto(s)
Anatomía , Estudiantes de Medicina , Humanos , Glicerol , Etanol , Embalsamiento/métodos , Anatomía/educación , Cadáver
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA