Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.310
Filtrar
1.
J Environ Sci (China) ; 149: 1-20, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181626

RESUMEN

Controlling heavy metal pollution in agricultural soil has been a significant challenge. These heavy metals seriously threaten the surrounding ecological environment and human health. The effective assessment and remediation of heavy metals in agricultural soils are crucial. These two aspects support each other, forming a close and complete decision-making chain. Therefore, this review systematically summarizes the distribution characteristics of soil heavy metal pollution, the correlation between soil and crop heavy metal contents, the presence pattern and migration and transformation mode of heavy metals in the soil-crop system. The advantages and disadvantages of the risk evaluation tools and models of heavy metal pollution in farmland are further outlined, which provides important guidance for an in-depth understanding of the characteristics of heavy metal pollution in farmland soils and the assessment of the environmental risk. Soil remediation strategies involve multiple physical, chemical, biological and even combined technologies, and this paper compares the potential and effect of the above current remediation technologies in heavy metal polluted farmland soils. Finally, the main problems and possible research directions of future heavy metal risk assessment and remediation technologies in agricultural soils are prospected. This review provides new ideas for effective assessment and selection of remediation technologies based on the characterization of soil heavy metals.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Restauración y Remediación Ambiental , Metales Pesados , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Restauración y Remediación Ambiental/métodos , Agricultura/métodos , Medición de Riesgo , Suelo/química , Contaminación Ambiental
2.
J Environ Manage ; 369: 122322, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217898

RESUMEN

Identifying the primary source of heavy metals (HMs) pollution and the key pollutants is crucial for safeguarding eco-health and managing risks in industrial vicinity. For this purpose, this investigation was carried out to investigate the pollution area identification with soil static environmental capacity (QI), receptor model-oriented critical sources, and Monte Carlo simulation (MCS) based probabilistic environmental and human health hazards associated with HMs in agricultural soils of Narayanganj, Bangladesh. The average concentration of Cr, Ni, Cu, Cd, Pb, Co, Zn, and Mn were 98.67, 63.41, 37.39, 1.28, 23.93, 14.48, 125.08, and 467.45 mg/kg, respectively. The geoaccumulation index identified Cd as the dominant metal, indicating heavy to extreme contamination in soils. The QI revealed that over 99% of the areas were polluted for Ni and Cd with less uncertain regions whereas Cr showed a significant portion of areas with uncertain pollution status. The positive matrix factorization (PMF) model identified three major sources: agricultural (29%), vehicular emissions (25%), and industrial (46%). The probabilistic assessment of health hazards indicated that both carcinogenic and non-carcinogenic risks for adult male, adult female, and children were deemed unacceptable. Moreover, children faced a higher health hazard compared to adults. For adult male, adult female, and children, industrial operations contributed 48.4%, 42.7%, and 71.2% of the carcinogenic risks, respectively and these risks were associated with Ni and Cr as the main pollutants of concern. The study emphasizes valuable scientific insights for environmental managers to tackle soil pollution from HMs by effectively managing anthropogenic sources. It could aid in devising strategies for environmental remediation engineering and refining industry standards.

3.
Sci Total Environ ; : 175895, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218090

RESUMEN

We assessed the concentrations of metals and other trace elements in two of the most common seabird species breeding on Svalbard, the black-legged kittiwake (Rissa tridactyla) and the Brünnich's guillemot (Uria lomvia). Both of these species feed mostly on fish and crustaceans but have different foraging strategies, kittiwakes being surface feeders while guillemots are divers. We investigated the concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), lead (Pb), selenium (Se) and zinc (Zn) in the plasma and body feathers of black-legged kittiwakes (n = 17), as well as in the body feathers of Brünnich's guillemots (n = 13). Samples were collected from adult birds at two time points, one week apart during July 2017 in Kongsfjorden, Svalbard. Of the non-essential trace elements, As was found at the highest median concentration at both the first (56.23 ng/g ww) and second (39.99 ng/g ww) sampling timepoints in the kittiwake plasma. When separating for the sexes, as well as sampling time, males sampled at the first sampling time point had significantly higher concentrations of As (median at 0.087 ng/g versus 0.039 ng/g) and Se (median 0.26 ng/g versus 0.16 ng/g) compared to males sampled at the second time point. There was no significant difference in plasma concentrations between females at first and second sampling time points. Kittiwake feathers contained significantly higher concentrations of As, Cd and Hg than guillemot feathers, while guillemot feathers had significantly higher concentrations of Cu, Pb and Zn. However, of the non-essential elements in both kittiwake and guillemot feathers Hg was found with the highest median concentrations at 5160 and 1080 ng/g, respectively exceeding the level 5000 ng/g associated with adverse effect (e.g., impaired reproduction). Levels of Hg and Se found in the kittiwake feathers were higher than previous studies on seabirds in the Arctic.

4.
Sci Total Environ ; : 175905, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218095

RESUMEN

Heavy metals occur naturally in the environment, and their concentration varies in soil across different regions. However, the presence of heavy metals may influence the antimicrobial resistance (AMR) in bacterial populations. Therefore, the objective of this study was to investigate and characterise the antimicrobial resistance profiles of Enterobacterales in soil and bovine milk filters from high and low zinc-containing regions in Ireland. In total, 50 soil samples and 29 milk filters were collected from two geographic locations with varying soil zinc concentrations. Samples were cultured for the enumeration and detection of Enterobacterales. Specifically, extended-spectrum beta-lactamase-producing Enterobacterales, carbapenem-resistant Enterobacterales and ciprofloxacin-resistant Enterobacterales were isolated using selective media. Species identification was performed using MALDI-TOF. The phenotypic resistance profiles of selected Enterobacterales were determined by disk diffusion testing, following EUCAST and CLSI criteria; while, the genotypic resistance profiles of the same isolates were determined by whole genome sequencing (WGS). Heavy metal concentrations were also measured for all soil samples. A total of 40 antimicrobial resistant Enterobacterales were identified in soil (n = 31) and milk filters (n = 9). The predominant species detected in the high zinc-containing region was Escherichia coli in both sample types (soil n = 10, milk filters n = 2), while in the low zinc-containing region Serratia fonticola was predominant in soil samples (n = 8) and E. coli in milk filters (n = 4). Ten E. coli isolates identified from soil samples in the high zinc-containing region were multidrug resistant, showing resistance to all the antimicrobials tested, except for carbapenems. The WGS findings confirmed the phenotypic resistance results. Moreover, zinc resistance-associated genes and genes encoding for efflux pumps were identified. The current study revealed distinct phenotypic resistance profiles of Enterobacterales in low and high zinc-containing regions, and highlighted the benefit of utilising milk filters for AMR surveillance in dairy production.

5.
Sci Total Environ ; : 175918, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218116

RESUMEN

GAC filtration of municipal wastewater was optimized and intensified, making its implementation and operation directly after secondary clarification possible and relevant. GAC was first selected based on laboratory tests. Performances on organic micropollutants were linked to the repartition of BET surface between micropores and meso/macropores. At pilot scale, in order to limit the impact of head loss, downflow declogging sequences (DCS) were implemented and upflow filtration tested. 6 to 12 DCS per day led to a 4.7-5.5-fold increase of particles retention capacity between backwashes (cycle duration of 20-120 h), and upflow operations improved head loss evolution profile with only a slight GAC (<15 %) expansion. DCS allows backwash frequency reduction, enabling significant water savings. Both adaptations maintained high organic micropollutants removals compared to a review of 16 GAC studies at pilot or full-scale, results being in the upper range. A specific dose of 2.0-2.5 g GAC/gC was necessary to obtain an average removal of pharmaceuticals and benzotriazole of 80 % at 20 min contact time, which is comparable to PAC and low granulometry GAC. Higher doses are needed for PFAS but >80 % removals are achievable. Particles, TKN, particulate phosphorus and organic matter are well removed by GAC filtration in both configurations. Biological activity is observed through nitrogen transformation in the GAC bed. Heavy metals are greatly removed in GAC filtration, in particular Cd, Cu, Ni and Pb, probably through biosorption onto the biofilm, developed within the GAC bed. For wastewater reuse applications, GAC filtration has an added value through physicochemical quality improvement and fecal contamination indicators removal of 1 log, facilitating the implementation and optimizing the design of a post-disinfection. Antibiotic resistant bacteria and antibiotic resistance genes are also partially retained in GAC filtration. Finally, biological wastewater treatments combined to GAC filtration is a good solution to effectively treat organic micropollutants together with heavy metals and preparing post-disinfection for reuse.

6.
Biol Trace Elem Res ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218814

RESUMEN

Elevated arterial stiffness has been associated with exposure to heavy metals such as lead (Pb) and cadmium (Cd). However, the collective impact of multiple metals and the underlying mechanisms are not fully elucidated. The purpose of this study was to assess the combined effects of exposure to nine heavy metals on arterial stiffness and explore whether serum alkaline phosphatase (ALP) acts as a mediator in this relationship. In the retrospective analysis, data from 8,700 participants were retrieved from the National Health and Nutrition Examination Survey (NHANES) spanning from 1999 to 2018. Arterial stiffness was measured by estimated pulse wave velocity (ePWV). The cumulative impact of exposure to multiple metals was examined using adaptive elastic-net, environmental risk score, weighted quantile sum regression, and quantile g-computation. Additionally, mediation analysis was conducted to explore the potential mediating role of serum ALP. We found that combined exposure to multiple metals was consistently associated with elevated ePWV, with Ba, Pb, and Sb exhibiting the greatest contributions. Notably, serum ALP partially mediated the associations between individual (Pb, Sb) and mixed metal exposure with ePWV, with mediation proportions at 10.76% for Pb, 18.22% for Sb, and 11.07% for mixed metal exposure. In conclusion, this study demonstrates a clear association between exposure to heavy metals, either individually or in combination, and heightened arterial stiffness. Furthermore, the findings suggest that serum ALP activity may act as a mediator in these relationships.

7.
Environ Geochem Health ; 46(10): 411, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222283

RESUMEN

The increase in heavy metal concentration in water bodies due to rapid industrial and socio-economic development significantly threatens ecological and human health. This study evaluated metal pollution and related risks to ecology and human health in the Maroon-Jarahi river sub-basin in the Persian Gulf and Oman Sea basin, southwest Iran, using various indicators. A total of 70 water samples were taken from the sampling sites in the Maroon, Allah, and Jarahi sub-basins and analyzed for nine heavy metals. According to the results, the mean concentration of metals in the sampling locations across the entire sub-basin of Maroon-Jarahi was observed as follows Iron (528.22 µg/L), zinc (292.62 µg/L), manganese (56.47 µg/L), copper (36.23 µg/L), chromium (11.78 µg/L), arsenic (7.09 µg/L), lead (3.43 µg/L), nickel (3.23 µg/L), and cadmium (1.38 µg/L). Most of the metals were detected at the highest concentration in the sub-basin of the Jarahi River. The Water Quality Index (WQI) index in the basin varied from 18.74 to 22.88, indicating well to excellent quality. However, the investigation of the pollution status at the monitoring stations, based on the classification of Degree of Contamination (CD) and Heavy Metal Pollution Index (HPI) indices, revealed that they are in the category of relatively high pollution (16 < CD < 32) to very high (32 ≤ CD), and in the low pollution category (HPI < 15) to high pollution (HPI < 30), respectively. According to the three sub-basins, the highest amount of WQI, HPI, and Cd was observed in the stations located in the sub-basins of the Jarahi River. The calculation of Heavy Metal Evaluation Index (HEI) also indicated that only 10% of the monitoring stations are in moderate pollution (10 < HEI < 20), while in other monitoring stations the HEI level is less than 10. The Potential ecological risk factors ( E r i ) of an individual metal was obtained as follows: Cd (173.70) > As (131.99) > Zn (57.52) > Cu (55.39) > Ni (48.98) > Cr (21.57) > Pb (0.71), revealing that Cd and As are the main elements responsible for creating ecological risk in the studied area. The Maroon-Jarahi watershed included areas with ecological risks that ranged from low (PERI ≤ 150) to very high (PERI ≥ 600). HI and ILCR health indicators indicated that consumption and long-term contact with river water in the study area can cause potential risks to human health, especially children. Moreover, the findings, the highest level of pollution and health risk for both children and adults, considering both exposure routes, occurred in the Jarahi River sub-basin, suggesting that those who live in the vicinity of the Jarahi River are likely to face more adverse health effects. In addition, the findings of the evaluation of the relationship between land use patterns and water quality in the studied basin showed that agricultural lands acts as a main source of pollutants, but forest lands play an important role in the deposition of pollutants and the protection of water quality at the basin scale. In general, the results of pollution indicators, risk assessment, and statistical techniques suggest that the lower sub-basin, the Jarahi area, and the Shadegan wetland are the most polluted areas in the investigated sub-basin due to excessive discharge of agricultural runoff, industrialization, and rapid urbanization. Thus, special measures should be considered to reduce the risks of HMs pollution in the sub-basin of the Maroon-Jarahi watershed, especially its downstream and the impact of agricultural land use on water quality should be taken into consideration in basin management plans.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Irán , Medición de Riesgo , Metales Pesados/análisis , Monitoreo del Ambiente/métodos , Humanos , Océano Índico , Ríos/química
8.
AIMS Microbiol ; 10(3): 674-693, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219755

RESUMEN

Climate change enhances stress in food crops. Recently, abiotic stress such as metalloid toxicity, salinity, and drought have increased in food crops. Mycorrhizal fungi can accumulate several nutrients within their hyphae through a symbiotic relationship and release them to cells in the root of the food crops under stress conditions. We have studied arbuscular mycorrhizal fungi (AMF)-enriched biofertilizers as a climate-smart technology option to increase safe and healthy food production under abiotic stress. AMF such as Glomus sp., Rhizophagus sp., Acaulospora morrowiae, Paraglomus occultum, Funneliformis mosseae, and Claroideoglomus etunicatum enhance growth and yield in food crops grown in soils under abiotic stress. AMF also works as a bioremediation material in food crops grown in soil. More precisely, the arsenic concentrations in grains decrease by 57% with AMF application. In addition, AMF increases mineral contents, and antioxidant activities under drought and salinity stress in food crops. Catalase (CAT) and ascorbate peroxidase (APX) increased by 45% and 70% in AMF-treated plants under drought stress. AMF-enriched biofertilizers are used in crop fields like precision agriculture to reduce the demand for chemical fertilizers. Subsequently, AMF-enriched climate-smart biofertilizers increase nutritional quality by reducing abiotic stress in food crops grown in soils. Consequently, a climate resilience environment might be developed using AMF-enriched biofertilizers for sustainable livelihood.

9.
Environ Res ; : 119878, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222734

RESUMEN

Sodium alginate (SA) emerges as a promising adsorbent for the remediation of heavy metal-polluted wastewater. However, the systematic investigations on how and the extent to which the various compositions in real water matrices impact its performance were essential but rare when considering its use. Here, we explored the effect of common environmental factors on Cu(II) adsorption by an as-synthesized SA-based hydrogel (SAH). The result showed that high concentration of organics (above 10 mg·L-1) had a negative influence on heavy metal removal (decreased by 9.45 % at least), while inorganic ion, turbidity and antibiotics at relatively low concentrations exhibited a negligible even promoting effect (increased by 9.8 % with the presence of 5 mg·L-1 Nor). Based on above results and corresponding mechanism analyses, the possible applicable and unsuitable scenarios of SAH can be predicted. SAH could be a great candidate for treating heavy metal-polluted water such as river and lake water, while it is not a good option for electroplating or livestock wastewater which contains high concentration of organic matters. Besides, the operating conditions including pH (5.0 for Cu(II), 6.0 for Ni(II)), contact time (24 h), temperature (298 K), et al. were also determined. Overall, this work provides theoretical guidance and operational strategies for promoting the practical application of SA adsorbent in water treatment.

10.
Sci Rep ; 14(1): 20318, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223289

RESUMEN

Heavy metals mainly exist on the surface of sediment particles and are transported using particulate matter as carriers. Therefore, the particle size of sediment particles can affect the adsorption, release, and migration of heavy metals. This study aim to investigate the distribution characteristics and chemical fraction of Cd, Pb, and As contents in sediments of different particle sizes using the BCR method, and to determine the key factors affecting the distribution of heavy metals through mineralogical methods such as XRD and EDS. The results revealed that the overall content of various forms of heavy metals increases with the decrease of particle size, mainly presents in fine particles. The mineralogical analysis results indicated that fine particles predominantly contained clay minerals such as chlorite and illite and coarse particles mainly include primary minerals. Due to the mining areas in the middle-upstream, Cd, Pb and As were primarily associated with galena, sphalerite and pyrite, respectively. The distribution of heavy metals is jointly influenced by sediment particle size and sediment material composition.

11.
Toxicol Rep ; 13: 101708, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39224457

RESUMEN

Exposure to air pollution poses significant risks to human health, including detrimental effects on the reproductive system, affecting both men and women. Our prospective clinical study aimed to assess the impact of prolonged air pollution exposure on sperm quality in male patients attending a fertility clinic. The current study was conducted at Sri Narayani Hospital and Research Centre in Vellore, Tamil Nadu, India, and the study examined sperm samples obtained from individuals with extended exposure to air pollution. Microscopic analysis, including scanning electron microscopy (SEM), was conducted to evaluate sperm morphology. At the same time, atomic absorption spectroscopy (AAS) determined the presence of heavy metals, including Zinc (Zn), Magnesium (Mg), Lead (Pb) and Cadmium (Cd), known to affect sperm production. Our findings revealed that long-term exposure to air pollution adversely affects sperm quality, manifesting in alterations during the spermatogenesis cycle, morphological abnormalities observed through SEM, and impaired sperm motility. Additionally, epidemiological evidence suggests that elevated levels of cadmium and lead in the environment induce oxidative stress, leading to sperm DNA damage and reduced sperm concentrations. These results underscore the urgent need for environmental interventions to mitigate air pollution and protect reproductive health.

12.
Bull Environ Contam Toxicol ; 113(3): 36, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225850

RESUMEN

The massive influx of Sargassum natans and S. fluitans to the shores of the Mexican Caribbean has raised concerns regarding their potential impact on soil quality and health in coastal and agroecosystems. The effects of Sargassum accumulation remain largely unexplored. This study aimed to assess the impact of Sargassum on soil ecosystems by examining the behavior and survival of the epigean earthworm Eisenia fetida. The earthworm was exposed to varying concentrations of Sargassum (0, 25, 50, 75, and 100%) in two toxicological tests. Results from the avoidance test demonstrated that E. fetida exhibited strong aversion (> 80%) to a diet containing 100% Sargassum. Conversely, the acute test revealed minimal mortality, but growth decreased with increasing Sargassum concentrations. These findings can serve as early warning bioindicators for assessing the environmental risk posed by Sargassum in soil ecosystems.


Asunto(s)
Oligoquetos , Sargassum , Contaminantes del Suelo , Animales , Oligoquetos/fisiología , Oligoquetos/efectos de los fármacos , Sargassum/fisiología , Contaminantes del Suelo/toxicidad , Suelo/química , Conducta Animal/efectos de los fármacos , México , Monitoreo del Ambiente
13.
Int J Environ Health Res ; : 1-20, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206867

RESUMEN

In this study, the Geo-accumulation index (Igeo), Human Health Risk Assessment (HRA), and Ecological Risk Index (ERI) were utilized to examine the risks associated with the soils at the DaeyangYeongseong mine. Brassica juncea and Raphanus sativus were employed in the ecological toxicity test. In all soil samples, the mean Igeo value of arsenic measured 3.15, and cadmium measured 6.63, indicating a very high level of heavy metal contamination. The carcinogenic risk of cadmium and arsenic for adults was 4.30×10-3 and 1.43×10-5, respectively. For children, these values were 3.92 × 10-2 and 1.33 ×10-4, exceeding the acceptable level (1×10-6). In all soils, cadmium showed extremely high ecological risk levels, and arsenic had extremely high risk levels in 34.8% of the total area. This was also confirmed in toxicity assessments using plants. Therefore, arsenic and cadmium were found to be the main causes of soil contamination and ecological risk.

14.
J Hazard Mater ; 479: 135641, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39208628

RESUMEN

Developing countries struggle with water quality management owing to poor infrastructure, limited expertise, and financial constraints. Traditional water testing, relying on periodic site visits and manual sampling, is impractical for continuous wide-area monitoring and fails to detect sudden heavy metal contamination. To address this, plant-inspired robots capable of fully autonomous water quality monitoring are proposed. Constructed from paper, the robot absorbs surrounding water through its roots. This paper robot is controlled by paper-based microfluidic logic that sends absorbed water to petal-shaped actuators only when the water is polluted by heavy metals. This triggers the actuators to swell and bend like a blooming flower, visually signaling contamination to local residents. In tests with copper-contaminated water, the robotic flower's diameter increased from 4.69 cm to 14.89 cm, a more than threefold expansion (217.25 %). This significant blooming movement serves as a highly visible and easily recognizable indicator of water pollution, even for the public. Furthermore, the paper robot can be mass-produced at a low cost (∼$0.2 per unit) and deployed over large areas. Once installed, the paper robot operates autonomously using surrounding water as a power source, eliminating the need for external electrical infrastructure and expert intervention. Therefore, this autonomous robot offers a new approach to water quality monitoring suitable for resource-limited environments, such as Sub-Saharan Africa.

15.
Int J Biol Macromol ; : 134913, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39208906

RESUMEN

An increasing quantity of pollutants has been discharged into the aquatic media, posing a serious hazard to public health. To address this issue, a new sorbent material, MXene@i.Carr@MaMb, was developed through the functionalization of the MXene surface using iota-carrageenan (i.Carr), maleic anhydride, and N, N'-methylene bis-acrylamide. This sorbent material was designed to remove thorium (Th (IV)) effectively, uranium (U (IV)), sulfamethoxazole (SMX), and levofloxacin (LEV) from wastewater. The MXene@i.Carr@MaMb composite incorporated significant functional groups, including OH, F, and O from MXene, oxygen and ester sulfate groups from iota-carrageenan (i.Carr), and OH, NH, and CO groups from N, N'-methylene bis-acrylamide, and maleic anhydride, which interacted with the UV (IV), Th (IV), SMX, and LEV pollutants through electrostatic interaction, complexation, and hydrogen bonding. MXene@i.Carr@MaMb composite exhibited excellent sorption capacities for Th (IV) (3.6 ±â€¯0.03 mmol g-1), U (IV) (3.7 ±â€¯0.09 mmol g-1), SMX (5.8 ±â€¯0.03 mmol g-1), and LEV (5.9 ±â€¯0.05 mmol g-1) at 323.15 K. The sorption kinetics and isotherms of radioactive metals and antibiotics can be well-described using pseudo-first-order kinetic models and Langmuir and Sips isothermal equations. This study presented a novel sorbent material for efficiently removing radioactive metals and antibiotics from wastewater.

16.
Chemosphere ; : 143203, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39209036

RESUMEN

Microalgae can be collected in large quantities and hold significant potential for environmental remediation, offering a cost-effective solution. This study explores the use of Spirulina platensis (SP) as feedstock for biochar production. SP contains abundant nitrogen-rich components, such as proteins, which can serve as nitrogen sources. We prepared SP-derived biochar through pyrolysis for the adsorption of Pb and Zn from aqueous solutions and used it as an amending agent to remediate heavy metal-contaminated agricultural soil. Pyrolysis of proteins in SP introduces nitrogen-functional groups, resulting in nitrogen-doped biochar. We investigated the surface chemical behavior of thermally treated SP using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. Surface analysis revealed the presence of pyridine-N and pyrrole-N from protein pyrolysis products. The study also demonstrated that these functional groups affect interactions with heavy metals. Batch experiments examined the effects of pH and initial concentration on the adsorption of Pb and Zn using SP400 and SP600. Both types of biochar showed satisfactory performance in adsorbing Pb and Zn. The effect of SP400 and SP600 on the removal of Pb and Zn through the physicochemical properties and surface functional groups was investigated. Analysis of SP400 and SP600 highlighted that electrostatic interactions, cation exchange, complexation, and mineral precipitation contributed to Pb and Zn adsorption. The study concludes that SP-derived biochar, particularly SP600, is effective for immobilizing Pb and Zn in contaminated agricultural soil, with SP600 showing superior performance.

17.
Environ Res ; : 119893, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39216740

RESUMEN

The management of drinking water treatment residuals (DWTRs) poses significant environmental and economic challenges for water treatment facilities; however, these residues have considerable potential as effective adsorbents for pollutant removal. The objectives of this review are to evaluate research conducted from 2015 to 2024 on treatment and modification techniques aimed at enhancing DWTRs' efficacy as adsorbents, analyze the influence of preparation methods on DWTRs performance, evaluate DWTRs adsorbents for different pollutants, and discuss the limitations and challenges in DWTRs applications. The review addresses the knowledge gap by detailed analysis of these advanced modification methods, which have not been extensively reviewed before, and their direct impact on the physicochemical properties and adsorption performance of DWTRs. The review explores various methods including thermal treatment, chemical activation, granulation, pelletization, and the development of composite materials. Key findings indicate that thermal treatment significantly increases surface area and porosity, while chemical activation introduces functional groups that enhance adsorption capacity. Composite DWTRs, incorporating metals, organic compounds, or magnetic properties, demonstrate superior performance in adsorbing diverse contaminants such as dyes and heavy metals. Despite these advancements, challenges remain, particularly in reporting the life cycles and costs of the treated and modified DWTRs and the regeneration of spent adsorbents. The review highlights the importance of optimizing preparation techniques to enhance the physicochemical properties and adsorption performance of DWTRs. By synthesizing existing knowledge and identifying key areas for future research, this review aims to advance sustainable practices in water treatment and resource recovery, aligning with global sustainability goals.

18.
Sci Rep ; 14(1): 19984, 2024 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198688

RESUMEN

Silver ion (Ag+) is of harmful effects to both environment and human health. Ag+ soluble compounds and salts is used in treating mental illness, epilepsy, nicotine addiction, gastroenteritis, and infectious diseases, including syphilis and gonorrhea, and as anti-infective dermatological agent for controlling nose bleeding. However, high Ag+ doses cause several harmful effects to human health such as irreversible pigmentation of skin and eye, and problems to liver and kidney. A bulk membrane Optode is proposed in this work to measure the Ag+ concentration in the pharmaceutical formulations. The membrane optode is prepared from the ionophore 4-nitobenzo-15-crown-5, the ion-exchanger sodium tetrakis (imidazolyl) borate, the plasticizer o-nitrophenyl octyl ether, and the chromoionophore ETH 5294; these components are dissolved in the PVC/THF slurry to form the membrane. The optode is studied by atomic force microscope and UV-visible spectrophotometer, and its spectrum exhibits two maximum wavelengths of 550 and 665 nm, and response for Ag+ at these maximum wavelengths is reproducible in the concentration range of 10-11 to 10-8 M using acetate buffer of pH 5.0, with very low detection limit of 8.8 × 10-12 M. The most important feature in this work is the selectivity improvement for Ag+ over all interfering ions; the selectivity coefficient logarithm logK A g + , c a t i o n opt is found to be - 4.3 for Cu2+, - 5.6 for Ni2+ and - 5.0 for Cd2+. The response mechanism is studied by FTIR, and it depends on ion-exchange of Ag+ and sodium imidazolyl borate, followed by the host-guest complexation between Ag+ and the crown ionophore, which is accompanied by concomitant deprotonation of the chromoionphore. The optode has a response time of 2-3 min within lifetime of 10 days with the same response. The optode can be applied successfully for Ag+ determination in the pharmaceutical formulation, PinkEye Relief® eye drop, which is used for treating inflammation, redness and water discharge of the eye; the high recovery and low standard deviation of the results using calibration curve method confirm the accuracy and precision of the proposed optode for its application in real samples.


Asunto(s)
Cloruro de Polivinilo , Plata , Plata/química , Cloruro de Polivinilo/química , Membranas Artificiales , Boratos/química , Éteres Corona/química , Iones
19.
Artículo en Inglés | MEDLINE | ID: mdl-39200573

RESUMEN

Dimba Cave is a large array of natural galleries in limestone mountains of the Democratic Republic of the Congo that contains highly valued pre-historic archaeological artifacts. The cave attracts a high number of tourists every year and is used by local populations as a water supply source. The main objective of the research undertaken in Dimba Cave consisted of assessing the quality of water and sediments from Dimba Cave ponds through evaluating contamination by heavy metals (15 elements analyzed, including As, Cd, Pb, and Hg) and by microbial populations (including Escherichia coli and total coliforms) in order to estimate the ecotoxicological risk to humans and to non-human biota. All water samples collected in the cave ponds showed very high metal concentrations exceeding the internationally recommended limits for drinking water, particularly for Cr, Mn, As, Pb, and Hg. Most sediment samples from cave ponds also displayed high heavy metal concentrations. The calculated pollution parameters, such as the enrichment factor (EF), and ecological risk parameters, such as the ecological risk index (Eri), indicated that the sediment may be toxic to aquatic biota. Furthermore, the microbiological analysis of pond waters indicated a widespread contamination with bacteria such as Escherichia coli, Enterococcus spp., total coliforms, and Pseudomonas spp., probably from anthropogenic and/or animal sources. Therefore, the consumption of Dimba Cave water as a drinking water represents a threat to public health. Urgent management measures should be enforced to protect public health and the cave ecosystem.


Asunto(s)
Cuevas , Monitoreo del Ambiente , Sedimentos Geológicos , Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , República Democrática del Congo , Medición de Riesgo , Metales Pesados/análisis , Metales Pesados/toxicidad , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Agua Subterránea/química , Agua Subterránea/microbiología , Microbiología del Agua , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Humanos
20.
Artículo en Inglés | MEDLINE | ID: mdl-39200616

RESUMEN

This article investigates the extent of heavy metal pollution in both urban and rural gardens in Pavlodar, which cultivate potatoes and tomatoes. As a city of industrialization, Pavlodar is exposed to emissions from industrial enterprises, transport and stove heating. The city also has the highest incidence of environmental diseases among the population. This study examines the accumulation of heavy metals and metalloid in the snow, their migration into the soil and their accumulation in plants, and assesses the non-cancer and cancer health risks of consuming these vegetables. The results show that the concentrations of trace elements in the solid phase of snow decrease in the following order: Fe (26,000) > Mn (592.5) > Cr (371.3) > Zn (338.8) > Pb (161.9) > Cu (142.5) > Ni (30.9) > As (15.1) > Co (12.1) > Cd (2.6). In soils, the concentrations of elements decrease in the following order: Mn (22,125) > Fe (20,375) > Zn (246.9) > Cr (109.5) > Cu (39.3) > Pb (25.6) > Ni (22.4) > As (9) > Co (6.6) > Cd (0.2). In urban gardens, the snow pollution coefficient was the highest. In rural gardens, the contamination index varied from 0.3 (Cr) to 5.3 (Cd). Magnesium in the soil exceeds the maximum allowable concentration (MPC) by 28.6-35.7 times, and zinc by 1.6-10.9 times. Only zinc and copper exceed the MPC for vegetables. Nickel in potatoes exceeds MPC by a factor of 6 and in tomatoes by a factor of 4.4. The cobalt content in tomatoes exceeds the background value by 2.2 times, with a maximum value of 5.3 times. The risk assessment showed that the non-carcinogenic and carcinogenic risks associated with potato and tomato consumption were low. However, these risks are higher in urban areas than in rural areas.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Medición de Riesgo , Humanos , Kazajstán , Nieve/química , Jardines , Monitoreo del Ambiente , Suelo/química , Ciudades , Solanum lycopersicum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA