Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.574
Filtrar
1.
Biomaterials ; 313: 122770, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39226653

RESUMEN

Major advances have been made in utilizing human-induced pluripotent stem cells (hiPSCs) for regenerative medicine. Nevertheless, the delivery and integration of hiPSCs into target tissues remain significant challenges, particularly in the context of retinal ganglion cell (RGC) restoration. In this study, we introduce a promising avenue for providing directional guidance to regenerated cells in the retina. First, we developed a technique for construction of gradient interfaces based on functionalized conductive polymers, which could be applied with various functionalized ehthylenedioxythiophene (EDOT) monomers. Using a tree-shaped channel encapsulated with a thin PDMS and a specially designed electrochemical chamber, gradient flow generation could be converted into a functionalized-PEDOT gradient film by cyclic voltammetry. The characteristics of the successfully fabricated gradient flow and surface were analyzed using fluorescent labels, time of flight secondary ion mass spectrometry (TOF-SIMS), and X-ray photoelectron spectroscopy (XPS). Remarkably, hiPSC-RGCs seeded on PEDOT exhibited improvements in neurite outgrowth, axon guidance and neuronal electrophysiology measurements. These results suggest that our novel gradient PEDOT may be used with hiPSC-based technologies as a potential biomedical engineering scaffold for functional restoration of RGCs in retinal degenerative diseases and optic neuropathies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Polímeros , Células Ganglionares de la Retina , Humanos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/citología , Células Madre Pluripotentes Inducidas/citología , Polímeros/química , Orientación del Axón , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Propiedades de Superficie , Conductividad Eléctrica , Factores de Crecimiento Nervioso/metabolismo , Axones/metabolismo , Axones/fisiología
2.
J Environ Sci (China) ; 149: 574-584, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181669

RESUMEN

The formation of oligomeric hydrogen peroxide triggered by Criegee intermediate maybe contributes significantly to the formation and growth of secondary organic aerosol (SOA). However, to date, the reactivity of C2 Criegee intermediates (CH3CHOO) in areas contaminated with acidic gas remains poorly understood. Herein, high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations are used to explore the reaction of CH3CHOO and H2SO4 both in the gas phase and at the air-water interface. In the gas phase, the addition reaction of CH3CHOO with H2SO4 to generate CH3HC(OOH)OSO3H (HPES) is near-barrierless, regardless of the presence of water molecules. BOMD simulations show that the reaction at the air-water interface is even faster than that in the gas phase. Further calculations reveal that the HPES has a tendency to aggregate with sulfuric acids, ammonias, and water molecules to form stable clusters, meanwhile the oligomerization reaction of CH3CHOO with HPES in the gas phase is both thermochemically and kinetically favored. Also, it is noted that the interfacial HPES- ion can attract H2SO4, NH3, (COOH)2 and HNO3 for particle formation from the gas phase to the water surface. Thus, the results of this work not only elucidate the high atmospheric reactivity of C2 Criegee intermediates in polluted regions, but also deepen our understanding of the formation process of atmospheric SOA induced by Criegee intermediates.


Asunto(s)
Ácidos Sulfúricos , Ácidos Sulfúricos/química , Aerosoles , Modelos Químicos , Contaminantes Atmosféricos/química , Simulación de Dinámica Molecular , Atmósfera/química
3.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003084

RESUMEN

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Asunto(s)
Cadmio , Compuestos de Hierro , Compuestos de Magnesio , Silicatos , Contaminantes Químicos del Agua , Cadmio/química , Contaminantes Químicos del Agua/química , Compuestos de Magnesio/química , Silicatos/química , Compuestos de Hierro/química , Adsorción , Modelos Químicos , Purificación del Agua/métodos
4.
J Anim Sci Biotechnol ; 15(1): 129, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358766

RESUMEN

The oviduct epithelium is the initial maternal contact site for embryos after fertilization, offering the microenvironment before implantation. This early gestation period is particularly sensitive to stress, which can cause reduced fertility and reproductive disorders in mammals. Nevertheless, the local impact of elevated stress hormones on the oviduct epithelium has received limited attention to date, except for a few reports on polyovulatory species like mice and pigs. In this study, we focused on the effects of chronic maternal stress on cattle, given its association with infertility issues in this monoovulatory species. Bovine oviduct epithelial cells (BOEC) differentiated at the air-liquid interface (ALI) were stimulated with 250 nmol/L cortisol for 1 or 3 weeks. Subsequently, they were assessed for morphology, bioelectrical properties, and gene expression related to oviduct function, glucocorticoid pathway, cortisol metabolism, inflammation, and apoptosis. Results revealed adverse effects of cortisol on epithelium structure, featured by deciliation, vacuole formation, and multilayering. Additionally, cortisol exposure led to an increase in transepithelial potential difference, downregulated mRNA expression of the major glucocorticoid receptor (NR3C1), upregulated the expression of cortisol-responsive genes (FKBP5, TSC22D3), and significant downregulation of oviductal glycoprotein 1 (OVGP1) and steroid receptors PGR and ESR1. The systematic comparison to a similar experiment previously performed by us in porcine oviduct epithelial cells, indicated that bovine cultures were more susceptible to elevated cortisol levels than porcine. The distinct responses between both species are likely linked to their divergence in the cortisol-induced expression changes of HSD11B2, an enzyme controlling the cellular capacity to metabolise cortisol. These findings provide insights into the species-specific reactions and reproductive consequences triggered by maternal stress.

5.
ACS Appl Mater Interfaces ; 16(39): 53153-53162, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358896

RESUMEN

Understanding and predicting interface diffusion phenomena in materials is crucial for various industrial applications, including semiconductor manufacturing, battery technology, and catalysis. In this study, we propose a novel approach utilizing Graph Neural Networks (GNNs) to investigate and model material interface diffusion. We begin by collecting experimental and simulated data on diffusion coefficients, concentration gradients, and other relevant parameters from diverse material systems. The data are preprocessed, and key features influencing interface diffusion are extracted. Subsequently, we construct a GNN model tailored to the diffusion problem, with a graph representation capturing the atomic structure of materials. The model architecture includes multiple graph convolutional layers for feature aggregation and update, as well as optional graph attention layers to capture complex relationships between atoms. We train and validate the GNN model using the preprocessed data, achieving accurate predictions of diffusion coefficients, diffusion rates, concentration profiles, and potential diffusion pathways. Our approach offers insights into the underlying mechanisms of interface diffusion and provides a valuable tool for optimizing material design and engineering. Additionally, our method offers possible strategies to solve the longstanding problems related to materials interface diffusion.

6.
Sci Rep ; 14(1): 22963, 2024 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-39362948

RESUMEN

Human-Computer Interaction (HCI) is a multidisciplinary field focused on designing and utilizing computer technology, underlining the interaction interface between computers and humans. HCI aims to generate systems that allow consumers to relate to computers effectively, efficiently, and pleasantly. Multiple Spoken Language Identification (SLI) for HCI (MSLI for HCI) denotes the ability of a computer system to recognize and distinguish various spoken languages to enable more complete and handy interactions among consumers and technology. SLI utilizing deep learning (DL) involves using artificial neural networks (ANNs), a subset of DL models, to automatically detect and recognize the language spoken in an audio signal. DL techniques, particularly neural networks (NNs), have succeeded in various pattern detection tasks, including speech and language processing. This paper develops a novel Coot Optimizer Algorithm with a DL-Driven Multiple SLI and Detection (COADL-MSLID) technique for HCI applications. The COADL-MSLID approach aims to detect multiple spoken languages from the input audio regardless of gender, speaking style, and age. In the COADL-MSLID technique, the audio files are transformed into spectrogram images as a primary step. Besides, the COADL-MSLID technique employs the SqueezeNet model to produce feature vectors, and the COA is applied to the hyperparameter range of the SqueezeNet method. The COADL-MSLID technique exploits the SLID process's convolutional autoencoder (CAE) model. To underline the importance of the COADL-MSLID technique, a series of experiments were conducted on the benchmark dataset. The experimentation validation of the COADL-MSLID technique exhibits a greater accuracy result of 98.33% over other techniques.


Asunto(s)
Algoritmos , Aprendizaje Profundo , Lenguaje , Redes Neurales de la Computación , Humanos , Habla/fisiología , Femenino , Masculino , Interfaz Usuario-Computador
7.
Mar Pollut Bull ; 208: 117041, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366063

RESUMEN

The Intergovernmental Negotiating Committee on Plastic Pollution seeks to address, among other issues, the science-policy interface of plastic pollution in the forthcoming international legally binding instrument on plastic pollution, including in the marine environment (ILBI) to be finalised in 2024 by the United Nations Environment Assembly (UNEA). Given the importance of protecting the marine environment from plastic pollution, this paper reviews ILBI and argues that the UNEA should by Resolution establish an independent scientific committee. The committee should have an overarching global, regional, and local presence with institutional openness and accessibility to elucidate the science behind plastic pollution. This paper proposes that an independent scientific approach is preferrable to a combined science-policy institution seen in Secretariats and Conference of Parties in some conventions. The latter often exhibit numerous weaknesses. Establishing an independent scientific committee will ensure the science behind plastic pollution is robust, credible, and effectively informs policy decisions.

8.
Food Chem ; 463(Pt 4): 141493, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39366093

RESUMEN

Lactic acid (LA) serves as a freshness marker in certain foods. In the present work, electrified interfaces of different nature (i.e., liquid-liquid and liquid-organogel) have been developed for the quantification of LA. Electrochemical sensing of LA at the liquid-organogel interface revealed that adsorptive stripping voltammetry, with a preconcentration time of 500 s offered better sensitivity. Electroanalytical ability of LA under optimized conditions displayed a detection limit of 0.97 µM and 0.71 µM with sensitivity of 2.84 nA µM-1 and 3.59 nA µM-1 for liquid-liquid and liquid-organogel interfaces respectively. Quantification of LA using the developed methodology has been demonstrated in buttermilk as the real matrix. Analysis demonstrate that electrified liquid-liquid and liquid-organogel interfaces are promising approach for sensing LAin buttermilk extract.

9.
Water Res ; 267: 122528, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39366326

RESUMEN

To address the issues of scaling caused by heat and water evaporation in regard to circulating cooling water (CCW), TFC membrane filtration systems have been increasingly considered for terminal treatment processes because of their excellent separation performance. However, membrane biofouling phenomenon significantly hinders the widespread utilization of TFC membranes. In this study, to harness the thermal phenomenon of CCW and establish a stable and durable multifunctional antibiofouling layer, temperature-responsive Pnipam and the spectral antibacterial agent Ag were organically incorporated into commercially available TFC membranes. Biological experimental findings demonstrated that above the lower critical solution temperature (LCST), the contraction of Pnipam molecular chains facilitated the inactivation of bacteria by the antibacterial agent, resulting in an impressive sterilization efficiency of up to 99 %. XDLVO analysis revealed that below the LCST, the establishment of a hydration layer on the functional interface resulted in the creation of elevated energy barriers, effectively impeding bacterial adhesion to the membrane surface. Consequently, a high bacterial release rate of 98.4 % was achieved on the low-temperature surface. The alterations in the functional membrane surface conformation induced by temperature variations further amplified the separation between the pollutants and the membrane, creating an enhanced "elastic interface." This efficient and straightforward cleaning procedure mitigated the formation of irreversible fouling without compromising the integrity of the membrane surface. This study presents a deliberately engineered thermoresponsive antibiofouling membrane interface to address the issue of membrane fouling in membrane-based CCW treatment systems while shedding new light on the mechanisms of "inactivation" and "defense."

10.
J Biomech ; 176: 112346, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39368318

RESUMEN

The skin is a multilayered organ with microstructural and antomical heterogeneities that contribute to its unique mechanophysiology. Between the epidermis layer at the top and the dermis layer below, the basal keratinocytes form an interface with sinusoidal-like geometry termed rete ridges. In previous computational work we showed that the rete ridges contribute to lower delamination risk by increasing surface area and reducing the stress jump across the interface. Experimentally, we and others have shown that upon repeated tissue expansion and growth, physiological rete ridge frequency is preserved. Here we implement a 2D multilayered skin model where each layer is able to grow in response to applied loading toward recovering the layer-specific homeostatic stretch. Our simulations support the hypothesis that mechanics of growing tissue can explain secondary buckling and new rete ridge formation in tissue expansion. The process is robust with respect to parameters such as homeostatic stretch, layer thicknesses, and shear moduli of the different layers. Thicker epidermis suppresses higher frequency features, and so does a stiffer epidermis with respect to the basal layer. Interestingly, new rete ridge valleys are formed at locations that were originally peaks of the sine wave, whereas original valleys remain valleys. This pattern might have a connection to the localization of stem cell and transient amplifying cells in the epidermis. This study does not discard the role of cell-cell signaling dynamics, but rather emphasizes the possibility of achieving robust geometric patterns with simple rules of growing tissue, even in the absence of complex regulatory networks.

11.
J Hazard Mater ; 480: 136026, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39368361

RESUMEN

Environmental contamination from oil spills and industrial oily wastewater poses significant ecological risks due to the persistence of harmful organic compounds. To address these challenges, magnetic composite nanospheres (CMNP@CHPEI) are systematically developed, with carboxylated Fe3O4 nanoparticles (CMNP) as the core and amphiphilic hyperbranched polyethyleneimine (CHPEI) as the decorated shell. These novel nanospheres combine the controllable size and magnetic responsiveness of "hard" magnetic nanomaterials with the structural complexity and functional diversity of "soft" hyperbranched polymers. This design allows for switching between emulsification and demulsification behaviors by regulating the size of the nanospheres and the amphiphilicity of CHPEI. Specifically, the nanospheres can form Pickering emulsions with oil droplet sizes smaller than 1 µm, maintaining stability for up to 75 days, and achieve rapid oil-water separation with demulsification efficiencies up to 99.8 %. Even after seven recycling experiments, they still retain significant interfacial activity and applicability. Interfacial characteristic experiments and molecular dynamics simulations reveal that particle size directly affects the film structures formed at oil-water interface, while the amphiphilic functional molecules determine the interaction mode of nanospheres with oil-water phases. These achievements introduce a versatile, environmentally friendly material for removing hazardous oil-based pollutants, with promising applications in oil spill remediation and industrial wastewater treatment.

12.
Small Methods ; : e2400571, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367548

RESUMEN

The solid electrolyte is anticipated to prevent lithium dendrite formation. However, preventing interface reactions and the development of undesirable lithium metal deposition during cycling are difficult and remain unresolved. Here, to comprehend these occurrences better, this study reports an alloy formation strategy for enhanced interface stability by incorporating antimony (Sb) in the lithium argyrodite solid electrolyte Li6PS5Cl (LPSC-P) to form Li-Sb alloy. The Li-Sb alloy emergence at the anodic interface is crucial in facilitating uniform lithium deposition, resulting in excellent long-term stability, and achieving the highest critical current density of 14.5 mA cm-2 (among the reported sulfide solid electrolytes) without lithium dendrite penetration. Furthermore, Li-Sb alloy formation maintain interfacial contact, even, after several plating and stripping. The Li-Sb alloy formation is confirmed by XRD, Raman, and XPS. The work demonstrates the prospect of utilizing alloy-forming electrolytes for advanced solid-state batteries.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39362236

RESUMEN

BACKGROUND: In the context of pharmacokinetic analyses, the segmentation method one uses has a large impact on the results obtained, thus the importance of transparency. Innovation: This paper introduces a graphical user interface (GUI), TRU-IMP, that analyzes time-activity curves and segmentations in dynamic nuclear medicine. This GUI fills a gap in the current technological tools available for the analysis of quantitative dynamic nuclear medicine image acquisitions. The GUI includes various techniques of segmentations, with possibilities to compute related uncertainties. Results: The GUI was tested on image acquisitions made on a dynamic nuclear medicine phantom. This allows the comparison of segmentations via their time-activity curves and the extracted pharmacokinetic parameters. Implications: The flexibility and user-friendliness allowed by the proposed interface make the analyses both easy to perform and adjustable to any specific case. This GUI permits researchers to better show and understand the reproducibility, precision, and accuracy of their work in quantitative dynamic nuclear medicine. Availability and Implementation: Source code freely available on GitHub: https://github.com/ArGilfea/TRU-IMP and location of the interface available from there. The GUI is fully compatible with iOS and Windows operating systems (not tested on Linux). A phantom acquisition is also available to test the GUI easily. .

14.
Med Biol Eng Comput ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361102

RESUMEN

The aim of this study was to investigate and compare the biomechanical properties of the conventional and novel hip prosthetic socket by using the finite element and gait analysis. According to the CT scan model of the subject's residual limb, the bones, soft tissues, and the socket model were reconstructed in three dimensions by using inverse modeling. The distribution of normal and shear stresses at the residual limb-socket interface under the standing condition was investigated using the finite element method and verified by designing a pressure acquisition module system. The gait experiment compared and analyzed the conventional and novel sockets. The results show that the simulation results are consistent with the experimental data. The novel socket exhibited superior stress performance and gait outcomes compared to the conventional design. Our findings provide a research basis for evaluating the comfort of the hip prosthetic socket, optimizing and designing the structure of the socket of the hip.

15.
Adv Mater ; : e2410205, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361260

RESUMEN

Bioelectronic patches hold promise for patient-comfort wound healing providing simplified clinical operation. Currently, they face paramount challenges in establishing long-term effective electronic interfaces with targeted cells and tissues due to the inconsistent energy output and high bio interface impedance. Here a new electrochemical stimulation technology is reported, using a simple wound patch, which integrates the efficient generation and delivery of stimulation. This is realized by employing a hydrogel bioelectronic interface as an active component in an integrated power source (i.e., Mg battery). The Mg battery enhances fibroblast functions (proliferation, migration, and growth factor secretion) and regulates macrophage phenotype (promoting regenerative polarization and down-regulating pro-inflammatory cytokines), by providing an electric field and the ability to control the cellular microenvironment through chemical release. This bioelectronic patch shows an effective and accelerated wound closure by guiding epithelial migration, mediating immune response, and promoting vasculogenesis. This new electrochemical-mediated therapy may provide a new avenue for user-friendly wound management as well as a platform for fundamental insights into cell stimulation.

16.
Artículo en Inglés | MEDLINE | ID: mdl-39361376

RESUMEN

Understanding the thermal conductivity in metal-organic framework (MOF)-polymer composites is crucial for optimizing their performance in applications involving heat transfer. In this work, several UiO66-polymer composites (where the polymer is either PEG, PVDF, PS, PIM-1, PP, or PMMA) are examined using molecular simulations. Our contribution highlights the interface's impact on thermal conductivity, observing an overall increasing trend attributable to the synergistic effect of MOF enhancing polymer thermal conductivity. Flexible polymers such as PEG and PVDF exhibit increased compatibility with the MOF, facilitating their integration with the MOF lattice. However, this integration leads to a moderated enhancement in thermal conductivity compared to polymers that remain separate from the MOF structure, such as PS or PP. This effect can be attributed to alterations in phonon transport pathways and shifts in interfacial interactions between the polymer and MOF. Specifically, the infiltration of the polymer like PEG and PVDF into the MOF disrupted the MOF's ordered network, introducing defects or barriers that hindered phonon propagation. In contrast, nonpolar and rigid polymers like PP, PMMA, PS, and PIM-1 exhibited greater improvements in thermal conductivity when combined with MOFs compared to the flexible polymers PVDF and PEG. Most notably, our analysis identifies a critical interface region within approximately 30-50 Å that profoundly influences thermal conductivity. The interface region, as indicated by the density profile and radius of gyration, is notably shorter but plays a pivotal role in modulating the thermal properties. The sensitivity of the system to these interface characteristics underscores the crucial role of this particular interface area in dictating the thermal conductivity. Our findings emphasize the sensitivity of thermal conductivity in polymer matrices to interface characteristics and highlight the critical role of a specific interface region in modulating thermal properties.

17.
J Plast Reconstr Aesthet Surg ; 99: 47-54, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39353283

RESUMEN

PURPOSE: To describe the MRI appearance of regenerative peripheral nerve interface (RPNI) and the potential association between the MRI appearance and RPNI revision. MATERIAL AND METHODS: A retrospective assessment was undertaken of the MRI appearance of RPNIs performed at our institution between 1/1/2010 and 7/29/2023 with clinical correlation. RESULTS: Fourteen patients (8 men and 6 women, age range 31-80 years, median age 51 years) with technically adequate MRI of RPNIs were included in this study including 5 patients with below knee amputation with 5 tibial and 4 common peroneal nerves RPNI, 8 patients with above knee amputations (AKA) with sciatic RPNIs, and 1 patient following forequarter amputation with a brachial plexus RPNI. Two patients underwent revision RPNI surgery thrice (AKA-sciatic nerve) for a total of 6 RPNI revisions. On T1 weighted sequences, all RPNIs were isointense to the muscle and blended with the surrounding scar and muscle tissues whereas on T2 weighted sequences, all RPNIs were hyperintense in signal compared to the muscle. All but 1 RPNI underwent post contrast enhancement in variable patterns. No statistically significant difference in MRI appearance was found between RPNIs with or without a following RPNI revision surgery. CONCLUSION: RPNI on MRI typically have a bright and intermediate signal on T2 and T1 weighted sequences, respectively, and typically undergo postcontrast enhancement in variable patterns without a statistically significant difference between the cases with and without follow-up RPNI revision. However, enhancement of RPNI should not be misconstrued as pathological.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39355516

RESUMEN

The utmost issue in Motor Imagery Brain-Computer Interfaces (MI-BCI) is the BCI poor performance known as 'BCI inefficiency'. Although past research has attempted to find a solution by investigating factors influencing users' MI-BCI performance, the issue persists. One of the factors that has been studied in relation to MI-BCI performance is gender. Research regarding the influence of gender on a user's ability to control MI-BCIs remains inconclusive, mainly due to the small sample size and unbalanced gender distribution in past studies. To address these issues and obtain reliable results, this study combined four MI-BCI datasets into one large dataset with 248 subjects and equal gender distribution. The datasets included EEG signals from healthy subjects from both gender groups who had executed a right- vs. left-hand motor imagery task following the Graz protocol. The analysis consisted of extracting the Mu Suppression Index from C3 and C4 electrodes and comparing the values between female and male participants. Unlike some of the previous findings which reported an advantage for female BCI users in modulating mu rhythm activity, our results did not show any significant difference between the Mu Suppression Index of both groups, indicating that gender may not be a predictive factor for BCI performance.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39356954

RESUMEN

Flexible electronics can seamlessly adhere to human skin or internal tissues, enabling the collection of physiological data and real-time vital sign monitoring in home settings, which give it the potential to revolutionize chronic disease management and mitigate mortality rates associated with sudden illnesses, thereby transforming current medical practices. However, the development of flexible electronic devices still faces several challenges, including issues pertaining to material selection, limited functionality, and performance instability. Among these challenges, the choice of appropriate materials, as well as their methods for film formation and patterning, lays the groundwork for versatile device development. Establishing stable interfaces, both internally within the device and in human-machine interactions, is essential for ensuring efficient, accurate, and long-term monitoring in health electronics. This review aims to provide an overview of critical fabrication steps and interface optimization strategies in the realm of flexible health electronics. Specifically, we discuss common thin film processing methods, patterning techniques for functional layers, interface challenges, and potential adjustment strategies. The objective is to synthesize recent advancements and serve as a reference for the development of innovative flexible health monitoring devices.

20.
ACS Nano ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39357008

RESUMEN

Unwanted processes in metal anode batteries, e.g., non-uniform metal electrodeposition, electrolyte decomposition, and/or short-circuiting, are not fully captured by the electrolyte bulk solvation structure but rather defined by the electrode-electrolyte interface and its changes induced by cycling conditions. Specifically, for aluminum-ion batteries (AIBs), the role of the solid-electrolyte interphase (SEI) on the Al0 electrodeposition mechanism and associated changes during resting or cycling remain unclear. Here, we investigated the current-dependent changes at the electrified aluminum anode/ionic liquid electrolyte interface to reveal the conditions of the SEI formation leading to irreversible cycling in the AIBs. We identified that the mechanism of anode failure depends on the nature of the counter electrode, where the areal capacity and cycling current for Al0 electrodeposition dictates the number of successful cycles. Notwithstanding the differences behind unstable aluminum anode cycling in symmetrical cells and AIBs, the uniform removal of electrochemically inactive SEI components, e.g., oxide-rich or solvent-derived organic-rich interphases, leads to more efficient cycling behavior. These understandings raise the importance of using specific conditioning protocols for efficient cycling of the aluminum anode in conjugation with different cathode materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA