Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1400505, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784817

RESUMEN

Introduction: Cassia seeds, originating from the mature seeds of leguminous cassia species, possess pharmacological effects attributed to their rich composition of various active ingredients, notably anthraquinones. While current research predominantly focuses on pharmaceutical extractions, there has been limited progress in fermentation studies. Methods: Our study aimed to enhance the content of active compounds such as anthraquinones, flavonoids, and polyphenols using microbial fermentation techniques. We specifically optimized a fermentation system through a single-factor experimental design. Results: The antioxidant properties of the fermentation solution were validated through assays involving HaCaT cells and zebrafish. We observed effective suppression of inflammatory reactions in both RAW264.7 cells and transgenic zebrafish by the fermentation solution. Moreover, significant inhibition of tyrosinase activity and melanin production was evident in B16-F10 cells and zebrafish. Positive outcomes were also obtained in antibacterial assays and chick embryo experiments. Discussion: These findings highlight the potential of cassia seed fermentation solution as a safe and eco-friendly material in food chemistry and biomedical sciences.

2.
Tissue Cell ; 88: 102346, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38460354

RESUMEN

AIM: To explore the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) and their conditioned medium (MSC-CM) in repairing the endometritis mouse model in vivo. METHODS: Lipopolysaccharide (LPS) was used to induce acute inflammation in endometritis mouse model. Mice were treated in six groups: control group (PBS), model group (LPS), LPS+MSC-CM (6 h) group, LPS+MSC-CM (12 h) group, LPS+MSCs (6 h) group and LPS+MSCs (12 h) group. Morphological and histological changes of mouse uterus were observed, and mouse uterine inflammation index myeloperoxidase (MPO) and related immune index TNF-α, IL-6 and IL-1ß levels were detected by ELISA. RESULTS: There exist remarkable inflammatory response and an obvious increase in the value of MPO, TNF-α, IL-1ß and IL-6 in the endometritis mouse model compared with the control group. Morphological and histological appearances were relieved after treated with hUC-MSCs and MSC-CM. Besides, the value of MPO, TNF-α, IL-1ß and IL-6 showed different degrees of decline. In comparison with LPS+MSC-CM (12 h) and LPS+MSCs (12 h) group, there was significant decrease in inflammatory indicators in LPS+MSC-CM (6 h) and LPS+MSCs (6 h) group. CONCLUSIONS: Intrauterine infusion of hUC-MSCs and MSC-CM can alleviate LPS induced endometritis.


Asunto(s)
Modelos Animales de Enfermedad , Endometritis , Lipopolisacáridos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Cordón Umbilical , Animales , Femenino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Medios de Cultivo Condicionados/farmacología , Lipopolisacáridos/toxicidad , Humanos , Endometritis/inducido químicamente , Endometritis/patología , Endometritis/terapia , Ratones , Cordón Umbilical/citología , Trasplante de Células Madre Mesenquimatosas/métodos , Peroxidasa/metabolismo
3.
Biology (Basel) ; 13(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38392301

RESUMEN

The glucocorticoid receptor (GR) and ten-eleven translocation 2 (TET2), respectively, play a crucial role in regulating immunity and inflammation, and GR interacts with TET2. However, their synergetic roles in inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), remain unclear. This study aimed to investigate the co-target gene signatures of GR and TET2 in IBD and provide potential therapeutic interventions for IBD. By integrating public data, we identified 179 GR- and TET2-targeted differentially expressed genes (DEGs) in CD and 401 in UC. These genes were found to be closely associated with immunometabolism, inflammatory responses, and cell stress pathways. In vitro inflammatory cellular models were constructed using LPS-treated HT29 and HCT116 cells, respectively. Drug repositioning based on the co-target gene signatures of GR and TET2 derived from transcriptomic data of UC, CD, and the in vitro model was performed using the Connectivity Map (CMap). BMS-536924 emerged as a top therapeutic candidate, and its validation experiment within the in vitro inflammatory model confirmed its efficacy in mitigating the LPS-induced inflammatory response. This study sheds light on the pathogenesis of IBD from a new perspective and may accelerate the development of novel therapeutic agents for inflammatory diseases including IBD.

4.
Front Immunol ; 14: 1197650, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37545524

RESUMEN

Imiquimod (IMQ) is a topical agent that induces local inflammation via the Toll-like receptor 7 pathway. Recently, an IMQ-driven skin inflammation model was developed in healthy volunteers for proof-of-pharmacology trials. The aim of this study was to profile the cellular, biochemical, and clinical effects of the marketed anti-inflammatory compound prednisolone in an IMQ model. This randomized, double-blind, placebo-controlled study was conducted in 24 healthy volunteers. Oral prednisolone (0.25 mg/kg/dose) or placebo (1:1) was administered twice daily for 6 consecutive days. Two days after treatment initiation with prednisolone or placebo, 5 mg imiquimod (IMQ) once daily for two following days was applied under occlusion on the tape-stripped skin of the back for 48 h in healthy volunteers. Non-invasive (imaging and biophysical) and invasive (skin punch biopsies and blister induction) assessments were performed, as well as IMQ ex vivo stimulation of whole blood. Prednisolone reduced blood perfusion and skin erythema following 48 h of IMQ application (95% CI [-26.4%, -4.3%], p = 0.0111 and 95% CI [-7.96, -2.13], p = 0.0016). Oral prednisolone suppressed the IMQ-elevated total cell count (95% CI [-79.7%, -16.3%], p = 0.0165), NK and dendritic cells (95% CI [-68.7%, -5.2%], p = 0.0333, 95% CI [-76.9%, -13.9%], p = 0.0184), and classical monocytes (95% CI [-76.7%, -26.6%], p = 0.0043) in blister fluid. Notably, TNF, IL-6, IL-8, and Mx-A responses in blister exudate were also reduced by prednisolone compared to placebo. Oral prednisolone suppresses IMQ-induced skin inflammation, which underlines the value of this cutaneous challenge model in clinical pharmacology studies of novel anti-inflammatory compounds. In these studies, prednisolone can be used as a benchmark.


Asunto(s)
Vesícula , Dermatitis , Humanos , Imiquimod/farmacología , Voluntarios Sanos , Prednisolona/farmacología , Prednisolona/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
5.
Nanomedicine ; 50: 102679, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37116556

RESUMEN

Acute respiratory distress syndrome (ARDS) has high mortality (~40 %) and requires the lifesaving intervention of mechanical ventilation. A variety of systemic inflammatory insults can progress to ARDS, and the inflamed and injured lung is susceptible to ventilator-induced lung injury (VILI). Strategies to mitigate the inflammatory response while restoring pulmonary function are limited, thus we sought to determine if treatment with CNP-miR146a, a conjugate of novel free radical scavenging cerium oxide nanoparticles (CNP) to the anti-inflammatory microRNA (miR)-146a, would protect murine lungs from acute lung injury (ALI) induced with intratracheal endotoxin and subsequent VILI. Lung injury severity and treatment efficacy were evaluated via lung mechanical function, relative gene expression of inflammatory biomarkers, and lung morphometry (stereology). CNP-miR146a reduced the severity of ALI and slowed the progression of VILI, evidenced by improvements in inflammatory biomarkers, atelectasis, gas volumes in the parenchymal airspaces, and the stiffness of the pulmonary system.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Ratones , Animales , Pulmón/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/tratamiento farmacológico , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética
6.
J Orthop Translat ; 38: 106-116, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36381242

RESUMEN

Background: Osteoarthritis (OA) is the most common degenerative joint disease, mainly affecting the elderly worldwide, for which the drug treatment remains a major challenge. Low-grade inflammation plays a pivotal role in OA onset and progression. Exploration of notable anti-inflammatory and disease-modifying drugs on human samples could facilitate the evaluation of therapeutic strategies for OA. Methods: The anti-inflammatory drug 5-aminosalicylic acid (5-ASA) is a first-line drug for ulcerative colitis (UC), however no study has explored the effects of 5-ASA on articular chondrocytes. In this work, both in vitro (chondrocyte pellets) and ex vivo (osteochondral explants) human inflammatory OA models were applied to evaluate the effects of 5-ASA. Results: In the inflammatory pellet model, 5-ASA remarkably downregulated the gene expression of interleukin-6 (IL-6), and cyclooxygenase-2 (COX-2) while upregulating proteoglycan 4 (PRG4) and cartilage oligomeric matrix protein (COMP) gene expression. Total glycosaminoglycan (GAG) synthesis by pellets was markedly increased in 5-ASA-treated groups compared with the inflammatory group. In conditioned medium, inflammatory mediators (IL-8, nitric oxide) were markedly inhibited upon 5-ASA treatment. Moreover, histological staining showed 5-ASA retained proteoglycan content and inhibited degradation of extracellular matrix (ECM) core components, aggrecan (ACAN) and collagen type II (COL2). In the inflammatory explant model, 5-ASA mitigated signs of OA development by reducing inflammatory mediators and GAG loss. Conclusions: These findings suggest that 5-ASA has anti-inflammatory and pro-anabolic effects on human chondrocyte pellet and osteochondral explant inflammatory OA models. The translational potential of this article: Disease-modifying OA drugs are an unmet clinical need for the treatment of OA. Our study explored and demonstrated the anti-inflammatory and protective effects of 5-ASA on in vitro and ex vivo human inflammatory OA models, showing its translational potential for OA treatment.

7.
Front Pharmacol ; 13: 981112, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36199688

RESUMEN

Inula cappa is a commonly used medicine in the Miao area of Guizhou Province in China. We established an in vitro inflammatory model of mouse macrophage RAW264.7 cells to study the different pharmacokinetics of five anti-inflammatory active ingredients in the I. cappa extract namely luteolin (LUT), chlorogenic acid (CA), cryptochlorogenic acid (CCA), 3,4-dicaffeoylquinic acid (3,4-DCQA) and 4,5-dicaffeoylquinic acid (4,5-DCQA), in a normal and an inflammatory cell model. First, RAW264.7 cells were treated in vitro with l µg/mL lipopolysaccharide (LPS) for 24 h to establish an inflammatory cell model. Then, the pharmacokinetic characteristics of the five ingredients were compared in normal and inflammatory cells after treatment with 200 µg/ml and 800 µg/ml of I. cappa extracts. After treatment with 1 µg/ml LPS for 24 h, the volume of RAW264.7 cells was increased, the morphology was changed, the antennae were obvious, and the secretion of inflammatory factors nitric oxide and TNF-α was increased. The pharmacokinetics results showed that the five ingredients in normal and inflammatory cells exhibited an increase in Cmax and AUC values with increasing doses, and the Cmax and AUC values of five ingredients were positively correlated with the extract concentration. Each of these five ingredients presented nonlinear pharmacokinetic characteristics. After treatment with 200 µg/ml of I. cappa extract, the uptake of five ingredients increased in inflammatory cells, Tmax was prolonged, MRT and t1/2 were prolonged, and CL_F and Vz_F were decreased, while after treatment with 800 µg/ml of I. cappa extract, the uptake of five ingredients decreased, Tmax was prolonged, absorption was faster, and MRT and t1/2 were prolonged. The five analyzed components in I. cappa extract exerted different effects on normal cells and LPS-induced inflammatory cells. Compared to normal cells, the uptake of five ingredients in inflammatory cells was faster and the AUC and Cmax values increased with increasing doses, showing a dose-dependent nonlinear pharmacokinetic profile. These results indicate that the pharmacokinetic effects of the five analyzed ingredients in I. cappa extract are changed in the inflammatory state.

8.
J Orthop Surg Res ; 17(1): 70, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120538

RESUMEN

BACKGROUND: Osteoarthritis (OA) is the most prevalent degenerative joint disease. In vitro experiments are an intuitive method used to investigate its early pathogenesis. Chondrocyte inflammation models in rats and mice are often used as in vitro models of OA. However, similarities and differences between them in the early stages of inflammation have not been reported. OBJECTIVE: This paper seeks to compare the chondrocyte phenotype of rats and mice in the early inflammatory state and identify chondrocytes suitable for the study of early OA. METHODS: Under similar conditions, chondrocytes from rats and mice were stimulated using the same IL-1ß concentration for a short period of time. The phenotypic changes of chondrocytes were observed under a microscope. The treated chondrocytes were subjected to RNA-seq to identify similarities and differences in gene expression. Chondrocytes were labelled with EdU for proliferation analysis. Cell proliferation-associated proteins, including minichromosome maintenance 2 (MCM2), minichromosome maintenance 5 (MCM5), Lamin B1, proliferating cell nuclear antigen (PCNA), and Cyclin D1, were analysed by immunocytochemical staining, cell immunofluorescence, and Western blots to verify the RNA-seq results. RESULTS: RNA-seq revealed that the expression patterns of cytokines, chemokines, matrix metalloproteinases, and collagen were similar between the rat and mouse chondrocyte inflammation models. Nonetheless, the expression of proliferation-related genes showed the opposite pattern. The RNA-seq results were further verified by subsequent experiments. The expression levels of MCM2, MCM5, Lamin B1, PCNA, and Cyclin D1 were significantly upregulated in rat chondrocytes (P < 0.05) and mouse chondrocytes (P < 0.05). CONCLUSIONS: Based on the findings, the rat chondrocyte inflammation model may help in the study of the early pathological mechanism of OA.


Asunto(s)
Proliferación Celular/genética , Condrocitos/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Osteoartritis/metabolismo , Animales , Ciclina D1 , Modelos Animales de Enfermedad , Expresión Génica , Immunoblotting , Inmunohistoquímica , Interleucina-1beta/genética , Ratones , Osteoartritis/genética , Antígeno Nuclear de Célula en Proliferación , RNA-Seq , Ratas
9.
Br J Clin Pharmacol ; 88(2): 680-690, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34293819

RESUMEN

AIMS: Whereas intravenous administration of Toll-like receptor 4 ligand lipopolysaccharide (LPS) to human volunteers is frequently used in clinical pharmacology studies, systemic use of LPS has practical limitations. We aimed to characterize the intradermal LPS response in healthy volunteers, and as such qualify the method as local inflammation model for clinical pharmacology studies. METHODS: Eighteen healthy male volunteers received 2 or 4 intradermal 5 ng LPS injections and 1 saline injection on the forearms. The LPS response was evaluated by noninvasive (perfusion, skin temperature and erythema) and invasive assessments (cellular and cytokine responses) in skin biopsy and blister exudate. RESULTS: LPS elicited a visible response and returned to baseline at 48 hours. Erythema, perfusion and temperature were statistically significant (P < .0001) over a 24-hour time course compared to saline. The protein response was dominated by an acute interleukin (IL)-6, IL-8 and tumour necrosis factor response followed by IL-1ß, IL-10 and interferon-γ. The cellular response consisted of an acute neutrophil influx followed by different monocyte subsets and dendritic cells. DISCUSSION: Intradermal LPS administration in humans causes an acute, localized and transient inflammatory reaction that is well-tolerated by healthy volunteers. This may be a valuable inflammation model for evaluating the pharmacological activity of anti-inflammatory investigational compounds in proof of pharmacology studies.


Asunto(s)
Lipopolisacáridos , Factor de Necrosis Tumoral alfa , Citocinas/metabolismo , Voluntarios Sanos , Humanos , Inflamación/inducido químicamente , Interleucina-6/metabolismo , Masculino , Factor de Necrosis Tumoral alfa/metabolismo
10.
Pharmaceutics ; 13(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34575526

RESUMEN

Interstitial cystitis (IC) or painful bladder syndrome is a chronic dysfunction due to an inflammatory condition, characterized by bladder pain and urinary frequency. Currently, no gold standard therapy is available since IC does not respond to conventional ones. Given these premises, the aim of this work was the in vitro characterization of biological properties (mucoadhesion and anti-inflammatory activity) of a commercial product (HydealCyst-HydC) based on hyaluronic acid (HA) and the benzyl ester of HA (Hydeal-D®) intended for bladder instillation to restore and/or protect the urothelial layer of glycosamino glycans (GAGs). The in vitro characterization demonstrated that an interaction product is formed between HA and Hydeal-D® that has a role in the rheological behavior and mucoadhesive properties. HA was identified as a key component to form the mucoadhesive joint, while the interaction of HA with Hydeal-D® improved polysaccharide stability and prolonged the activity ex vivo. Moreover, HydC is cytocompatible with urothelial cells (HTB-4) and possesses an anti-inflammatory effect towards these cells by decreasing the secretion of IL-6 and IL-8, which were both increased in patients with IC, and by increasing the secretion of sulfated GAGs. These two findings, along with the resilience properties of the formulation due to mucoadhesion, suggest the active role of HydC in protecting and restoring urothelium homeostasis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA