Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2320134121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39250670

RESUMEN

The electrochemical series is a useful tool in electrochemistry, but its effectiveness in materials chemistry is limited by the fact that the standard electrochemical series is based on a relatively small set of reactions, many of which are measured in aqueous solutions. To address this problem, we have used machine learning to create an electrochemical series for inorganic materials from tens of thousands of entries in the Inorganic Crystal Structure Database. We demonstrate that this series is generally more consistent with oxidation states in solid-state materials than the series based on aqueous ions. The electrochemical series was constructed by developing and parameterizing a physical, human-interpretable model of oxidation states in materials. We show that this model enables the prediction of oxidation states from composition in a way that is more accurate than a state-of-the-art transformer-based neural network model. We present applications of our approach to structure prediction, materials discovery, and materials electrochemistry, and we discuss possible additional applications and areas for improvement. To facilitate the use of our approach, we introduce a freely available website and API.

2.
Nanomaterials (Basel) ; 14(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38869596

RESUMEN

A new series of [Fe3-xLnx]O4 nanoparticles, with Ln = Gd; Dy; Lu and x = 0.05; 0.1; 0.15, was synthesized using the coprecipitation method. Analyses by X-ray diffraction (XRD), Rietveld refinement, and high-resolution transmission electron microscopy (HRTEM) indicate that all phases crystallized in space group Fd3¯m, characteristic of spinels. The XRD patterns, HRTEM, scanning electron microscopy analysis (SEM-EDS), and Raman spectra showed single phases. Transmission electron microscopy (TEM), Rietveld analysis, and Scherrer's calculations confirm that these materials are nanoparticles with sizes in the range of ~6 nm to ~13 nm. Magnetic measurements reveal that the saturation magnetization (Ms) of the as-prepared ferrites increases with lanthanide chemical substitution (x), while the coercivity (Hc) has low values. The Raman analysis confirms that the compounds are ferrites and the Ms behavior can be explained by the relationship between the areas of the signals. The magnetic measurements indicate superparamagnetic behavior. The blocking temperatures (TB) were estimated from ZFC-FC measurements, and the use of the Néel equation enabled the magnetic anisotropy to be estimated.

3.
Heliyon ; 10(7): e28815, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38596110

RESUMEN

Detailed studies of the Li4GeО4-Li2CaGeО4 system by solid-phase syntheses of various compositions from pure Li4GeО4 to pure Li2CaGeО4 in the temperature range from 25 to 1125 °C is investigated for a first time. Solid state synthesis powders are characterized by X-ray and DSC/TG methods. Concentration and temperature two-phase regions of Li4GeО4 and Li2CaGeО4 as well as two-phase regions of Li2CaGeО4 and Li2+2xCa1-xGeO4 are established. Region of pure Li2+2xCa1-xGeO4 solid solution are detected too and it structure is investigated. Being structural analog to Li2+2xZn1-xGeO4 and Li2+2xMg1-xGeO4, Li2+2xCa1-xGeO4 has own specific local environment of the metal ions. The obtained results are compared with those for Li4GeО4-Li2ZnGeО4 system and for Li2+2xZn1-xGeO4 solid solution. The differences of the phase diagrams and structural features of the solid solutions are discussed.

4.
Adv Mater ; 36(19): e2309421, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38339983

RESUMEN

Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure.


Asunto(s)
Electrónica , Implantes Absorbibles , Agua/química , Tecnología Inalámbrica , Materiales Biocompatibles/química
5.
Recent Pat Nanotechnol ; 18(2): 117-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37005510

RESUMEN

BACKGROUND: Electrochromic materials can dynamically change their optical properties (such as transmittance, absorbance, and reflectance under the action of an applied voltage, and their research and application in the visible band have been widely concerned. In recent years, with the continuous development of electrochromic technology, the related research has been gradually extended to the infrared region. OBJECTIVE: This invited review aims to provide an overview of the current status of several inorganic infrared electrochromic materials, to provide some references for future research, and to promote the research and application of electrochromic technology in the infrared region. METHODS: This review summarizes various research results in the field of infrared electrochromic, which includes a detailed literature review and patent search. Starting from the key performance parameters and device structure characteristics of infrared electrochromic devices (ECDs), the research and progress of several types of inorganic infrared electrochromic materials, including metal oxides, plasma nanocrystals, and carbon nanomaterials, are mainly presented, and feasible optimization directions are also discussed. CONCLUSION: We believe that the potential of these materials for civilian and military applications, for example, infrared electrochromic smart windows, infrared stealth/disguise, and thermal control of spacecraft, can be fully exploited by optimizing the materials and their devices to improve their performance.

6.
Heliyon ; 9(11): e21677, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027687

RESUMEN

Charge carrier transport via donor/acceptor pairs of similar elements is dominant in n-type MgFe2O4 and p-type Mn3O4 spinels. The temperature-independent activation energy in the form of the nearest neighbor hopping model is applied for Fe2+/Fe3+ pairs of cubic MgFe2O4 spinel in the temperature range of 423-523 K (150-250 °C). At such high temperatures, even for this relatively narrow temperature range, the constant energy barrier deviates to a variable range hopping energy barrier in the case of Mn3O4, due to Jahn-Teller active octahedral sites. Replacing 10 mol% of Fe at octahedral sites with Mn has significantly increased the electron hopping energy barrier and electrical conductivity of MgFe2O4, while keeping the nearest neighbor hopping model dominant. The observed high energy barrier is due to donor/acceptor pairs of different elements (Mn/Fe). Due to a lack of structural distortion, deviation from the nearest neighbor hopping mechanism with temperature-independent activation energy was not observed. Rietveld refined XRD patterns and FT-IR spectra are utilized to support the argument on electrical conductivity mechanisms.

7.
iScience ; 26(11): 108135, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37876808

RESUMEN

Oxidative dehydrogenation of propane (ODHP) is a promising process for producing propene. Recently, some boron-based catalysts have exhibited excellent olefin selectivity in ODHP. However, their complex synthetic routes and poor stability under high-temperature reaction conditions have hindered their practical application. Herein, we report a self-evolution method rather than conventional assembly approaches to acquire structures with excellent stability under a high propane conversion, from a single precursor-MgB2. The catalyst feasibly prepared and optimized exhibited a striking performance: 60% propane conversion with a 43.2% olefin yield at 535°C. The BOx corona pinned by the strong interaction with the borate enabled zero loss of the high conversion (around 40%) and olefins selectivity (above 80%) for over 100 h at 520°C. This all-in-one strategy of deriving all the necessary components from just one raw chemical provides a new way to synthesize effective and economic catalysts for potential industrial implementation.

8.
Periodontol 2000 ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37823468

RESUMEN

The use of biomaterials in regenerative medicine has expanded to treat various disorders caused by trauma or disease in orthopedics and dentistry. However, the treatment of large and complex bone defects presents a challenge, leading to a pressing need for optimized biomaterials for bone repair. Recent advances in chemical sciences have enabled the incorporation of therapeutic ions into bone grafts to enhance their performance. These ions, such as strontium (for bone regeneration/osteoporosis), copper (for angiogenesis), boron (for bone growth), iron (for chemotaxis), cobalt (for B12 synthesis), lithium (for osteogenesis/cementogenesis), silver (for antibacterial resistance), and magnesium (for bone and cartilage regeneration), among others (e.g., zinc, sodium, and silica), have been studied extensively. This review aims to provide a comprehensive overview of current knowledge and recent developments in ion incorporation into biomaterials for bone and periodontal tissue repair. It also discusses recently developed biomaterials from a basic design and clinical application perspective. Additionally, the review highlights the importance of precise ion introduction into biomaterials to address existing limitations and challenges in combination therapies. Future prospects and opportunities for the development and optimization of biomaterials for bone tissue engineering are emphasized.

9.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 40(4): 805-811, 2023 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-37666773

RESUMEN

Bioactive glass (BG) has been widely used in the preparation of artificial bone scaffolds due to its excellent biological properties and non-cytotoxicity, which can promote bone and soft tissue regeneration. However, due to the brittleness, poor mechanical strength, easy agglomeration and uncontrollable structure of glass material, its application in various fields is limited. In this regard, most current researches mainly focus on mixing BG with organic or inorganic materials by freeze-drying method, sol-gel method, etc., to improve its mechanical properties and brittleness, so as to increase its clinical application and expand its application field. This review introduces the combination of BG with natural organic materials, metallic materials and non-metallic materials, and demonstrates the latest technology and future prospects of BG composite materials through the development of scaffolds, injectable fillers, membranes, hydrogels and coatings. The previous studies show that the addition of BG improves the mechanical properties, biological activity and regeneration potential of the composites, and broadens the application of BG in the field of bone tissue engineering. By reviewing the recent BG researches on bone regeneration, the research potential of new materials is demonstrated, in order to provide a reference for future related research.


Asunto(s)
Regeneración Ósea , Huesos , Liofilización , Vidrio , Hidrogeles
10.
Materials (Basel) ; 16(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37629869

RESUMEN

In recent years, significant efforts have been made in view of a transition from a linear to a circular economy, where the value of products, materials, resources, and waste is maintained as long as possible in the economy. The re-utilization of industrial and agricultural waste into value-added products, such as nanostructured siliceous materials, has become a challenging topic as an effective strategy in waste management and a sustainable model aimed to limit the use of landfill, conserve natural resources, and reduce the use of harmful substances. In light of these considerations, nanoporous silica has attracted attention in various applications owing to the tunable pore dimensions, high specific surface areas, tailorable structure, and facile post-functionalization. In this review, recent progress on the synthesis of siliceous materials from different types of waste is presented, analyzing the factors influencing the size and morphology of the final product, alongside different synthetic methods used to impart specific porosity. Applications in the fields of wastewater/gas treatment and catalysis are discussed, focusing on process feasibility in large-scale productions.

11.
Chem Biodivers ; 20(9): e202300744, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37515823

RESUMEN

This study, it was aimed to examine the change in the antimicrobial effect of sea anemone Parazoanthus axinellae extract by forming its nanoflowers. A scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) were expended to observe the morphologies of the Cu NFs that had been produced. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) techniques were expended to analyze the managing assemblies in P. axinellae extract, which perform an effective part in the synthesis routine, as well as the crystal assembly of NFs. P. axinellae extract mediated the HNFs (Hybrid nanoflowers) are at high, pure crystalline nature, flower shape with a crystallographic system at the nanoscale with mean crystallite size 21.9 nm using XRD, and average particle size ~10 nm by SEM. The broad absorption band at 2981-2915 cm-1 in the FT-IR spectra of anemone extract and Cu-anemone NFs represents the unique peak of hydroxy groups. In addition, Cu NFs were tested for their antibacterial properties. Cu NFs have been discovered to exhibit antibacterial properties. It is suggested that P. axinellae extract and various inorganic components be used to synthesize a variety of NFs and assess their suitability for usage in biomedical fields.


Asunto(s)
Antozoos , Nanoestructuras , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Difracción de Rayos X
12.
Chemosphere ; 338: 139473, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451637

RESUMEN

In recent years, the coal gasification industry has rapidly developed, becoming one of the most promising technologies in the advanced and clean coal chemical industry. As a result, the annual emission of coal gasification fine slag (CGFS) has continuously increased. The present situation of CGFS is regarded as a notorious waste in gasification plants and is rudely landfilled or deposited in slag yards, which leads to a large waste of land resources, the release of dangerous elements, and numerous pollution problems. Although CGFS is classified as industrial solid waste, its unique physical and chemical properties make it a valuable resource that cannot be overlooked. This paper focuses on the resource utilization technology and environmental impact of CGFS. The resource utilization of different components of CGFS has realized the evolution from waste to valuable substances. Moreover, during the disposal and utilization of CGFS, its environmental effects cannot be ignored. The main problems and future research directions are also further proposed. Efforts should be focused on the challenges of the technology, cost, and environmental protection in the application process to achieve industrial application, and ultimately committed to sustainable and green development goals, and promote the sustainable management and conservation of resources.


Asunto(s)
Carbón Mineral , Metales Pesados , Carbón Mineral/análisis , Residuos Industriales , Conservación de los Recursos Naturales , Clima
13.
Patterns (N Y) ; 4(5): 100723, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37223274

RESUMEN

Conventionally, high-throughput computational materials searches start from an input set of bulk compounds extracted from material databases, but, in contrast, many real functional materials are heavily engineered mixtures of compounds rather than single bulk compounds. We present a framework and open-source code to automatically construct and analyze possible alloys and solid solutions from a set of existing experimental or calculated ordered compounds, without requiring additional metadata except crystal structure. As a demonstration, we apply this framework to all compounds in the Materials Project to create a new, publicly available database of >600,000 unique "alloy pair" entries that can be used to search for materials with tunable properties. We exemplify this approach by searching for transparent conductors and reveal candidates that might have been excluded in a traditional screening. This work lays a foundation from which materials databases can go beyond stoichiometric compounds and approach a more realistic description of compositionally tunable materials.

14.
iScience ; 26(4): 106510, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37123242

RESUMEN

Developing materials for controlled hydrogen production through water splitting is one of the most promising ways to meet current energy demand. Here, we demonstrate spontaneous and green production of hydrogen at high evolution rate using gadolinium telluride (GdTe) under ambient conditions. The spent materials can be reused after melting, which regain the original activity of the pristine sample. The phase formation and reusability are supported by the thermodynamics calculations. The theoretical calculation reveals ultralow activation energy for hydrogen production using GdTe caused by charge transfer from Te to Gd. Production of highly pure and instantaneous hydrogen by GdTe could accelerate green and sustainable energy conversion technologies.

15.
Poult Sci ; 102(7): 102772, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37245438

RESUMEN

Poultry red mite (PRM), the ectoparasitic mite Dermanyssus gallinae found in laying hen farms, is a significant threat to poultry production and human health worldwide. It is a suspected disease vector and attacks hosts' other than chickens, including humans, and its economic importance has increased greatly. Different strategies to control PRM have been widely tested and investigated. In principle, several synthetic pesticides have been applied to control PRM. However, recent alternative control methods to avoid the side effects of pesticides have been introduced, although many remain in the early stage of commercialization. In particular, advances in material science have made various materials more affordable as alternatives for controlling PRM through physical interactions between PRM. This review provides a summary of PRM infestation, and then includes a discussion and comparison of different conventional approaches: 1) organic substances, 2) biological approaches, and 3) physical inorganic material treatment. The advantages of inorganic materials are discussed in detail, including the classification of materials, as well as the physical mechanism-induced effect on PRM. In this review, we also consider the perspective of using several synthetic inorganic materials to suggest novel strategies for improved monitoring and better information regarding treatment interventions.


Asunto(s)
Infestaciones por Ácaros , Ácaros , Plaguicidas , Enfermedades de las Aves de Corral , Animales , Femenino , Humanos , Aves de Corral , Pollos/parasitología , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/parasitología , Infestaciones por Ácaros/prevención & control , Infestaciones por Ácaros/veterinaria , Infestaciones por Ácaros/parasitología , Plaguicidas/farmacología
16.
iScience ; 26(4): 106493, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37091232

RESUMEN

Metals tend to supercool-that is, they freeze at temperatures below their melting points. In general, supercooling is less favorable when liquids are in contact with nucleation sites such as rough surfaces. Interestingly, bulk gallium (Ga) can significantly supercool, even when it is in contact with heterogeneous surfaces that could provide nucleation sites. We hypothesized that the native oxide on Ga provides an atomically smooth interface that prevents Ga from directly contacting surfaces, and thereby promotes supercooling. Although many metals form surface oxides, Ga is a convenient metal for studying supercooling because its melting point of 29.8°C is near room temperature. Using differential scanning calorimetry (DSC), we show that freezing of Ga with the oxide occurs at a lower temperature (-15.6 ± 3.5°C) than without the oxide (6.9 ± 2.0°C when the oxide is removed by HCl). We also demonstrate that the oxide enhances supercooling via macroscopic observations of freezing. These findings explain why Ga supercools and have implications for emerging applications of Ga that rely on it staying in the liquid state.

17.
J Synchrotron Radiat ; 30(Pt 2): 440-444, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36891857

RESUMEN

The storage ring upgrade of the European Synchrotron Radiation Facility makes ESRF-EBS the most brilliant high-energy fourth-generation light source, enabling in situ studies with unprecedented time resolution. While radiation damage is commonly associated with degradation of organic matter such as ionic liquids or polymers in the synchrotron beam, this study clearly shows that highly brilliant X-ray beams readily induce structural changes and beam damage in inorganic matter, too. Here, the reduction of Fe3+ to Fe2+ in iron oxide nanoparticles by radicals in the brilliant ESRF-EBS beam, not observed before the upgrade, is reported. Radicals are created due to radiolysis of an EtOH-H2O mixture with low EtOH concentration (∼6 vol%). In light of extended irradiation times during insitu experiments in, for example, battery and catalysis research, beam-induced redox chemistry needs to be understood for proper interpretation of insitu data.

18.
iScience ; 26(2): 106032, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36818279

RESUMEN

Although it has been shown that configurational entropy can improve the structural stability in transition metal oxides (TMOs), little is known about the oxidation state of transition metals under random mixing of alloys. Such information is essential in understanding the chemical reactivity and properties of TMOs stabilized by configurational entropy. Herein, utilizing electron energy loss spectroscopy (EELS) technique in an aberration-corrected scanning transmission electron microscope (STEM), we systematically studied the oxidation state of binary (Mn, Fe)3O4, ternary (Mn, Fe, Ni)3O4, and quinary (Mn, Fe, Ni, Cu, Zn)3O4 solid solution polyelemental transition metal oxides (SSP-TMOs) nanoparticles. Our findings show that the random mixing of multiple elements in the form of solid solution phase not only promotes the entropy stabilization but also results in stable oxidation state in transition metals spanning from binary to quinary transition metal oxide nanoparticles.

19.
Chemosphere ; 316: 137669, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36623590

RESUMEN

Membrane technology utilizing ultrafiltration (UF) processes has emerged as the most widely used and cost-effective simple process in many industrial applications. The industries like textiles and petroleum refining are promptly required membrane based UF processes to alleviate the potential environmental threat caused by the generation of various wastewater. At the same time, major limitations such as material selection as well as fouling behavior challenge the overall performance of UF membranes, particularly in wastewater treatment. Therefore, a complete discussion on material design with structural property relation and separation performance of UF membranes is always exciting. This state-of-the-art review has exclusively focused on the development of UF membranes, the material design, properties, progress in separation processes, and critical challenges. So far, most of the review articles have examined the UF membrane processes through a selected track of paving typical materials and their limited applications. In contrast, in this review, we have exclusively aimed at comprehensive research from material selection and fabrication methods to all the possible applications of UF membranes, giving more attention and theoretical understanding to the complete development of high-performance UF systems. We have discussed the methodical engineering behind the development of UF membranes regardless of their materials and fabrication mechanisms. Identifying the utility of UF membrane systems in various applications, as well as their mode of separation processes, has been well discussed. Overall, the current review conveys the knowledge of the present-day significance of UF membranes together with their future prospective opportunities whilst overcoming known difficulties in many potential applications.


Asunto(s)
Petróleo , Purificación del Agua , Ultrafiltración/métodos , Membranas Artificiales , Aguas Residuales , Purificación del Agua/métodos
20.
Nanomaterials (Basel) ; 13(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36616113

RESUMEN

Tissue engineering (TE) has attracted the widespread attention of the research community as a method of producing patient-specific tissue constructs for the repair and replacement of injured tissues. To date, different types of scaffold materials have been developed for various tissues and organs. The choice of scaffold material should take into consideration whether the mechanical properties, biodegradability, biocompatibility, and bioresorbability meet the physiological properties of the tissues. Owing to their broad range of physico-chemical properties, inorganic materials can induce a series of biological responses as scaffold fillers, which render them a good alternative to scaffold materials for tissue engineering (TE). While it is of worth to further explore mechanistic insight into the use of inorganic nanomaterials for tissue repair, in this review, we mainly focused on the utilization forms and strategies for fabricating electrospun membranes containing inorganic components based on electrospinning technology. A particular emphasis has been placed on the biological advantages of incorporating inorganic materials along with organic materials as scaffold constituents for tissue repair. As well as widely exploited natural and synthetic polymers, inorganic nanomaterials offer an enticing platform to further modulate the properties of composite scaffolds, which may help further broaden the application prospect of scaffolds for TE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA