Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Molecules ; 29(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39064982

RESUMEN

Carbon nanotube (CNT) fibers are renowned for their exceptional axial tensile strength and modulus. However, in yarn form, they frequently encounter transverse loading in practical applications, which exposes their suboptimal mechanical attributes rooted in inadequate inter-tube interactions and yarn surface defects. Efforts to mitigate micro-slippage among CNTs have encompassed gap-filling methodologies with varied materials, yet the outcomes have fallen short of expectations. This work aimed to enhance the mechanical properties of CNT yarns via infiltration with polyacrylonitrile (PAN) under supercritical carbon dioxide (sc-CO2) conditions. PAN was strategically chosen for its capability to undergo pre-oxidation and subsequent carbonization, leading to robust graphitic reinforcement. Leveraging sc-CO2's swelling and high permeability properties, the infiltration process effectively plugged interstitial spaces, elevating the yarn's tensile strength to 277.50 MPa and Young's modulus to 5094.05 MPa. Additional enhancements were realized after pre-oxidation, conferring a dense, reinforced shell structure that augmented tensile strength by 96.93% and Young's modulus by 298.80%. Scanning electron microscopy (SEM) analyses revealed a homogeneous PAN distribution within the yarn matrix, corroborated by X-ray photoelectron spectroscopy (XPS) evidence of C-N bonding, indicative of a successfully interlaced network. Consequently, this investigation introduces a novel strategy to tackle micro-slippage in CNT yarns, thereby achieving substantial improvements in their mechanical resilience.

2.
J Environ Manage ; 365: 121611, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38959769

RESUMEN

Ultrafiltration technology, separating water from impurities by the core membrane, is an effective strategy for treating wastewater to meet the ever-growing requirement of clean and drinking water. However, the similar nature of hydrophobic organic pollutants and the membrane surface leads to severe adsorption and aggregation, resulting unavoidable membrane degradation of penetration and rejection. The present study presents a novel block amphiphilic polymer, polyethersulfone-g-carboxymethyl chitosan@MWCNT (PES-g-CMC@MWCNT), which is synthesized by grafting hydrophobic polyethersulfone to hydrophilic carboxymethyl chitosan in order to suspend CMC in organic solution. A mixture of hydrophilic carboxymethyl chitosan and hydrophobic polymers (polyethersulfone), in which hydrophilic segments are bonded to hydrophobic segments, could provide hydrophilic groups, as well as gather and remain stable on membrane surfaces by their hydrophobic interaction for improved compatibility and durability. The resultant ultrafiltration membranes exhibit high water flux (198.10 L m-2·h-1), suitable hydrophilicity (64.77°), enhanced antifouling property (82.96%), while still maintains excellent rejection of bovine serum albumin (91.75%). There has also been an improvement in membrane cross-sectional morphology, resulting in more regular pores size (47.64 nm) and higher porosity (84.60%). These results indicate that amphiphilic polymer may be able to significantly promote antifouling and permeability of ultrafiltration membranes.


Asunto(s)
Quitosano , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Polímeros , Sulfonas , Ultrafiltración , Polímeros/química , Quitosano/química , Quitosano/análogos & derivados , Sulfonas/química , Adsorción , Purificación del Agua/métodos , Incrustaciones Biológicas/prevención & control
3.
Sci Bull (Beijing) ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39003155

RESUMEN

Soft and stretchable electronics have garnered significant attention in various fields, such as wearable electronics, electronic skins, and soft robotics. However, current wearable electronics made from materials like conductive elastomers, hydrogels, and liquid metals face limitations, including low permeability, poor adhesion, inadequate conductivity, and limited stretchability. These issues hinder their effectiveness in long-term healthcare monitoring and exercise monitoring. To address these challenges, we introduce a novel design of web-droplet-like electronics featuring a semi-liquid metal coating for wearable applications. This innovative design offers high permeability, excellent stretchability, strong adhesion, and good conductivity for the electronic skin. The unique structure, inspired by the architecture of a spider web, significantly enhances air permeability compared to commercial breathable patches. Furthermore, the distribution of polyborosiloxane mimics the adhesive properties of spider web mucus, while the use of semi-liquid metals in this design results in remarkable conductivity (9 × 106 S/m) and tensile performance (up to 850% strain). This advanced electronic skin technology enables long-term monitoring of various physiological parameters and supports machine learning recognition functions with unparalleled advantages. This web-droplet structure design strategy holds great promise for commercial applications in medical health monitoring and disease diagnosis.

4.
Adv Mater ; 36(31): e2404761, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38796773

RESUMEN

Long-term continuous monitoring (LTCM) of physiological electrical signals is an effective means for detecting several cardiovascular diseases. However, the integrated challenges of stable adhesion, low impedance, and robust durability under different skin conditions significantly hinder the application of flexible electrodes in LTCM. This paper proposes a structured electrode inspired by the treefrog web, comprising dispersed pillars at the bottom and asymmetric cone holes at the top. Attachment structures with a dispersed pillar improve the contact stability (adhesion increases 2.79/13.16 times in dry/wet conditions compared to an electrode without structure). Improved permeable duct structure provides high permeability (12 times compared to cotton). Due to high adhesion and permeability, the electrode's durability is 40 times larger than commercial Ag/AgCl electrodes. The treefrog web-like electrode has great advantages in permeability, adhesion, and durability, resulting in prospects for application in physiological electrical signal detection and a new design idea for LTCM wearable dry electrodes.

5.
ACS Appl Mater Interfaces ; 16(20): 26634-26642, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38722947

RESUMEN

Achieving selective transport of monovalent metal ions with high precision and permeability analogues to biological protein ion channels has long been explored for fundamental research and various applications, such as ion sieving, mineral extraction, and energy harvesting and conversion. However, it still remains a significant challenge to construct artificial nanofluidic devices to realize the trade-off effects between selective ion transportation and high ion permeability. In this work, we report a bioinspired functional micropipet with in situ growth of crown ether-encapsulated metal-organic frameworks (MOFs) inside the tip and realize selective transport of monovalent metal ions. The functional ion-selective micropipet with sub-nanochannels was constructed by the interfacial growth method with the formation of composite MOFs consisting of ZIF-8 and 15-crown-5. The resulting micropipet device exhibited obvious monovalent ion selectivity and high flux of Li+ due to the synergistic effects of size sieving in subnanoconfined space and specific coordination of 15-crown-5 toward Na+. The selectivity of Li+/Na+, Li+/K+, Li+/Ca2+, and Li+/Mg2+ with 15-crown-5@ZIF-8-functionalized micropipet reached 3.9, 5.2, 105.8, and 122.4, respectively, which had an obvious enhancement compared to that with ZIF-8. Notably, the ion flux of Li+ can reach up to 93.8 ± 3.6 mol h-1·m-2 that is much higher than previously reported values. Furthermore, the functional micropipet with 15-crown-5@ZIF-8 sub-nanochannels exhibited stable Li+ selectivity under various conditions, such as different ion concentrations, pH values, and mixed ion solutions. This work not only provides new opportunities for the development of MOF-based nanofluidic devices for selective ion transport but also facilitates the promising practical applications in lithium extraction from salt-like brines, sewage treatment, and other related aspects.

6.
Food Chem ; 445: 138750, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38382258

RESUMEN

This paper was dedicated to the study of the effect of sucrose-phosphate on aspects of physicochemical properties, lipid distribution and protein structure during the picklig of reduced-salt salted egg yolk (SEY). This work constructed a reduced-salt pickling system from a new perspective (promoting osmosis) by using a sucrose-phosphate-salt. Results showed that SEY-28d achieved a desirable salt content (1.07 %), hardness (573.46 g) and springiness (0.65 g). The matured SEY was in excellent quality with orange-red color and loose sandy texture. This was because the lipoprotein aggregated with each other through hydrophobic interaction to form a stable network structure. In addition, the hypertonic environment accelerated salt penetration. These also created good condition for lipid spillage. The results of confocal laser scanning microscope also verified this phenomenon. This work provides important guidance for new reduced-salt curing of traditional pickled foods, deep processing of SEY, and industry development in the field of poultry egg.


Asunto(s)
Yema de Huevo , Fosfatos , Yema de Huevo/química , Fosfatos/farmacología , Huevos , Cloruro de Sodio/química , Cloruro de Sodio Dietético/análisis , Lípidos/análisis , Ósmosis
7.
Adv Sci (Weinh) ; 11(5): e2305023, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38084002

RESUMEN

Destruction of cartilage due to the abnormal remodeling of subchondral bone (SB) leads to osteoarthritis (OA), and restoring chondro-bone metabolic homeostasis is the key to the treatment of OA. However, traditional intra-articular injections for the treatment of OA cannot directly break through the cartilage barrier to reach SB. In this study, the hydrothermal method is used to synthesize ultra-small size (≈5 nm) selenium-doped carbon quantum dots (Se-CQDs, SC), which conjugated with triphenylphosphine (TPP) to create TPP-Se-CQDs (SCT). Further, SCT is dynamically complexed with hyaluronic acid modified with aldehyde and methacrylic anhydride (AHAMA) to construct highly permeable micro/nano hydrogel microspheres (SCT@AHAMA) for restoring chondro-bone metabolic homeostasis. In vitro experiments confirmed that the selenium atoms scavenged reactive oxygen species (ROS) from the mitochondria of mononuclear macrophages, inhibited osteoclast differentiation and function, and suppressed early chondrocyte apoptosis to maintain a balance between cartilage matrix synthesis and catabolism. In vivo experiments further demonstrated that the delivery system inhibited osteoclastogenesis and H-vessel invasion, thereby regulating the initiation and process of abnormal bone remodeling and inhibiting cartilage degeneration in SB. In conclusion, the micro/nano hydrogel microspheres based on ultra-small quantum dots facilitate the efficient penetration of articular SB and regulate chondro-bone metabolism for OA treatment.


Asunto(s)
Cartílago Articular , Osteoartritis , Selenio , Humanos , Microesferas , Hidrogeles/metabolismo , Selenio/metabolismo , Cartílago Articular/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017187

RESUMEN

Tumor cells use glycolysis to provide material and energy under hypoxic conditions to meet the energy requirements for rapid growth and proliferation, namely the Warburg effect. Even under aerobic conditions, tumor cells mainly rely on glycolysis to provide energy. Therefore, glucose transporter protein 1(GLUT1), which is involved in the process of glucose metabolism, plays an important role in tumorigenesis, development and drug resistance, and is considered to be one of the important targets in the treatment of malignant tumors. In recent years, research on tumor glucose metabolism has gradually become a hot spot. It has been shown that various factors are involved in the regulation of tumor energy metabolism, among which the role of GLUT1 is the most critical. In this paper, the authors reviewed the latest research progress of GLUT1-targeted traditional Chinese medicine(TCM) active ingredient nano-delivery system in tumor therapy, aiming to reveal the feasibility and effectiveness of this system in the delivery of chemotherapeutic drugs. The GLUT1-targeted TCM active ingredient nano-delivery system can overcome the bottleneck of the traditional targeting strategy as well as the high-permeability long retention(EPR) effect. In summary, the authors believe that the GLUT1-targeted TCM active ingredient nano-delivery system provides a new strategy for targeted treatment of tumors and has a broad application prospect in tumor prevention and treatment.

9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 1237-1241, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37551505

RESUMEN

Capillary leak syndrome (CLS) is a clinical syndrome characterized by impairment of vascular endothelial barrier function, increased vascular permeability, and reversible systemic edema. It is one of the early fatal complications after hematopoietic stem cell transplantation. So far, the exact pathogenesis of CLS has not been elucidated, and the diagnostic criteria and treatment methods have not been unified. At present, it is believed that the fundamental cause of CLS is hypercytokinemia, and the core factor is high permeability of vascular endothelial cells. According to the clinical manifestations, the natural course of CLS can be divided into prodrome, leakage and recovery stages. As far as treatment is concerned, symptomatic and supportive treatment is dominant according to different characteristics of each stage. In this review, the pathogenesis, clinical manifestations, diagnosis and treatment of hematopoietic stem cell transplant-associated CLS were briefly summarized.


Asunto(s)
Síndrome de Fuga Capilar , Trasplante de Células Madre Hematopoyéticas , Humanos , Síndrome de Fuga Capilar/etiología , Síndrome de Fuga Capilar/diagnóstico , Células Endoteliales , Trasplante de Células Madre Hematopoyéticas/efectos adversos
10.
Adv Mater ; 35(40): e2304490, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562376

RESUMEN

The prevalence of wide-bandgap (WBG) semiconductors allows modern electronic devices to operate at much higher frequencies. However, development of soft magnetic materials with high-frequency properties matching the WBG-based devices remains challenging. Here, a promising nanocrystalline-amorphous composite alloy with a normal composition Fe75.5 Co0.5 Mo0.5 Cu1 Nb1.5 Si13 B8 in atomic percent is reported, which is producible under industrial conditions, and which shows an exceptionally high permeability at high frequencies up to 36 000 at 100 kHz, an increase of 44% compared with commercial FeSiBCuNb nanocrystalline alloy (25 000 ± 2000 at 100 kHz), outperforming all existing nanocrystalline alloy systems and commercial soft magnetic materials. The alloy is obtained by a unique magnetic-heterogeneous nanocrystallization mechanism in an iron-based amorphous alloy, which is different from the traditional strategy of nanocrystallization by doping nonmagnetic elements (e.g., Cu and Nb). The induced magnetic inhomogeneity by adding Co atoms locally promotes the formation of highly ordered structures acting as the nuclei of nanocrystals, and Mo atoms agglomerate around the interfaces of the nanocrystals, inhibiting nanocrystal growth, resulting in an ultrafine nanocrystalline-amorphous dual-phase structure in the alloy. The exceptional soft magnetic properties are shown to be closely related to the low magnetic anisotropy and the unique spin rotation mechanism under alternating magnetic fields.

11.
Materials (Basel) ; 16(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37297090

RESUMEN

The magnetic shielding device is used to provide an extreme weak magnetic field, which plays a key role in variety of fields. Since the high-permeability material constituting the magnetic shielding device determines the magnetic shielding performance, it is important to evaluate the property of the high-permeability material. In this paper, the relationship between the microstructure and the magnetic properties of the high-permeability material is analyzed using minimum free energy principle based on magnetic domain theory, and the test method of the material's microstructure including the material composition, the texture and the grain structure to reflect the magnetic properties is put forward. The test result shows that the grain structure is closely related to the initial permeability and the coercivity, which is highly consistent with the theory. As a result, it provides a more efficient way to evaluate the property of the high-permeability material. The test method proposed in the paper has important significance in the high efficiency sampling inspection of the high-permeability material.

12.
Membranes (Basel) ; 13(4)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37103832

RESUMEN

We introduced a modified sol-gel method using polyvinyl alcohol (PVA) as an additive to improve the permeability of γ-Al2O3 membranes by minimizing the thickness of the selective layer and maximizing the porosity. First, the analysis revealed that the thickness of γ-Al2O3 decreased as the concentration of PVA increased in the boehmite sol. Second, the properties of the γ-Al2O3 mesoporous membranes were greatly influenced by the modified route (method B) compared to the conventional route (method A). The results showed that the porosity and surface area of the γ-Al2O3 membrane increased, and the tortuosity decreased considerably using method B. This effect was attributed to the adsorption of PVA molecules on the surface of the boehmite particles, which depended on the synthesis route. The experimentally determined pure water permeability trend and the Hagen-Poiseuille mathematical model confirmed that the modified method improved the performance of the γ-Al2O3 membrane. Finally, the γ-Al2O3 membrane fabricated via a modified sol-gel method with a pore size of 2.7 nm (MWCO = 5300 Da) exhibited a pure water permeability of over 18 LMH/bar, which is three times higher than that of the γ-Al2O3 membrane prepared using the conventional method.

13.
Sci Bull (Beijing) ; 68(4): 397-407, 2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36774298

RESUMEN

Concentration polarization (CP) should limit the energy and cost reducing benefits of high permeability seawater reverse osmosis (SWRO) membranes operating at a water flux higher than normal one. Herein, we propose a multiscale optimization framework coupling membrane permeability, feed spacer design (sub-millimeter scale) and system design (meter scale) via computational fluid dynamics and system level modeling using advanced supercomputing in conjunction with machine learning. Simulation results suggest energy consumption could be reduced by 27.5% (to 1.66 kWh m-3) predominantly through the use of high permeability SWRO membranes (12.2%) and a two-stage design (14.5%). Without optimization, CP approaches 1.52 at the system inlet, whereas the optimized CP is limited to 1.20. This work elucidates the optimized permeability, module design, operating scheme and benefits of high permeability SWRO membranes in seawater desalination.

14.
Journal of Experimental Hematology ; (6): 1237-1241, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1009979

RESUMEN

Capillary leak syndrome (CLS) is a clinical syndrome characterized by impairment of vascular endothelial barrier function, increased vascular permeability, and reversible systemic edema. It is one of the early fatal complications after hematopoietic stem cell transplantation. So far, the exact pathogenesis of CLS has not been elucidated, and the diagnostic criteria and treatment methods have not been unified. At present, it is believed that the fundamental cause of CLS is hypercytokinemia, and the core factor is high permeability of vascular endothelial cells. According to the clinical manifestations, the natural course of CLS can be divided into prodrome, leakage and recovery stages. As far as treatment is concerned, symptomatic and supportive treatment is dominant according to different characteristics of each stage. In this review, the pathogenesis, clinical manifestations, diagnosis and treatment of hematopoietic stem cell transplant-associated CLS were briefly summarized.


Asunto(s)
Humanos , Síndrome de Fuga Capilar/diagnóstico , Células Endoteliales , Trasplante de Células Madre Hematopoyéticas/efectos adversos
15.
J Contam Hydrol ; 243: 103917, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34758436

RESUMEN

Foam propagation and stability in highly permeable porous media, encountered in soil pollution applications, are still challenging. Here, we investigated the application of foam for blocking the aquifer to divert the flow from a contaminated zone and, therefore, ease the remediation treatments. The main aim was to better understand the critical parameters when the foam is injected into a highly permeable aquifer with high groundwater flow velocity (up to 10 m/day). A decimetric-scale 2D tank experimental setup filled with 1 mm glass beads was used. The front part of the 2D tank was made of transparent glass to photograph the foam flow using the light-reflected method. The water flow was generated horizontally through injection and pumping points on the sides of the tank. The pre-generated foam was injected at the bottom center of the tank. Water streamlines (using dye tracing) and water saturation were investigated using image interpretation. Results show that 100% of the water flow was diverted during the injection of the foam. Foam stability in porous media depends significantly on the horizontal water flow rate. Recirculating water containing the surfactant increases foam stability. The main mechanism of destruction was identified as the dilution of the surfactant in water. However, the head-loss measurements showed that despite foam destruction, the relative permeability of the water phase in the media remained quite low. Injection of foam increases the radius of gas propagation, thanks to foam's high viscosity, compared to a pure gas injection case. These results are new highlights on the efficiency of foam as a blocking agent, showing that it can also serve as a means for gas transport more efficiently in porous media, especially for soil remediation applications.


Asunto(s)
Restauración y Remediación Ambiental , Agua Subterránea , Porosidad , Suelo , Tensoactivos , Agua
16.
Geochem Geophys Geosyst ; 22(3): e2020GC009520, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33867865

RESUMEN

Fluid release from subducting oceanic lithosphere is a key process for subduction zone geodynamics, from controlling arc volcanism to seismicity and tectonic exhumation. However, many fundamental details of fluid composition, flow pathways, and reactivity with slab-forming rocks remain to be thoroughly understood. In this study we investigate a multi-kilometer-long, high-pressure metasomatic system preserved in the lawsonite-eclogite metamorphic unit of Alpine Corsica, France. The fluid-mediated process was localized along a major intra-slab interface, which is the contact between basement and cover unit. Two distinct metasomatic stages are identified and discussed. We show that these two stages resulted from the infiltration of deep fluids that were derived from the same source and had the same slab-parallel, updip flow direction. By mass balance analysis, we quantify metasomatic mass changes along this fluid pathway and the time-integrated fluid fluxes responsible for them. In addition, we also assess carbon fluxes associated with these metasomatic events. The magnitude of the estimated fluid fluxes (104-105) indicates that major intra-slab interfaces such as lithological boundaries acted as fluid channels facilitating episodic pulses of fluid flow. We also show that when fluids are channelized, high time-integrated fluid fluxes lead to carbon fluxes several orders of magnitude higher than carbon fluxes generated by local dehydration reactions. Given the size and geologic features of the investigated metasomatic system, we propose that it represents the first reported natural analogue of the so-called high permeability channels predicted by numerical simulations.

17.
Bioact Mater ; 6(10): 3580-3595, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33869899

RESUMEN

The ready-to-use, structure-supporting hydrogel bioink can shorten the time for ink preparation, ensure cell dispersion, and maintain the preset shape/microstructure without additional assistance during printing. Meanwhile, ink with high permeability might facilitate uniform cell growth in biological constructs, which is beneficial to homogeneous tissue repair. Unfortunately, current bioinks are hard to meet these requirements simultaneously in a simple way. Here, based on the fast dynamic crosslinking of aldehyde hyaluronic acid (AHA)/N-carboxymethyl chitosan (CMC) and the slow stable crosslinking of gelatin (GEL)/4-arm poly(ethylene glycol) succinimidyl glutarate (PEG-SG), we present a time-sharing structure-supporting (TSHSP) hydrogel bioink with high permeability, containing 1% AHA, 0.75% CMC, 1% GEL and 0.5% PEG-SG. The TSHSP hydrogel can facilitate printing with proper viscoelastic property and self-healing behavior. By crosslinking with 4% PEG-SG for only 3 min, the integrity of the cell-laden construct can last for 21 days due to the stable internal and external GEL/PEG-SG networks, and cells manifested long-term viability and spreading morphology. Nerve-like, muscle-like, and cartilage-like in vitro constructs exhibited homogeneous cell growth and remarkable biological specificities. This work provides not only a convenient and practical bioink for tissue engineering, targeted cell therapy, but also a new direction for hydrogel bioink development.

18.
BMC Nephrol ; 20(1): 392, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31660886

RESUMEN

BACKGROUND: Online hemodiafiltration (OL-HDF) is associated with better removal of both small and middle molecules and might improve survival compared to conventional hemodialysis (HD). Nevertheless, hemodiafiltration (HDF) can lead to an increase in albumin loss across the dialyzer, especially with high permeability membrane and high convective volume (CV). We present the case of a patient treated by OL-HDF who developed severe hypoalbuminemia resulting from massive albumin loss into dialysate. CASE PRESENTATION: A 71-year-old woman with ESRD started renal replacement therapy in December 2016. She was treated by high volume post-dilution OL-HDF, 4 h, 3 times per week. The dialyzer was the Phylther HF20SD (a 2.0m2 heat sterilized high flux (HF) polyphenylene membrane from Bellco). At the initiation of dialysis, the serum albumin was 4.0 g/dl. During the following months, the patient developed severe hypoalbuminemia. The lowest value observed was 2.26 g/dl in July 2017. Diagnostic workup excluded nephrotic syndrome, hepatic failure and malabsorption. The patient was shifted from OL-HDF to standard HF HD, keeping the same dialyzer and dialysis schedule. During the following months, we observed a progressive correction of the hypoalbuminemia (3.82 g/dl at last follow-up). To precise the impact of the epuration technique on the albumin losses in this patient, we measured the amount of albumin in dialysate during one session with the Phylther HF20SD on OL-HDF and one session with the same filter but on standard HD. The CV was 29.0 l for the HDF session. The total albumin losses were 23.6 g on OL-HDF and 4.6 g on HD. CONCLUSION: OL-HDF can lead to significant albumin loss into the dialysate, especially with high permeability membrane and high CV. When prescribing post-dilutional OL-HDF, the choice of the dialyzer membrane should be made with caution. Users of the steam sterilized polyphenylene membrane, the Phylther SD, should be informed of the risk of large albumin loss with this membrane during post-dilution OL-HDF.


Asunto(s)
Hemodiafiltración/instrumentación , Hipoalbuminemia/etiología , Anciano , Soluciones para Diálisis/química , Femenino , Filtración/instrumentación , Hemodiafiltración/efectos adversos , Hemodiafiltración/métodos , Humanos , Fallo Renal Crónico/terapia , Membranas Artificiales , Diálisis Renal/métodos , Albúmina Sérica/análisis , Factores de Tiempo
19.
Nephrol Ther ; 14(6S): 6S1-6S6, 2018 Nov.
Artículo en Francés | MEDLINE | ID: mdl-30473060

RESUMEN

The history of dialysis, which started only half a century ago, is rich in developments and technological innovations. Thanks to scientific progress and the development of knowledge in the field of dialysis, patient survival will continue to increase and quality of life will continue to improve. More precise purification, reductions in the size and weight of equipment as well as refinement of filtration membranes are a few of the recent and current breakthroughs, and are challenges for further development. Dialysis has a world of opportunities ahead in terms of optimizing processes and new innovations, continuing the progress made in improving patient treatment conditions. Cet article fait partie du numéro supplément Innovations en Néphrologie réalisé avec le soutien institutionnel de Vifor Fresenius Medical Care Renal Pharma.


Asunto(s)
Riñones Artificiales , Diálisis Renal/instrumentación , Soluciones para Diálisis , Humanos , Invenciones
20.
Materials (Basel) ; 11(11)2018 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-30355967

RESUMEN

This paper presents investigation results regarding the Jiles-Atherton-based hysteresis loop modeling of ultra-high permeability amorphous alloy MELTA® MM-5Co. The measurement stand is capable of accurately measuring minor and major hysteresis loops for such a material together with exemplary measurement results. The main source of the measurement error is highlighted, which includes the Earth's field influence. The results of hysteresis loop modeling with the original Jiles-Atherton model and with two of its modifications are given. In all cases, the parameters of the Jiles-Atherton model were identified in two-step identification on the basis of a differential evolution optimization algorithm. The results indicate that both the original and modified Jiles-Atherton models are suitable for modeling the ultra-soft amorphous alloy. However, the hysteresis model's parameters vary significantly.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...