Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39204886

RESUMEN

To achieve Level 4 and above autonomous driving, a robust and stable autonomous driving system is essential to adapt to various environmental changes. This paper aims to perform vehicle pose estimation, a crucial element in forming autonomous driving systems, more universally and robustly. The prevalent method for vehicle pose estimation in autonomous driving systems relies on Real-Time Kinematic (RTK) sensor data, ensuring accurate location acquisition. However, due to the characteristics of RTK sensors, precise positioning is challenging or impossible in indoor spaces or areas with signal interference, leading to inaccurate pose estimation and hindering autonomous driving in such scenarios. This paper proposes a method to overcome these challenges by leveraging objects registered in a high-precision map. The proposed approach involves creating a semantic high-definition (HD) map with added objects, forming object-centric features, recognizing locations using these features, and accurately estimating the vehicle's pose from the recognized location. This proposed method enhances the precision of vehicle pose estimation in environments where acquiring RTK sensor data is challenging, enabling more robust and stable autonomous driving. The paper demonstrates the proposed method's effectiveness through simulation and real-world experiments, showcasing its capability for more precise pose estimation.

2.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000895

RESUMEN

Background: High-definition maps can provide necessary prior data for autonomous driving, as well as the corresponding beyond-line-of-sight perception, verification and positioning, dynamic planning, and decision control. It is a necessary element to achieve L4/L5 unmanned driving at the current stage. However, currently, high-definition maps still have problems such as a large amount of data, a lot of data redundancy, and weak data correlation, which make autonomous driving fall into difficulties such as high data query difficulty and low timeliness. In order to optimize the data quality of high-definition maps, enhance the degree of data correlation, and ensure that they better assist vehicles in safe driving and efficient passage in the autonomous driving scenario, it is necessary to clarify the information system thinking of high-definition maps, propose a complete and accurate model, determine the content and functions of each level of the model, and continuously improve the information system model. Objective: The study aimed to put forward a complete and accurate high-definition map information system model and elaborate in detail the content and functions of each component in the data logic structure of the system model. Methods: Through research methods such as the modeling method and literature research method, we studied the high-definition map information system model in the autonomous driving scenario and explored the key technologies therein. Results: We put forward a four-layer integrated high-definition map information system model, elaborated in detail the content and functions of each component (map, road, vehicle, and user) in the data logic structure of the model, and also elaborated on the mechanism of the combined information of each level of the model to provide services in perception, positioning, decision making, and control for autonomous driving vehicles. This article also discussed two key technologies that can support autonomous driving vehicles to complete path planning, navigation decision making, and vehicle control in different autonomous driving scenarios. Conclusions: The four-layer integrated high-definition map information model proposed by this research institute has certain application feasibility and can provide references for the standardized production of high-definition maps, the unification of information interaction relationships, and the standardization of map data associations.

3.
Sensors (Basel) ; 23(24)2023 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-38139722

RESUMEN

Environmental perception plays a fundamental role in decision-making and is crucial for ensuring the safety of autonomous driving. A pressing challenge is the online evaluation of perception uncertainty, a crucial step towards ensuring the safety and the industrialization of autonomous driving. High-definition maps offer precise information about static elements on the road, along with their topological relationships. As a result, the map can provide valuable prior information for assessing the uncertainty associated with static elements. In this paper, a method for evaluating perception uncertainty online, encompassing both static and dynamic elements, is introduced based on the high-definition map. The proposed method is as follows: Firstly, the uncertainty of static elements in perception, including the uncertainty of their existence and spatial information, was assessed based on the spatial and topological features of the static environmental elements; secondly, an online assessment model for the uncertainty of dynamic elements in perception was constructed. The online evaluation of the static element uncertainty was utilized to infer the dynamic element uncertainty, and then a model for recognizing the driving scenario and weather conditions was constructed to identify the triggering factors of uncertainty in real-time perception during autonomous driving operations, which can further optimize the online assessment model for perception uncertainty. The verification results on the nuScenes dataset show that our uncertainty assessment method based on a high-definition map effectively evaluates the real-time perception results' performance.

4.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904572

RESUMEN

The emergence of autonomous vehicles marks a shift in mobility. Conventional vehicles have been designed to prioritize the safety of drivers and passengers and increase fuel efficiency, while autonomous vehicles are developing as convergence technologies with a focus on more than just transportation. With the potential for autonomous vehicles to serve as an office or leisure space, the accuracy and stability of their driving technology is of utmost importance. However, commercializing autonomous vehicles has been challenging due to the limitations of current technology. This paper proposes a method to build a precision map for multi-sensor-based autonomous driving to improve the accuracy and stability of autonomous vehicle technology. The proposed method leverages dynamic high-definition maps to enhance the recognition rates and autonomous driving path recognition of objects in the vicinity of the vehicle, utilizing multiple sensors such as cameras, LIDAR, and RADAR. The goal is to improve the accuracy and stability of autonomous driving technology.

5.
Sensors (Basel) ; 22(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36146405

RESUMEN

High-definition (HD) mapping is a promising approach to realize highly automated driving (AD). Although HD maps can be applied to all levels of autonomy, their use is particularly beneficial for autonomy levels 4 or higher. HD maps enable AD systems to see beyond the field of view of conventional sensors, thereby providing accurate and detailed information regarding a driving environment. An HD map is typically separated into a pointcloud map for localization and a vector map for path planning. In this paper, we introduce two separate but successive HD map generation workflows. Of the several stages involved, the registration and mapping processes are essential for creating the pointcloud and vector maps, respectively. To facilitate the readers' understanding, the processes of these two stages have been recorded and uploaded online. HD maps are typically generated using open-source software (OSS) tools. CloudCompare and ASSURE, as representative tools, are used in this study. The generated HD maps are validated with localization and path-planning modules in Autoware, which is also an OSS stack for AD systems. The generated HD maps enable environmental-monitoring vehicles to successfully operate at level 4 autonomy.

6.
Sensors (Basel) ; 19(9)2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31035458

RESUMEN

Future intelligent transport systems depend on the accurate positioning of multiple targets in the road scene, including vehicles and all other moving or static elements. The existing self-positioning capability of individual vehicles remains insufficient. Also, bottlenecks in developing on-board perception systems stymie further improvements in the precision and integrity of positioning targets. Vehicle-to-everything (V2X) communication, which is fast becoming a standard component of intelligent and connected vehicles, renders new sources of information such as dynamically updated high-definition (HD) maps accessible. In this paper, we propose a unified theoretical framework for multiple-target positioning by fusing multi-source heterogeneous information from the on-board sensors and V2X technology of vehicles. Numerical and theoretical studies are conducted to evaluate the performance of the framework proposed. With a low-cost global navigation satellite system (GNSS) coupled with an initial navigation system (INS), on-board sensors, and a normally equipped HD map, the precision of multiple-target positioning attained can meet the requirements of high-level automated vehicles. Meanwhile, the integrity of target sensing is significantly improved by the sharing of sensor information and exploitation of map data. Furthermore, our framework is more adaptable to traffic scenarios when compared with state-of-the-art techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA