Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39313606

RESUMEN

The waste of polymeric materials in our society is increasing year after year, generating a serious pollution problem. One way to deal with this waste problem is to recycle and reuse these materials. This process of recovery of used plastic materials aims to minimise their impact on the environment and reduce the energy consumption required for the generation of new consumer products. Recycling companies that recover these plastic materials must take into account some aspects such as transparency and colour, cleanliness, size, odour and sorting. One of the major disadvantages in accepting these recycled materials in the production processes is their odour, which in some cases causes the rejection of materials with comparable mechanical characteristics. High-density polyethylene, HDPE, is one of the polymeric wastes generated in the packaging industry. The aim of this work is to eliminate the bad odour of HDPE from waste collection plants for application in the recovery and reuse industry. HDPE supplied by a recycling company was washed, characterised and processed, and the odour was analysed by gas chromatography at each stage and by olfactory panel. In view of the results, it was observed that the washing processes managed to reduce the odour. Likewise, the processing of this waste by extrusion and injection managed to further reduce this effect, even eliminating some of the components responsible for odour by treating the samples with acetone and then extruding and injecting these samples. These results have a direct application in the packaging industry with significant shares of recycled material.

2.
Polymers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204606

RESUMEN

Amid the current environmental crisis caused by plastic accumulation, one of the proposed solutions to manage this problem is using biodegradable polymers. However, the impact of adding biodegradable polymers to the well-established circular economy of recyclable polymers, such as HDPE, has not been fully considered. Therefore, there is a need to reconsider the way we consume, dispose of, and manage biodegradable polymers after use. This study evaluates the effect of varying the contents of a biodegradable polymer, taking poly(lactic acid) (PLA) as a model biodegradable polymer, on the thermal and mechanical properties of HDPE. The study highlights the importance of identifying and disposing of biodegradable polymers to avoid mixtures with HDPE, in order not to affect mechanical performance when considering reprocessing and a new life cycle of this conventional polymer.

3.
Sci Total Environ ; 951: 175413, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137846

RESUMEN

Plastics are now the dominant fraction of anthropogenic marine debris and as a result of their long residence times, it is important to determine the threats that plastics present to marine ecosystems including their ability to sorb a diversity of environmental pollutants such as trace metals. To address this knowledge gap, this study examined the sorption of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within marine intertidal sediments in a human-impacted area of Burrard Inlet (British Columbia, Canada). Trace metal sorption by macro- and microplastics was dependent on 1) polymer characteristics, notably the aging of the plastic over the duration of the field experiment as shown by the formation of new peaks via FTIR spectra; and 2) amounts of sediment organic matter, where the sorption of trace metals by the plastic particles decreased with increasing organic matter content (from 2.8 % to 15.8 %). Plastic particles play a minor role in trace metals sorption in the presence of organic matter at high concentrations as a result of competitive adsorption. Overall, the interaction of trace metals with sediment plastics was highly dynamic and to understand the key processes controlling this dynamic requires further study. This work contributed to our understanding on metal-plastic interactions in coastal intertidal sediments from urban environments and serve to support plastic pollution risk management and bioremediation studies.

4.
Chemistry ; 30(54): e202401926, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39015026

RESUMEN

The aim of this paper is to determine the effect of polymer density, correlated to the comonomer content, and nanosilica addition on the mechanical and Environmental Stress Cracking Resistance (ESCR) characteristics of high-density polyethylene (HDPE). In this regard, five HDPE samples with similar Melt Flow Index (MFI) and molar mass but various densities were acquired from a petrochemical plant. Two polymerization reactors work in series and differ only in the amount of 1-buene comonomer fed to the second reactor. To ascertain the microstructure of the studied samples, GPC and SSA (successive self-nucleation and annealing) analyses were accomplished. All samples resulted having similar characteristics but slightly various SCB/1000 C=7.26-9.74 (SCB=Short Chain Branching). Consequently, meanwhile studied HDPEs reveal similar notched impact and stress at yield values, the tensile modulus, stress-at-break, and elongation-at-break tend to demonstrate different results with the SCB content. More significantly, ESCR characteristic varied considerably with SCB/1000 C extent, so that higher amount of SCB acknowledged advanced ESCR. Notably, blending HDPE sample containing higher amount of SCB/1000 C, with 3 wt.% of chemically modified nanosilica enhanced ESCR characteristic by 40 %. DFT (Density Functional Theory) calculations unveiled the role of the comonomer, quantitatively by binding energies and qualitatively by Non Covalent Interaction (NCI) plots.

5.
Polymers (Basel) ; 16(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065395

RESUMEN

Polymer blends of poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide) (PLLA-PEG-PLLA) and high-density polyethylene (HDPE) with different blend ratios were prepared by a melt blending method. The thermal, morphological, mechanical, opacity, and biodegradation properties of the PLLA-PEG-PLLA/HDPE blends were investigated and compared to the PLLA/HDPE blends. The blending of HDPE improved the crystallization ability and thermal stability of the PLLA-PEG-PLLA; however, these properties were not improved for the PLLA. The morphology of the blended films showed that the PLLA-PEG-PLLA/HDPE blends had smaller dispersed phases compared to the PLLA/HDPE blends. The PLLA-PEG-PLLA/HDPE blends exhibited higher flexibility, lower opacity, and faster biodegradation and bioerosion in soil than the PLLA/HDPE blends. Therefore, these PLLA-PEG-PLLA/HDPE blends have a good potential for use as flexible and partially biodegradable materials.

6.
J Environ Manage ; 365: 121704, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968892

RESUMEN

The occurrence of microplastics (MPs) in wastewater has been studied in the last years. The high efficiency of their removal from wastewater is linked to their transfer to the sludge. In this work, the effect of high-density polyethylene (HDPE) on aerobic digestion was evaluated and these MPs were monitored, characterizing them by three different techniques. Two parallel batch digesters were monitored. AD-Control (meaning Aerobic Digester) operated as a reference, with no external HDPE particles, whereas these polymeric fragments were introduced to the second aerobic digester (AD-HDPE) using ring pulls as microplastic support. FTIR, Raman spectroscopies and fluorescence analysis of these microparticles showed some relevant results that should be highlighted. Higher fluorescence appeared after 7 days in the digester. It coincided with an increase of active volatile suspended solids (AVSS) in the AD-HDPE, which means that an increase of the microbial activity took place. Despite the presence of HDPE particles in the sludge, the digester performance was not compromised. Besides, the HDPE particles did not affect the microbial diversity (Shannon index) of the bacterial community at the end of the experiment compared to the bacterial community of the aerobic digester control tank. Based on the analysis of the relative abundances of microbial taxa, it was concluded that HDPE had selective effects on sludge microbial community, increasing the relative abundance of Bacteroridota phylum.


Asunto(s)
Polietileno , Aguas del Alcantarillado , Aerobiosis , Microplásticos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos
7.
Materials (Basel) ; 17(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998341

RESUMEN

Chemical modification of the surface of halloysite nanotubes (HNT) by alkalization (with sodium hydroxide (NaOH)) and grafting with silanes (bis(trimethylsilyl)amine (HMDS)) was carried out. The efficiency of the alkalization and grafting process was evaluated by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and the nitrogen adsorption method were used. XRD and FTIR analysis confirmed the formation of bonds of trimethylsilyl groups to the HNT surface which changed the nature of the surface from hydrophilic to hydrophobic. In addition, it was noted that grafting with silanes decreases by 7.2% the specific surface area of the halloysite compared to the alkalized material. High-density polyethylene (HDPE) composites with halloysite (HNT), alkalized halloysite (alk-HNT), and HMDS-modified halloysite (m-HNT) were processed in the molten state in a Brabender mixer chamber. On SEM/EDS micrographs of HDPE composites with silanized HNT, a change in surface characteristics from smooth to ductile was observed. Higher melting point values based on differential scanning calorimetry (DSC) analysis of HDPE composites with 5%wt silanized halloysite in comparison with HNT and alk-HNT of, respectively, 2.2% and 1.4% were found, which indicates a slight beneficial influence of the filler on the quality of ordering of the crystalline phase of the matrix.

8.
Polymers (Basel) ; 16(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932052

RESUMEN

In this study, titanium nitride (TiN) was selected as an additive to a high-density polyethylene (HDPE) matrix material, and four different nanocomposites were created with TiN loadings of 2.0-8.0 wt. % and a 2 wt. % increase step between them. The mixtures were made, followed by the fabrication of the respective filaments (through a thermomechanical extrusion process) and 3D-printed specimens (using the material extrusion (MEX) technique). The manufactured specimens were subjected to mechanical, thermal, rheological, structural, and morphological testing. Their results were compared with those obtained after conducting the same assessments on unfilled HDPE samples, which were used as the control samples. The mechanical response of the samples improved when correlated with that of the unfilled HDPE. The tensile strength improved by 24.3%, and the flexural strength improved by 26.5% (composite with 6.0 wt. % TiN content). The dimensional deviation and porosity of the samples were assessed with micro-computed tomography and indicated great results for porosity improvement, achieved with 6.0 wt. % TiN content in the composite. TiN has proven to be an effective filler for HDPE polymers, enabling the manufacture of parts with improved mechanical properties and quality.

9.
Polymers (Basel) ; 16(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891460

RESUMEN

Worldwide, environmental groups and policymakers are focusing on waste recycling to create economic value and on the decomposition of waste by leveraging on scarce resources. This work, therefore, explores the thermal decomposition of enhanced biodegradable polymer matrices made from a mixture of discarded Phoenix dactylifera L./high-density polyethylene (PD/HDPE) using the machine learning analysis of experimental data. The experimental results of these samples were obtained via thermogravimetric (TGA) analysis under an oxidation-free environment, with heating rates of 10, 20, and 40 °C·min-1 and a degradation temperature range from 25 to 600 °C. The TGA analyses revealed the continued dependence of the actual percentage weight loss by these materials as a test function of the degradation temperature, shifting thermograms to temperature maxima consistent with increasing heating rates. Although high-density polyethylene (HDPE) materials were found to be thermally more stable than Phoenix dactylifera L. (PD) materials, PD/HDPE composite materials contained a significant amount of residual ash. Using a machine learning deep neural network approach for this process, significantly improved learning algorithms have been developed, which reduces the overall cost function (residual error) to almost zero (0.025) after just over a million iterations (epochs) and provides predictions that overlap with the experimental results (R2~1). Learning algorithms, along with optimized synaptic weights and biases, were employed to predict the behaviour of PD materials based on experimental thermograms conducted at higher degradation temperatures, typically ranging between 600 and 1000 °C. Predicted data using the enhanced learning algorithms completely overlapped the experiments (R2~1) for these higher degradation temperatures with near unity correlation if the decomposition of the materials continued until the residue was attained. With this approach, it is possible to predict and optimize the thermal characteristics of PD and HDPE with greater efficiency, which reduces the need for multiple design iterations and experimentation.

10.
ChemSusChem ; 17(19): e202400598, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38697954

RESUMEN

It has been known that plastics with undegradability and long half-times have caused serious environmental and ecological issues. Considering the devastating effects, the development of efficient plastic upcycling technologies with low energy consumption is absolutely imperative. Catalytic hydrogenolysis of single-use polyethylene over Ru-based catalysts to produce high-quality liquid fuel has been one of the current top priority strategies, but it is restricted by some tough challenges, such as the tendency towards methanation resulting from terminal C-C cleavage. Herein, we introduced Ru nanoparticles supported on hollow ZSM-5 zeolite (Ru/H-ZSM-5) for hydrocracking of high-density polyethylene (HDPE) under mild reaction conditions. The implication of experimental results is that the 1Ru/H-ZSM-5 (~1 wt % Ru) acted as an effective and reusable bifunctional catalyst providing higher conversion rate (82.53 %) and liquid fuel (C5-C21) yield (62.87 %). Detailed characterization demonstrated that the optimal performance in hydrocracking of PE could be attributed to the moderate acidity and appropriate positively charged Ru species resulting from the metal-zeolite interaction. This work proposes a promising catalyst for plastic upcycling and reveals its structure-performance relationship, which has guiding significance for catalyst design to improve the yield of high-value liquid fuels.

11.
Polymers (Basel) ; 16(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732768

RESUMEN

Prior studies into fatigue crack growth (FCG) in fibre-reinforced polymer composites have shown that the two methodologies of Simple-Scaling and the Hartman-Schijve crack growth equation, which is based on relating the FCG rate to the Schwalbe crack driving force, Δκ, were able to account for differences observed in the measured delamination growth curves. The present paper reveals that these two approaches are also able to account for differences seen in plots of the rate of crack growth, da/dt, versus the range of the imposed stress intensity factor, ΔK, associated with fatigue tests on different grades of high-density polyethylene (HDPE) polymers, before and after electron-beam irradiation, and for tests conducted at different R ratios. Also, these studies are successfully extended to consider FCG in an acrylonitrile butadiene styrene (ABS) polymer that is processed using both conventional injection moulding and additive-manufactured (AM) 3D printing.

12.
Polymers (Basel) ; 16(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38675053

RESUMEN

Designers actively pursue the use of novel materials and concepts in furniture and interior design. By providing insights into their processing behavior and suitability for 3D-printing processes, this research helps to highlight the potential of using waste materials to create more environmentally friendly and sustainable 3D-printing filaments that can be used in furniture and interior design. Furthermore, the study evaluates the effect of incorporating palm midrib nanoparticles (DPFNPs) to reinforce a high-density polyethylene (HDPE) matrix with different loadings such as 10, 20, 30, 40, and 50 wt.%. The composites were extruded into filaments using a manual extruder, which was then utilized to fabricate 3D-printed specimens using a 3D-printing pen. The effect of adding DPFNPs on the composite's chemical, thermal, and mechanical properties was evaluated, with a particular focus on how these modifications influence the melt flow rate (MFR) and, subsequently, the material's printability. The results revealed that HDPE and filament composites presented similar FTIR spectra. On the other hand, the filament composites presented an increase in the thermal stability and a decrease in the mechanical strength with increasing DPFNP content in the HDPE matrix. The filaments were successfully printed using a 3D-printing pen. Thus, using DPFNPs in the HDPE matrix presents a low-cost alternative for filament production and may expand 3D-printing applications in interior and furniture design with more sustainable materials. Future work will delve into optimizing these composites for improved printability and assessing their recyclability, aiming to broaden their applications in 3D printing and beyond.

13.
Sensors (Basel) ; 24(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38610278

RESUMEN

Transient terahertz time-domain spectroscopy (THz-TDS) imaging has emerged as a novel non-ionizing and noninvasive biomedical imaging modality, designed for the detection and characterization of a variety of tissue malignancies due to their high signal-to-noise ratio and submillimeter resolution. We report our design of a pair of aspheric focusing lenses using a commercially available lens-design software that resulted in about 200 × 200-µm2 focal spot size corresponding to the 1-THz frequency. The lenses are made of high-density polyethylene (HDPE) obtained using a lathe fabrication and are integrated into a THz-TDS system that includes low-temperature GaAs photoconductive antennae as both a THz emitter and detector. The system is used to generate high-resolution, two-dimensional (2D) images of formalin-fixed, paraffin-embedded murine pancreas tissue blocks. The performance of these focusing lenses is compared to the older system based on a pair of short-focal-length, hemispherical polytetrafluoroethylene (TeflonTM) lenses and is characterized using THz-domain measurements, resulting in 2D maps of the tissue refractive index and absorption coefficient as imaging markers. For a quantitative evaluation of the lens effect on the image resolution, we formulated a lateral resolution parameter, R2080, defined as the distance required for a 20-80% transition of the imaging marker from the bare paraffin region to the tissue region in the same image frame. The R2080 parameter clearly demonstrates the advantage of the HDPE lenses over TeflonTM lenses. The lens-design approach presented here can be successfully implemented in other THz-TDS setups with known THz emitter and detector specifications.


Asunto(s)
Lentes , Imágen por Terahertz , Animales , Ratones , Polietileno , Politetrafluoroetileno , Frío
14.
Drug Dev Ind Pharm ; 50(4): 285-296, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486377

RESUMEN

The overactive bladder is a condition characterized by a sudden urge to urinate, even with small volumes of urine present in the bladder. The current treatments available for this pathology consist on conservative approaches and the continuous administration of drugs, which when made by conventional methods has limitations related to the first pass metabolism, bioavailability, severe side effects, and low patient adherence to treatments, ultimately leading to low effectiveness. Within this context, the present work proposes the design, manufacture, and characterization of an intravesical implant for the treatment of overactive bladder pathology, using EVA copolymer as a matrix and oxybutynin as a drug. The fabrication of devices through two manufacturing techniques (extrusion and additive manufacturing by fused filament fabrication, FFF) and the evaluation of the implants through characterization tests was proposed. The usability and functionality were evaluated through simulated insertion of the device/prototype in a bladder model through catheter insertion tests. The safety and effectiveness of the devices was investigated from mechanical testing as well as drug release assays. Drug release assays presented a burst release in the first 24 h, followed by a release of 1.8 and 2.8 mg/d, totalizing 32 d. Mechanical tests demonstrated an increase in the stiffness of the specimens due to the addition of the drug, showing a change in maximum stress and strain at break. The released dose was higher than that usually presented when considering the oral administration route, showing the optimization of the development of this implant has the potential to improve the quality of life of patients with overactive bladder.


Asunto(s)
Vejiga Urinaria Hiperactiva , Compuestos de Vinilo , Humanos , Vejiga Urinaria Hiperactiva/tratamiento farmacológico , Preparaciones Farmacéuticas , Calidad de Vida , Etilenos/uso terapéutico , Impresión Tridimensional
15.
Polymers (Basel) ; 16(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475345

RESUMEN

A combination of thermoplastics and natural fiber reinforcements is considered an ideal choice to mitigate environmental impacts and enhance recyclability or reusability. Chemical treatments are often employed to enhance the thermomechanical properties of natural fiber-reinforced plastics. Nevertheless, it is of paramount importance to assess the techno-economic impact of such chemical treatments and environmentally friendly materials for their implementation in mass productions on an industrial scale. In this work, high-density polyethylene is reinforced with sodium hydroxide (NaOH)-treated and untreated flax fibers to study its impact on mechanical and environmental properties. The composites treated with NaOH exhibited a 37% increase in tensile strength. However, life cycle assessment performed on the NaOH-treated samples showed that they had a global warming potential of 5.8 kg of CO2, a terrestrial acidification potential of 0.0269 kg of SO2, and a human carcinogenic toxicity of 0.031 kg of 1,4-DCB compared to the untreated samples. In summary, the techno-environmental analysis reveals a novel approach to identifying chemical treatments based on their technical and environmental effects.

16.
Sci Total Environ ; 919: 170413, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38309365

RESUMEN

New composite materials (suitable for automotive bumpers), composed of recycled high-density polyethylene (rHDPE) and leather buffing dust waste (BF) ranging from 20 to 50 wt%, were produced and investigated for mechanical properties. Optimal mechanical performance was achieved with composites containing 30 % wt BF. The environmental performance of automotive bumper production from both virgin and recycled HDPE reinforced with 30 % wt BF (HDPE-BF, rHDPE-BF) composites was compared to that of conventional polypropylene (PP) by performing a cradle to gate life cycle assessment. A component-based approach, instead of a comprehensive LCA assessment for the entire car was adopted using various functional units (FU) such as mass (FU1), volume (FU2), and volume of raw material fulfilling a specific impact strength requirement (FU3), thus enriching the paper with methodological discussions. The rHDPE-BF system provided better environmental performance compared to the virgin PP system, when considering both mass and volume-related functional units, mainly due to the avoidance of virgin polymer production. Even with the inclusion of the use phase in FU2 and a slightly higher density (+1.7 %) of composites than PP-based bumpers, the rHDPE system still provides better environmental performance (10 % less impact). The sensitivity analysis highlighted the significance of car type and final density of the bumper on the impact results. Finally, when using FU3, due to its higher impact strength, HDPE-BF system is clearly the best environmental alternative (50 % less impact) followed by rHDPE-BF system. In all cases, rising the content of recycled materials in the bumpers increases its circularity. The paper illustrates the importance of selecting a suitable functional unit, based on a specific application (i.e., automotive bumpers), to evaluate the environmental impact of new composite materials in comparison to traditional options. Expanding the assessment to encompass multiple functions provides a more accurate portrayal of reality but also introduces greater result uncertainty.

17.
Sci Total Environ ; 914: 170072, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38218474

RESUMEN

This study examines the microbial colonization characteristics of microplastics (MPs) in wastewater treatment plants (WWTPs), focusing on polymer types (High-Density Polyethylene (HDPE) and Polyethylene Terephthalate (PET)) and various stages of wastewater treatments. Through individual and sequential deployment approaches, the research aimed to identify the determinants of bacterial colonization on MPs, whether they were introduced at each stage of treatment individually or in sequence from primary to tertiary stages. The study revealed that the stage of wastewater treatment profoundly influenced bacterial colonization on the polymer types MPs, with bacterial attachment being largely niche-specific. HDPE showed increased sensitivity to wastewater composition, leading to selective biofilm formation. For instance, in HDPE, Firmicutes accounted for 25.1 ± 0.04 % during primary treatment, while Alphaproteobacteria increased significantly in the tertiary treatment to 19.8 ± 0.1 %. Conversely, PET exhibited a stochastic pattern of bacterial colonization due to differences in surface hydrophilicity. Additionally, in sequential deployments, a notable shift towards stochastic bacterial attachment on MPs, particularly with HDPE was observed. The Shannon diversity values for MP biofilms were consistently higher than those for wastewater across all stages, with PET showing an increase in diversity in sequential deployments (Shannon diversity: 5.01 ± 0.03 for tertiary stage). These findings highlight the critical role of MPs as carriers of diverse bacteria, emphasizing the necessity for strategies to mitigate their impact in WWTPs. This study presents a significant advancement in our understanding of the interactions between MPs and microbial populations in WWTP environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Aguas Residuales , Plásticos , Polímeros , Polietileno , Contaminantes Químicos del Agua/análisis , Tereftalatos Polietilenos , Eliminación de Residuos Líquidos
18.
Regul Toxicol Pharmacol ; 147: 105560, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182014

RESUMEN

High density polyethylene (HDPE) containers are fluorinated to impart barrier properties that prevent permeation of liquid products filled in the container. The process of fluorination may result in the unintentional formation of certain per- and polyfluoroalkyl substances (PFAS), specifically perfluoroalkyl carboxylic acids (PFCAs), as impurities. This study measured the amounts of PFCAs that may be present in the fluorinated HDPE containers, which could migrate into products stored in these containers. Migration studies were also conducted using water and mineral spirits to estimate the amount of PFCAs that might be found in the products stored in these containers. The migration results were used to conservatively model potential PFCA exposures from use of six product types: indoor-sprayed products, floor products, hand-applied products, manually-sprayed pesticides, hose-end sprayed products, and agricultural (industrial) pesticides. The potential that such uses could result in a non-cancer hazard was assessed by comparing the modeled exposures to both applicable human non-cancer toxicity values and environmental screening levels. Environmental releases were also compared to aquatic and terrestrial predicted no-effect concentrations (PNECs). The results of these analyses indicated no unreasonable non-cancer risk to humans, aquatic species, and terrestrial species from PFCAs in products stored in fluorinated HDPE containers.


Asunto(s)
Fluorocarburos , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Polietileno/toxicidad , Fluorocarburos/toxicidad , Fluorocarburos/análisis , Ácidos Carboxílicos/toxicidad , Ácidos Carboxílicos/análisis , Agua , Plaguicidas/análisis , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
19.
Polymers (Basel) ; 16(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257067

RESUMEN

The synergistic effect between different fillers plays a crucial role in determining the performance of composites. In this work, spherical boron nitride (BN) and flaky BN are used as hybrid fillers to improve the thermal conductivity (TC) of high-density polyethylene (HDPE) composites. A series of HDPE composites were prepared by adjusting the mass ratio (1:0, 4:1, 2:1, 1:1, 1:2, 1:4, and 0:1) of spherical BN and flaky BN. The SEM results indicate that the spherical BN (with a particle size of 3 µm) effectively filled the gaps between the flaky BN (with a particle size of 30 µm), leading to the formation of more continuous heat conduction paths with the composite. Remarkably, when the mass ratio of spherical BN to flaky BN was set to 1:4 (with a total BN filling amount of 30 wt%), the TC of the composite could reach up to 1.648 Wm-1K-1, which is obviously higher than that of the composite containing a single filler, realizing the synergistic effect of the hybrid fillers. In addition, the synergistic effect of fillers also affects the thermal stability and crystallization behavior of composites. This work is of great significance for optimizing the application of hybrid BN fillers in the field of thermal management.

20.
J Biomater Sci Polym Ed ; 35(1): 85-108, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37812148

RESUMEN

This research investigates the biocompatibility, mechanical strength, and tribological properties of a hybrid composite material composed of high-density polyethylene (HDPE), hydroxyapatite (HAp), and titanium dioxide nanoparticles (Ti O2). The study explores the microstructural characteristics of the composite material using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Samples of HDPE-30%HAp with varying concentrations of Ti O2 (5, 10, 15, and 20%) were prepared and extruded using a twin-screw machine. The hybrid composite materials underwent mechanical tests (tensile, flexural, and hardness), tribological tests (friction and wear rate), and antibacterial tests (resistance to Escherichia coli and Staphylococcus aureus bacteria). The results indicate that the optimal hybrid composite sample was HDPE-30%HAP-10% Ti O2, which demonstrated excellent mechanical properties (maximum tensile strength of 25.93 MPa and young modulus of 480 MPa) and a low coefficient of friction (COF∼ 0.07) while achieving high wear resistance (wear rate in the order of 10-4 m m3N-1 m-1). The study shows that the improvement in mechanical properties results in a corresponding improvement in tribological properties. The antibacterial tests revealed that the hybrid composite material exhibited resistance to E. coli and S. aureus bacteria. The findings of this study suggest that the HDPE-30%HAP-10% Ti O2 composite is a promising material for use in biomedical applications due to its excellent biocompatibility and desirable mechanical and tribological properties. The study demonstrates the potential of reinforced hybrid composite materials in overcoming the disadvantages of monolithic and hybrid micro-composites and highlights the importance of investigating the microstructural, tribological, and mechanical strength characteristics of composite materials for biomedical applications.


Asunto(s)
Polietileno , Polímeros , Polietileno/química , Ensayo de Materiales , Polímeros/farmacología , Escherichia coli , Staphylococcus aureus , Durapatita/química , Materiales Dentales , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA