Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Intervalo de año de publicación
1.
Braz J Psychiatry ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38870426

RESUMEN

BACKGROUND: Panic disorder (PD) is a common disabling condition characterized by recurrent panic attacks. Emotional and behavioral impairments are associated with functional connectivity (FC) and network abnormalities. We used the whole brain FC, modular networks, and graph-theory analysis to investigate extensive network profiles in PD. METHOD: The functional MRI data from 82 PD and 97 controls were included. Intrinsic FC between each pair of 160 regions, 6 intra-networks, and 15 inter-networks were analyzed. The topological properties were explored. RESULTS: PD patients showed altered FCs within the right insula, between frontal cortex-posterior cingulate cortex (PCC), frontal cortex-cerebellum, and PCC-occipital cortex (corrected P values < 0.001). Lower connections within the Sensorimotor Network (SMN) and SMN-Occipital Network (OCN) were detected (P values < 0.05). Various decreased global and local network features were found in PD (P values < 0.05). In addition, significant correlations were found between PD symptoms and nodal efficiency (Ne) in the insula (r = -0.273, P = 0.016), and the FC of the intra-insula (r = -0.226, P = 0.041). CONCLUSIONS: PD patients present with abnormal functional brain networks, especially the decreased FC and Ne within insula, suggesting that dysfunction of information integration plays an important role in PD.

2.
Behav Brain Res ; 461: 114857, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38211776

RESUMEN

Memory consolidation is an essential process of long-term memory formation. Neurotrophins have been suggested as key regulators of activity dependent changes in the synaptic efficacy and morphology, which are considered the downstream mechanisms of memory consolidation. The neurotrophin 3 (NT-3), a member of the neurotrophin family, and its high affinity receptor TrkC, are widely expressed in the insular cortex (IC), a region with a critical role in the consolidation of the conditioned taste aversion (CTA) paradigm, in which an animal associates a novel taste with nausea. Nevertheless, the role of this neurotrophin in the cognitive processes that the IC mediates remains unexamined. To answer whether NT-3 is involved in memory consolidation at the IC, adult male Wistar rats were administered with NT-3 or NT-3 in combination with the Trk receptors inhibitor K252a into the IC, immediately after CTA acquisition under two different conditions: a strong-CTA (0.2 M lithium chloride i.p.) or a weak-CTA (0.1 M lithium chloride i.p.). Our results show that NT-3 strengthens the memory trace of CTA, transforming a weak conditioning into a strong one, in a Trk-dependent manner. The present evidence suggests that NT-3 has a key role in the consolidation process of an aversive memory in a neocortical region.


Asunto(s)
Corteza Cerebral , Corteza Insular , Ratas , Animales , Masculino , Ratas Wistar , Gusto , Cloruro de Litio/farmacología , Neurotrofina 3 , Reacción de Prevención
3.
Psychopharmacology (Berl) ; 241(3): 445-459, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38010515

RESUMEN

RATIONALE: Relapse into substance use is often triggered by exposure to drug-related environmental cues. The magnitude of drug seeking depends on the duration of abstinence, a phenomenon known as the incubation of drug craving. Clinical and preclinical research shows that the insular cortex is involved in substance use disorders and cue-induced drug seeking. However, the role of the insula on memory retrieval and motivational integration for cue-elicited drug seeking remains to be determined. OBJECTIVES: We investigated the role of the anterior insular cortex (aIC) and its glutamatergic projection to amygdala nuclei (aIC-AMY) on the expression of conditioned place preference (CPP) during early and late abstinence. METHODS: Male adult C57BL/6J mice underwent amphetamine-induced CPP, and their preference was tested following 1 or 14 days of abstinence. aIC and aIC-AMY functional role in CPP expression was assessed at both abstinence periods by employing optogenetic silencing and behavioral pharmacology. RESULTS: Compared to a single day, an exacerbated preference for the amphetamine-paired context was observed after 14 days of abstinence. Photoinhibition of either aIC or aIC-AMY projection reduced CPP expression following late but not early abstinence. Similarly, the antagonism of aIC NMDA receptors reduced CPP expression after 14 days of abstinence but not 1 day. CONCLUSIONS: These results suggest that aIC and its glutamatergic output to amygdala nuclei constitute critical neurobiological substrates mediating enhanced motivational cue reactivity during the incubation of amphetamine craving rather than contextual memory recall. Moreover, cortical NMDA receptor signaling may become sensitized during abstinence, ultimately modulating disproportioned drug seeking.


Asunto(s)
Corteza Insular , Memoria , Ratones , Animales , Masculino , Ratones Endogámicos C57BL , Memoria/fisiología , Amígdala del Cerebelo , Anfetamina/farmacología
4.
Neurobiol Learn Mem ; 205: 107840, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37805119

RESUMEN

Environmental enrichment (EE) is known to improve memory and cognition and modulate the impact of aversive stimuli in animals, promoting the development of resilience to stressful situations. Likewise, it is known that EE can modulate synaptic plasticity as is the case of long-term potentiation (LTP). These findings have been described initially in ex vivo preparations, suggesting that the effects of EE are the result of an early modification of the synaptic excitability and transmission. In this regard, it is known that metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Our previous studies have shown that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of LTP in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC) in vivo. In addition, we have shown that CTA extinction allows the induction but not the maintenance of IC-LTP of the Bla-IC pathway. Recently, we also showed that prior exposure to environmental enrichment for three weeks reduces the strength of CTA, restoring the brain-derived neurotrophic factor (BDNF) levels in the IC. The present study aimed to analyze the effects of brief exposure to an enriched environment on the strength of aversive memory, as well as on the in vivo IC-LTP. To do so, adult rats were exposed for seven days to an EE, either before CTA training or LTP induction in the Bla-IC pathway. Our results demonstrate that a seven-day exposure to an enriched environment attenuates the aversive response to a strong CTA and allows the induction but not the maintenance of LTP in the insular cortex. These findings provide evidence that metaplastic regulation in a neocortical region takes part in the mechanisms through which brief exposure to enriched environments attenuates an aversive response.


Asunto(s)
Corteza Insular , Gusto , Animales , Ratas , Reacción de Prevención/fisiología , Corteza Cerebral/fisiología , Condicionamiento Clásico/fisiología , Plasticidad Neuronal , Gusto/fisiología
5.
Neuropharmacology ; 237: 109620, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263575

RESUMEN

Increased activity in the insula has been consistently reported to be associated with anxiety and anxiety-related disorders. However, little is known on how the insula regulates anxiety. The present study aims at determining the role of the insula on the effects of glucocorticoids in anxiety. A combination of pharmacological manipulations, including blockade of adrenal GC synthesis by metyrapone and intra-insular microinjections of corticosterone, corticosterone-BSA, mineralocorticoid receptor (MR) antagonist spironolactone and glucocorticoid receptor (GR) antagonist mifepristone, were used to assess the short-term (5 min) effects of intra-insular corticosterone in two anxiety-like behaviors in male Sprague-Dawley rats. The elevated plus maze (EPM) and Novelty Suppressed Feeding (hyponeophagia) were utilized. We found that corticosterone in the insula is sufficient to prevent the anxiolytic effects corticosterone synthesis blockade in anxiety, and that intra-insular corticosterone has anxiolytic or anxiogenic effects depending on the amount of corticosterone microinjected and the arousal associated to the test, without affecting the HPA axis. Glucocorticoid anxiolytic effects in the insula are mediated by MRs, while its anxiogenic effects are dependent on a mifepristone-sensitive membrane-bound mechanism. Anxiety appears to be modulated at the insula through a competition between fast MR-dependent anxiolytic and membrane-associated anxiogenic signaling pathways that orchestrate the behavioral response to stress and determines the resulting level of anxiety.


Asunto(s)
Ansiolíticos , Glucocorticoides , Ratas , Animales , Masculino , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Corticosterona/metabolismo , Ansiolíticos/farmacología , Mifepristona/farmacología , Sistema Hipotálamo-Hipofisario/metabolismo , Ratas Sprague-Dawley , Receptores de Glucocorticoides/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Ansiedad/tratamiento farmacológico , Ansiedad/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Receptores de Mineralocorticoides/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-37369782

RESUMEN

RATIONALE: In a social context, individuals are able to detect external information from others and coordinate behavioral responses according to the situation, a phenomenon called social decision-making. Social decision-making is multifaceted, influenced by emotional and motivational factors like stress, sickness, and hunger. However, the neurobiological basis for motivational state competition and interaction is not well known. OBJECTIVE: We investigated possible neural mechanisms through which internal states could shape social behavior in a social affective preference (SAP) test. In the SAP test, experimental rats given a choice to interact with naïve or stressed conspecifics exhibit an age-dependent preference to interact with stressed juvenile conspecifics, but avoid stressed adult conspecifics. First, we assessed the effect of food and water deprivation on SAP behavior. Behavior in the SAP test requires the insular cortex, which receives input from the ingestion-related peptides melanin-concentrating hormone (MCH) and orexin neurons of the lateral hypothalamus (LH). This study aimed to evaluate the role of LH and insular MCH and orexin in SAP test. METHODS: SAP tests were conducted in rats that were sated, food and water deprived or allowed 1 h of access to food and water after 14 h of deprivation (relieved condition). Separate cohorts of sated rats received cannula implants for microinjection of drugs to inhibit the LH or to block or stimulate MCH or orexin receptors in the insula prior to SAP tests or social interaction tests. RESULTS: Food and water deprivation prior to SAP tests with juvenile rats caused a shift in preference away from the stressed rat toward the naïve juveniles. Pharmacological inhibition of LH with muscimol (100 ng/side) abolished the preference for the juvenile-stressed conspecific, as well as the preference for the adult naïve conspecific. The blockade of MCH receptor 1or orexin receptors in the insular cortex with SNAP94847 (50 µM) or TCS1102 (1 µM), respectively, also abolished the preference for the stressed juvenile conspecific, but only the antagonism of orexin receptors was able to abolish the preference for the adult naïve conspecific. Microinjection of increasing doses (50 or 500 nM) of MCH or orexin-A in the insular cortex increased the interaction time in the one-on-one social interaction test with juvenile conspecifics; however, only the microinjection of orexin-A increased the interaction time with adult naïve conspecifics. CONCLUSIONS: Taken together, these results suggest that lateral hypothalamus peptides shape the direction of social approach or avoidance via actions MCH and orexin neurotransmission in the insular cortex.

8.
Rev. argent. radiol ; 87(2): 45-53, jun. 2023. tab, graf
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1449414

RESUMEN

Resumen Objetivo: Explorar si voluntarios sanos presentarían correlación entre su puntaje en un test psicológico emocional y las activaciones de áreas cerebrales relacionadas con las emociones medidas con resonancia magnética funcional (RMf). Material y métodos: Estudio exploratorio de prueba diagnóstica, prospectivo, con diseño del propio individuo como control, con muestra de 12 participantes. Se categorizó a cada participante con un puntaje de estabilidad emocional derivado de un test psicológico y se utilizaron estímulos emocionales audiovisuales durante las adquisiciones de RMf. Resultados: La sumatoria de clusters de activación medidos en cantidad total de vóxeles durante los estímulos negativos en áreas cerebrales relacionadas con las emociones mostró una correlación negativa estadísticamente significativa para nuestro tamaño de muestra respecto de los puntajes en el test emocional, con rho de Spearman de −0,623 y p = 0,0428. Conclusiones: Los paradigmas de RMf utilizados permitieron cuantificar las activaciones cerebrales ante estímulos emocionales de valencia positiva y negativa, y los resultados obtenidos abren una perspectiva hacia la posibilidad de utilizar test psicológicos y secuencias de RMf para predecir la posibilidad de aparición de síntomas de patologías psicológicas o psiquiátricas ante factores desencadenantes en población sana que presente en estos test valores cercanos al límite de la normalidad.


Abstract Objective: To explore if healthy volunteers would present a correlation between their score in emotional psychological test and the activations of brain areas related to emotions measured with functional magnetic resonance imaging (fMRI). Material and methods: Exploratory study of a prospective diagnostic test, with the individual’s own design as a control, with a sample of 12 participants. Each participant was categorized with an emotional stability score derived from a psychological test and audiovisual emotional stimuli were used during fMRI acquisitions. Results: The sum of activation clusters measured in total number of voxels during negative stimuli in brain areas related to emotions showed a statistically significant negative correlation for our sample size with respect to the scores in the emotional test, with Spearman’s rho of −0.623 and p = 0.0428. Conclusions: The fMRI paradigms used made it possible to quantify brain activations in response to emotional stimuli of positive and negative valence, and the results obtained open a perspective towards the possibility of using psychological tests and fMRI sequences to predict the possibility of the appearance of symptoms of psychological or psychiatric pathologies in response to triggering factors in a healthy population that present values close to the normal limit in these tests.

9.
Neuropharmacology ; 228: 109464, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36804534

RESUMEN

Previous studies have shown that dopaminergic activity modulates the salience of novel stimuli enabling the formation of recognition memories. In this work, we hypothesize that dopamine released into the insular cortex (IC) from the ventral tegmental area (VTA) inputs enables the acquisition to consolidate object recognition memory. It has been reported that short training produces weak recognition memories; on the contrary, longer training produces lasting and robust recognition memories. Using a Cre-recombinase under the tyrosine hydroxylase (TH+) promoter mouse model, we photostimulated the VTA-IC dopaminergic pathway during short training or photoinhibited the same pathway during long training while mice explored objects. Our results showed that the photostimulation of the VTA-IC pathway during a short training enables the acquisition of recognition memory. Conversely, photoinhibition of the same pathway during a long training prevents the acquisition of recognition memory. Interestingly, the exploration time of the objects under photoinhibition or photostimulation of the dopaminergic VTA-IC pathway was not altered. Significantly, this enhancement of acquisition of the object recognition memory through the photostimulation of the VTA dopaminergic neurons could be impaired by the blockage of the D1-like receptors into the IC, either before or after the photostimulation. Altogether, our results suggest that dopamine released by the VTA is required during the acquisition to consolidate the object recognition memory through D1-like receptors into the IC without affecting the activity or the motivation to explore objects.


Asunto(s)
Dopamina , Área Tegmental Ventral , Ratones , Animales , Dopamina/metabolismo , Área Tegmental Ventral/metabolismo , Corteza Insular , Recuerdo Mental/fisiología , Reconocimiento en Psicología , Neuronas Dopaminérgicas/metabolismo
10.
Psychiatry Res ; 320: 115036, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586377

RESUMEN

Activation of the insula is found in all anxiety-related disorders and increased insular-prefrontal cortex (PFC) functional connectivity is associated with reduced anxiety. In this study, the combined stimulation of the insula and PFC using the dTMS H4 (insula+LPFC) and H2 (PFC) coils were used to reduce anxiety in 13 subjects experiencing occupational stress, and 55 participants suffering from generalized anxiety disorder (GAD). The combined HF stimulation of the insula and PFC significantly decreased anxiety scores according to the HARS, CAS, and STAI anxiety scales, leading to a reduction in anxiety according to HARS of 88.7% and 70.7% in participants with occupational stress and the clinical sample of participants diagnosed with GAD, respectively. The findings suggest that the prefrontal-insular axis is critical for the regulation of anxiety and its stimulation can be used for the treatment of anxiety in people suffering from occupational stress and GAD.


Asunto(s)
Imagen por Resonancia Magnética , Estrés Laboral , Humanos , Trastornos de Ansiedad/terapia , Corteza Prefrontal/diagnóstico por imagen , Ansiedad/terapia
11.
J Neuroendocrinol ; 35(11): e13202, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36283814

RESUMEN

Homeostatic challenges may alter the drive for social interaction. The neural activity that prompts this motivation remains poorly understood. In the present study, we identify direct projections from the hypothalamic supraoptic nucleus to the cortico-amygdalar nucleus of the lateral olfactory tract (NLOT). Dual in situ hybridization with probes for pituitary adenylate cyclase-activating polypeptide (PACAP), as well as vesicular glutamate transporter (VGLUT)1, VGLUT2, V1a and V1b, revealed a population of vasopressin-receptive PACAPergic neurons in NLOT layer 2 (NLOT2). Water deprivation (48 h, WD48) increased sociability compared to euhydrated subjects, as assessed with the three-chamber social interaction test (3CST). Fos expression immunohistochemistry showed NLOT and its main efferent regions had further increases in rats subjected to WD48 + 3CST. These regions strongly expressed PAC1 mRNA. Microinjections of arginine vasopressin (AVP) into the NLOT produced similar changes in sociability to water deprivation, and these were reduced by co-injection of V1a or V1b antagonists along with AVP. We conclude that, during challenge to water homeostasis, there is a recruitment of a glutamatergic-multi-peptidergic cooperative circuit that promotes social behavior.


Asunto(s)
Neocórtex , Núcleo Supraóptico , Humanos , Ratas , Animales , Núcleo Supraóptico/metabolismo , Arginina Vasopresina/metabolismo , Bulbo Olfatorio , Neocórtex/metabolismo , Ratas Wistar , Vasopresinas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Conducta Social , Homeostasis , Agua/metabolismo
12.
Behav Brain Res ; 430: 113947, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35644274

RESUMEN

It has been shown that exposure to an enriched environment (EE) can modulate the physiological impact of aversive stimuli in animals, promoting adaptive attitudes, as well as the development of resilience to stressful situations. These changes are known to be related to increased levels of some trophic factors, such as brain-derived neurotrophic factor (BDNF), which has been considered a regulatory protein for synaptic plasticity in the adult brain. Our previous studies have demonstrated that in the insular cortex (IC), a brain region of the temporal lobe implicated in the acquisition, consolidation, and retention of conditioned taste aversion (CTA) task, BDNF can reverse the CTA memory deficit caused by a protein synthesis inhibitor. Likewise, our research group have also shown that BDNF is required for the maintenance of CTA long-term memory. Here we evaluate the effects of the exposure to an enriched environment on the CTA memory strength, using a weak and strong version of this paradigm. The exposure to an EE for 21 days was able to attenuate the strong-CTA response through the restoration of BDNF levels in the IC of adult rats. These results provide evidence that environmental enrichment is capable of reducing the strength of an aversive memory trace, restoring the BDNF levels in a neocortical region of the adult brain.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Gusto , Animales , Reacción de Prevención , Corteza Cerebral/fisiología , Corteza Insular , Ratas , Ratas Wistar
13.
Neurobiol Stress ; 18: 100459, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35601686

RESUMEN

The ability to retrieve contextual fear memories depends on the coordinated activation of a brain-wide circuitry. Transition from recent to remote memories seems to involve the reorganization of this circuitry, a process called systems consolidation that has been associated with time-dependent fear generalization. However, it is unknown whether emotional memories acquired under different stress levels can undergo different systems consolidation processes. Here, we explored the activation pattern and functional connectivity of key brain regions associated with contextual fear conditioning (CFC) retrieval after recent (2 days) or remote (28 days) memory tests performed in rats submitted to strong (1.0 mA footshock) or mild (0.3 mA footshock) training. We used brain tissue from Wistar rats from a previous study, where we observed that increasing training intensity promotes fear memory generalization over time, possibly due to an increase in corticosterone (CORT) levels during memory consolidation. Analysis of Fos expression across 8 regions of interest (ROIs) allowed us to identify coactivation between them at both timepoints following memory recall. Our results showed that strong CFC elicits higher Fos activation in the anterior insular and prelimbic cortices during remote retrieval, which was positively correlated with freezing along with the basolateral amygdala. Rats trained either with mild or strong CFC showed broad functional connectivity at the recent timepoint whereas only animals submitted to the strong CFC showed a widespread loss of coactivation during remote retrieval. Post-training plasma CORT levels are positively correlated with FOS expression during recent retrieval in strong CFC, but negatively correlated with FOS expression during remote retrieval in mild CFC. Our findings suggest that increasing training intensity results in differential processes of systems consolidation, possibly associated with increased post-training CORT release, and that strong CFC engages activity from the aIC, BLA and PrL - areas associated with the Salience Network in rats - during remote retrieval.

14.
Front Cell Neurosci ; 16: 823220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360496

RESUMEN

Taste memory involves storing information through plasticity changes in the neural network of taste, including the insular cortex (IC) and ventral tegmental area (VTA), a critical provider of dopamine. Although a VTA-IC dopaminergic pathway has been demonstrated, its role to consolidate taste recognition memory remains poorly understood. We found that photostimulation of dopaminergic neurons in the VTA or VTA-IC dopaminergic terminals of TH-Cre mice improves the salience to consolidate a subthreshold novel taste stimulus regardless of its hedonic value, without altering their taste palatability. Importantly, the inhibition of the D1-like receptor into the IC impairs the salience to facilitate consolidation of an aversive taste recognition memory. Finally, our results showed that VTA photostimulation improves the salience to consolidate a conditioned taste aversion memory through the D1-like receptor into the IC. It is concluded that the dopamine activity from the VTA into IC is required to increase the salience enabling the consolidation of a taste recognition memory. Notably, the D1-like receptor activity into the IC is required to consolidate both innate and learned aversive taste memories but not appetitive taste memory.

15.
Arq. bras. neurocir ; 41(3): 249-257, 2022.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1568116

RESUMEN

Surgical resection of the insula (insulectomy) is a procedure used for brain lesions and for refractory epilepsy. It has a difficult surgical access and the need of a wide anatomical knowledge and preoperative planning. There are two types of surgical approaches aiming the exposure of the insular cortex: transsylvian and transcortical. The importance of insulectomies is the efficacy in providing a remarkable decrease in seizures. The objective of the present article is to document the results of a series of 10 patients submitted to insulectomies for refractory epilepsies and compare them with the results of other studies reported in the literature, as well as to describe the main nuances of the surgical approaches and their associated risks. In the new case series, all patients corresponded to preoperative Engel classification IV for; after a mean 2-year follow-up period, they corresponded to Engel classification II. A subtotal resection was performed in six patients, and the remaining four underwent a partial resection, most of them leading to temporary complications. The literature review endorsed the good outcomes of the casuistry. A critical analysis of the presented data reiterates the opinion of several authors that insulectomies are beneficial and safe for the patients. A broad anatomical knowledge of the insular region, preoperative planning (limits of resections), and the use of modern microsurgical techniques must be considered as basic principles by neurosurgeons for the prevention of perioperative morbidities. Insulectomies are safe and effective, although they result in temporary postoperative complications, and provide highly satisfactory results in terms of seizure control.


A ressecção cirúrgica da ínsula (insulectomia) é um procedimento utilizado para lesões cerebrais e epilepsia refratária. A ínsula possui um acesso cirúrgico difícil com necessidade de um amplo conhecimento anatômico com planejamento pré-operatório. Existem dois tipos de abordagens cirúrgicas que visam a exposição do córtex insular: transsilvianas e transcorticais. A importância das insulectomias é a eficácia em proporcionar uma diminuição das convulsões. O objetivo do presente artigo é documentar os resultados de uma série de 10 pacientes submetidos a insulectomias para epilepsia refratária e compará-los com os resultados de outros estudos relatados na literatura, além de descrever as principais nuances das abordagens cirúrgicas e os seus riscos associados. Na série de casos, todos os pacientes se enquadravam na classificação pré-operatória de Engel IV e, após um período médio de seguimento de 2 anos, eles se enquadravam na classificação de Engel II. Seis pacientes foram submetidos a uma ressecção subtotal e os quatro restantes a uma ressecção parcial, implicando, majoritariamente, em complicações temporárias. A revisão da literatura endossou os bons resultados da casuística. A análise crítica dos dados apresentados reitera a opinião de vários autores de que as insulectomias são benéficas e seguras para os pacientes. O amplo conhecimento anatômico da região insular, o planejamento pré-operatório (limites das ressecções) e a utilização de técnicas microcirúrgicas modernas devem ser considerados princípios básicos para a prevenção de morbidades perioperatórias. As insulectomias são seguras e eficazes conquanto resultem em complicações pós-operatórias temporárias e proporcionem resultados altamente satisfatórios no que diz respeito ao controle das convulsões.

16.
Int J Dev Neurosci ; 81(8): 686-697, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34342028

RESUMEN

Neonatal anoxia is a well-known world health problem that results in neurodevelopmental deficits, such as sensory alterations that are observed in patients with cerebral palsy and autism disorder, for which oxygen deprivation is a risk factor. Nociceptive response, as part of the sensory system, has been reported as altered in these patients. To determine whether neonatal oxygen deprivation alters nociceptive sensitivity and promotes medium- and long-term inflammatory feedback in the central nervous system, Wistar rats of around 30 h old were submitted to anoxia (100% nitrogen flux for 25 min) and evaluated on PND23 (postpartum day) and PND90. The nociceptive response was assessed by mechanical, thermal, and tactile tests in the early postnatal and adulthood periods. The lumbar spinal cord (SC, L4-L6) motor neurons (MNs) and the posterior insular cortex neurons were counted and compared with their respective controls after anoxia. In addition, we evaluated the possible effect of anoxia on the expression of astrocytes in the SC at adulthood. The results showed increased nociceptive responses in both males and females submitted to anoxia, although these responses were different according to the nociceptive stimulus. A decrease in MNs in adult anoxiated females and an upregulation of GFAP expression in the SC were observed. In the insular cortex, a decrease in the number of cells of anoxiated males was observed in the neonatal period. Our findings suggest that oxygen-deprived nervous systems in rats may affect their response at the sensorimotor pathways and respective controlling centers with sex differences, which were related to the used stimulus.


Asunto(s)
Hipoxia/fisiopatología , Corteza Insular/fisiopatología , Nocicepción/fisiología , Médula Espinal/fisiopatología , Animales , Femenino , Masculino , Neuronas/fisiología , Ratas , Ratas Wistar , Factores Sexuales
17.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R513-R521, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34346721

RESUMEN

Experiments aimed to evaluate the tissue distribution of Mas-related G protein-coupled receptor D (MrgD) revealed the presence of immunoreactivity for the MrgD protein in the rostral insular cortex (rIC), an important area for autonomic and cardiovascular control. To investigate the relevance of this finding, we evaluated the cardiovascular effects produced by the endogenous ligand of MrgD, alamandine, in this brain region. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in urethane anesthetized rats. Unilateral microinjection of equimolar doses of alamandine (40 pmol/100 nL), angiotensin-(1-7), angiotensin II, angiotensin A, and Mas/MrgD antagonist d-Pro7-Ang-1-7 (50 pmol/100 nL), Mas antagonist A779 (100 pmol/100 nL), or vehicle (0.9% NaCl) were made in different rats (n = 4-6/group) into rIC. To verify the specificity of the region, a microinjection of alamandine was also performed into intermediate insular cortex (iIC). Microinjection of alamandine in rIC produced an increase in MAP (Δ = 15 ± 2 mmHg), HR (Δ = 36 ± 4 beats/min), and RSNA (Δ = 31 ± 4%), but was without effects at iIC. Strikingly, an equimolar dose of angiotensin-(1-7) at rIC did not produce any change in MAP, HR, and RSNA. Angiotensin II and angiotensin A produced only minor effects. Alamandine effects were not altered by A-779, a Mas antagonist, but were completely blocked by the Mas/MrgD antagonist d-Pro7-Ang-(1-7). Therefore, we have identified a brain region in which alamandine/MrgD receptor but not angiotensin-(1-7)/Mas could be involved in the modulation of cardiovascular-related neuronal activity. This observation also suggests that alamandine might possess unique effects unrelated to angiotensin-(1-7) in the brain.


Asunto(s)
Angiotensina I/farmacología , Presión Arterial/efectos de los fármacos , Sistema Cardiovascular/inervación , Corteza Cerebral/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Riñón/inervación , Proteínas del Tejido Nervioso/agonistas , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Sistema Nervioso Simpático/efectos de los fármacos , Animales , Corteza Cerebral/fisiología , Ligandos , Masculino , Microinyecciones , Proteínas del Tejido Nervioso/metabolismo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/agonistas , Proteínas Proto-Oncogénicas/metabolismo , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Sistema Nervioso Simpático/fisiología
18.
Neuropharmacology ; 197: 108712, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274349

RESUMEN

The incidence of chronic pain is high in the general population and it is closely related to anxiety disorders, which promote negative effects on the quality of life. The cannabinoid system has essential participation in the pain sensitivity circuit. In this perspective, cannabidiol (CBD) is considered a promising strategy for treating neuropathic pain. Our study aimed to evaluate the effects of sub-chronic systemic treatment with CBD (0.3, 3, 10, or 30 mg/kg, i.p.) in male in rats submitted to chronic constriction injury of the sciatic nerve (CCI) or not (SHAM) and assessed in nociceptive tests (von Frey, acetone, and hot plate, three days CBD's treatment) and in the open field test (OFT, two days CBD's treatment). We performed a screening immunoreactivity of CB1 and TRPV1 receptors in cortical and limbic regions tissues, which were collected after 1.5 h of behavioral tests on the 24th experimental day. This study presents a dose-response curve to understand better the effects of low doses (3 mg/kg) on CBD's antiallodynic and anxiolytic effects. Also, low doses of CBD were able to (1) reverse mechanical and thermal allodynia (cold) and hyperalgesia, (2) reverse anxious behaviors (reduction of the % of grooming and freezing time, and increase of the % of center time in the OFT) induced by chronic pain. The peripheral neuropathy promoted the increase in the expression of CB1 and TRPV1 receptors in the anterior cingulate cortex (ACC), anterior insular cortex (AIC), basolateral amygdala (BLA), dorsal hippocampus (DH), and ventral hippocampus (VH). CBD potentiated this effect in the ACC, AIC, BLA, DH, and VH regions. These results provide substantial evidence of the role of the ACC-AIC-BLA corticolimbic circuit, and BLA-VH for pain regulation. These results can be clinically relevant since they contribute to the evidence of CBD's beneficial effects on treating chronic pain and associated comorbidities such as anxiety.


Asunto(s)
Ansiedad/tratamiento farmacológico , Cannabidiol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Receptor Cannabinoide CB1/efectos de los fármacos , Canales Catiónicos TRPV/efectos de los fármacos , Animales , Ansiedad/psicología , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Calor , Sistema Límbico/efectos de los fármacos , Masculino , Red Nerviosa/efectos de los fármacos , Neuralgia/metabolismo , Neuralgia/psicología , Dimensión del Dolor/efectos de los fármacos , Estimulación Física , Ratas , Ratas Wistar , Ciática/tratamiento farmacológico
19.
Neurobiol Learn Mem ; 182: 107449, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33915300

RESUMEN

Metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Accumulated evidence has proposed that metaplasticity contributes to network function and cognitive processes such as learning and memory. In this regard, it has been observed that training in several behavioral tasks modifies the possibility to induce subsequent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). For instance, our previous studies have shown that conditioned taste aversion (CTA) training prevents the induction of in vivo LTP in the projection from the basolateral nucleus of the amygdala to the insular cortex (BLA-IC). Likewise, we reported that extinction of CTA allows induction but not maintenance of LTP in the same pathway. Besides, we showed that it is possible to express in vivo low-frequency stimulation LTD in the BLA-IC projection and that its induction prior to CTA training facilitates the extinction of this task. However, until now, little is known about the participation of LTD on metaplastic processes. The present study aimed to analyze whether CTA training modifies the expression of in vivo LTD in the BLA-IC projection. To do so, animals received low-frequency stimulation to induce IC-LTD 48 h after CTA training. Our results show that CTA training occludes the subsequent induction of LTD in the BLA-IC pathway in a retrieval-dependent manner. These findings reveal that CTA elicits a metaplastic regulation of long-lasting changes in the IC synaptic strength, as well as that specific phases of learning differentially take part in adjusting the expression of synaptic plasticity in neocortical regions.


Asunto(s)
Reacción de Prevención/fisiología , Complejo Nuclear Basolateral/fisiología , Corteza Insular/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Gusto , Animales , Extinción Psicológica/fisiología , Neocórtex/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Ratas
20.
Brain Res ; 1754: 147237, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33400930

RESUMEN

The insula has emerged as a critical target for electrical stimulation since it influences pathological pain states. We investigated the effects of repetitive electrical stimulation of the insular cortex (ESI) on mechanical nociception, and general locomotor activity in rats subjected to chronic constriction injury (CCI) of the sciatic nerve. We also studied neuroplastic changes in central pain areas and the involvement of GABAergic signaling on ESI effects. CCI rats had electrodes implanted in the left agranular posterior insular cortex (pIC), and mechanical sensitivity was evaluated before and after one or five daily consecutive ESIs (15 min each, 60 Hz, 210 µs, 1 V). Five ESIs (repetitive ESI) induced sustained mechanical antinociception from the first to the last behavioral assessment without interfering with locomotor activity. A marked increase in Fos immunoreactivity in pIC and a decrease in the anterior and mid-cingulate cortex, periaqueductal gray and hippocampus were noticed after five ESIs. The intrathecal administration of the GABAA receptor antagonist bicuculline methiodide reversed the stimulation-induced antinociception after five ESIs. ESI increased GAD65 levels in pIC but did not interfere with GABA, glutamate or glycine levels. No changes in GFAP immunoreactivity were found in this work. Altogether, the results indicate the efficacy of repetitive ESI for the treatment of experimental neuropathic pain and suggest a potential influence of pIC in regulating pain pathways partially through modulating GABAergic signaling.


Asunto(s)
Analgesia , Estimulación Eléctrica , Moduladores del GABA/farmacología , Neuralgia/terapia , Manejo del Dolor , Analgesia/métodos , Animales , Moduladores del GABA/metabolismo , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Umbral del Dolor/efectos de los fármacos , Sustancia Gris Periacueductal/efectos de los fármacos , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA