Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
Sci Rep ; 14(1): 23206, 2024 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369039

RESUMEN

Arrhythmogenic cardiomyopathy (AC) is a common cause of sudden cardiac arrest and death in young adults. It can be induced by different types of mutations throughout the desmoplakin gene including the R2834H mutation in the extreme carboxyterminus tail of desmoplakin (DP CT) which remains structurally uncharacterized and poorly understood. Here, we have created 3D models of DP CT which show the structural effects of AC-inducing mutations as well as the implications of post-translational modifications (PTMs). Our results suggest that, in absence of PTMs, positively charged wildtype DP CT likely folds back onto negatively-charged plectin repeat 14 of nearby plakin repeat domain C (PRD C) contributing to the recruitment of intermediate filaments (IFs). When phosphorylated and methylated, negatively-charged wildtype DP CT would then fold back onto positively-charged plectin repeat 17 of PRD C, promoting the repulsion of intermediate filaments. However, by preventing PTMs, the R2834H mutation would lead to the formation of a cytoplasmic mutant desmoplakin with a constitutively positive DP CT tail that would be aberrantly recruited by cytoplasmic IFs instead of desmosomes, potentially weakening cell-cell contacts and promoting AC. Virtual screening of FDA-approved drug libraries identified several promising drug candidates for the treatment of cardiocutaneous diseases through drug repurposing.


Asunto(s)
Desmoplaquinas , Filamentos Intermedios , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Humanos , Filamentos Intermedios/metabolismo , Mutación , Unión Proteica , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética
2.
Cells ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273043

RESUMEN

A complete understanding of neural crest cell mechanodynamics during ocular development will provide insight into postnatal neural crest cell contributions to ophthalmic abnormalities in adult tissues and inform regenerative strategies toward injury repair. Herein, single-cell RNA sequencing in zebrafish during early eye development revealed keratin intermediate filament genes krt8 and krt18a.1 as additional factors expressed during anterior segment development. In situ hybridization and immunofluorescence microscopy confirmed krt8 and krt18a.1 expression in the early neural plate border and migrating cranial neural crest cells. Morpholino oligonucleotide (MO)-mediated knockdown of K8 and K18a.1 markedly disrupted the migration of neural crest cell subpopulations and decreased neural crest cell marker gene expression in the craniofacial region and eye at 48 h postfertilization (hpf), resulting in severe phenotypic defects reminiscent of neurocristopathies. Interestingly, the expression of K18a.1, but not K8, is regulated by retinoic acid (RA) during early-stage development. Further, both keratin proteins were detected during postnatal corneal regeneration in adult zebrafish. Altogether, we demonstrated that both K8 and K18a.1 contribute to the early development and postnatal repair of neural crest cell-derived ocular tissues.


Asunto(s)
Córnea , Queratina-8 , Cresta Neural , Regeneración , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Cresta Neural/metabolismo , Cresta Neural/citología , Queratina-8/metabolismo , Queratina-8/genética , Córnea/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Queratina-18/metabolismo , Queratina-18/genética , Tretinoina/farmacología , Tretinoina/metabolismo , Movimiento Celular/genética
3.
J Appl Physiol (1985) ; 137(4): 903-909, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39169838

RESUMEN

The molecular mechanisms that drive muscle adaptations after eccentric exercise training are multifaceted and likely impacted by age. Previous studies have reported that many genes and proteins respond differently in young and older muscles following training. Keratin 18 (Krt18), a cytoskeletal protein involved in force transduction and organization, was found to be upregulated after muscles performed repeated bouts of eccentric contractions, with higher levels observed in young muscle compared with older muscle. Therefore, the purpose of this study was to determine if Krt18 mediates skeletal muscle adaptations following eccentric exercise training. The anterior crural muscles of Krt18 knockout (KO) and wild-type (WT) mice were subjected to either a single bout or repeated bouts of eccentric contractions, with isometric torque assessed across the initial and final bouts. Functionally, Krt18 KO and WT mice did not differ prior to performing any eccentric contractions (P ≥ 0.100). Muscle strength (tetanic isometric torques) and the ability to adapt to eccentric exercise training were also consistent across strains at all time points (P ≥ 0.169). Stated differently, immediate strength deficits and the recovery of strength following a single bout or multiple bouts of eccentric contractions were similar between Krt18 KO and WT mice. In summary, the absence of Krt18 does not impede the muscle's ability to adapt to repeated eccentric contractions, suggesting it is not essential for exercise-induced remodeling.NEW & NOTEWORTHY The molecular processes that underlie the changes in skeletal muscle following eccentric exercise training are complex and involve multiple factors. Our findings indicate that Krt18 may not play a significant role in muscle adaptations following eccentric exercise training, likely due to its low expression in skeletal muscle. These results underscore the complexity of the molecular mechanisms that contribute to muscle plasticity and highlight the need for further research in this area.


Asunto(s)
Adaptación Fisiológica , Queratina-18 , Ratones Noqueados , Contracción Muscular , Fuerza Muscular , Músculo Esquelético , Condicionamiento Físico Animal , Animales , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Adaptación Fisiológica/fisiología , Ratones , Condicionamiento Físico Animal/fisiología , Contracción Muscular/fisiología , Queratina-18/metabolismo , Fuerza Muscular/fisiología , Ratones Endogámicos C57BL , Masculino , Contracción Isométrica/fisiología , Torque
4.
J Cell Sci ; 137(16)2024 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-39206824

RESUMEN

Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.


Asunto(s)
Filamentos Intermedios , Filamentos Intermedios/metabolismo , Humanos , Animales , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Filamentos Intermediarios/genética , Transducción de Señal , Citoesqueleto/metabolismo
5.
Curr Biol ; 34(17): 4081-4090.e5, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39153481

RESUMEN

Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.


Asunto(s)
Uniones Adherentes , Desmosomas , Homeostasis , Filamentos Intermedios , Mecanotransducción Celular , Desmosomas/metabolismo , Uniones Adherentes/metabolismo , Uniones Adherentes/fisiología , Animales , Filamentos Intermedios/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Perros , Células de Riñón Canino Madin Darby , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Proteína de Unión al GTP rhoA/metabolismo , Humanos , Cadherinas/metabolismo , Cadherinas/genética
6.
Adv Clin Chem ; 123: 65-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39181624

RESUMEN

Neurofilaments (NFs), major cytoskeletal constituents of neurons, have emerged as universal biomarkers of neuronal injury. Neuroaxonal damage underlies permanent disability in various neurological conditions. It is crucial to accurately quantify and longitudinally monitor this damage to evaluate disease progression, evaluate treatment effectiveness, contribute to novel treatment development, and offer prognostic insights. Neurofilaments show promise for this purpose, as their levels increase with neuroaxonal damage in both cerebrospinal fluid and blood, independent of specific causal pathways. New assays with high sensitivity allow reliable measurement of neurofilaments in body fluids and open avenues to investigate their role in neurological disorders. This book chapter will delve into the evolving landscape of neurofilaments, starting with their structure and cellular functions within neurons. It will then provide a comprehensive overview of their broad clinical value as biomarkers in diseases affecting the central or peripheral nervous system.


Asunto(s)
Biomarcadores , Enfermedades del Sistema Nervioso , Humanos , Enfermedades del Sistema Nervioso/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/diagnóstico , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteínas de Neurofilamentos/metabolismo , Filamentos Intermedios/metabolismo , Animales
8.
Dev Cell ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39002537

RESUMEN

Keratin intermediate filaments confer structural stability to epithelial tissues, but the reason this simple mechanical function requires a protein family with 54 isoforms is not understood. During skin wound healing, a shift in keratin isoform expression alters the composition of keratin filaments. If and how this change modulates cellular functions that support epidermal remodeling remains unclear. We report an unexpected effect of keratin isoform variation on kinase signal transduction. Increased expression of wound-associated keratin 6A, but not of steady-state keratin 5, potentiated keratinocyte migration and wound closure without compromising mechanical stability by activating myosin motors to increase contractile force generation. These results substantially expand the functional repertoire of intermediate filaments from their canonical role as mechanical scaffolds to include roles as isoform-tuned signaling scaffolds that organize signal transduction cascades in space and time to influence epithelial cell state.

9.
Int J Biol Macromol ; 275(Pt 2): 133690, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971280

RESUMEN

In pursuing sustainable thermal insulation solutions, this study explores the integration of human hair and feather keratin with alginate. The aim is to assess its potential in thermal insulation materials, focusing on the resultant composites' thermal and mechanical characteristics. The investigation uncovers that the type and proportion of keratin significantly influence the composites' porosity and thermal conductivity. Specifically, higher feather keratin content is associated with lesser sulfur and reduced crosslinking due to shorter amino acids, leading to increased porosity and pore sizes. This, in turn, results in a decrease in ß-structured hydrogen bond networks, raising non-ordered protein structures and diminishing thermal conductivity from 0.044 W/(m·K) for pure alginate matrices to between 0.033 and 0.038 W/(m·K) for keratin-alginate composites, contingent upon the specific ratio of feather to hair keratin used. Mechanical evaluations further indicate that composites with a higher ratio of hair keratin exhibit an enhanced compressive modulus, ranging from 60 to 77 kPa, demonstrating the potential for tailored mechanical properties to suit various applications. The research underscores the critical role of sulfur content and the crosslinking index within keratin's structures, significantly impacting the thermal and mechanical properties of the matrices. The findings position keratin-based composites as environmentally friendly alternatives to traditional insulation materials.


Asunto(s)
Plumas , Cabello , Queratinas , Conductividad Térmica , Queratinas/química , Plumas/química , Cabello/química , Humanos , Alginatos/química , Porosidad
10.
Redox Biol ; 75: 103282, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39079387

RESUMEN

The intermediate filament protein vimentin performs an essential role in cytoskeletal interplay and dynamics, mechanosensing and cellular stress responses. In pathology, vimentin is a key player in tumorigenesis, fibrosis and infection. Vimentin filaments undergo distinct and versatile reorganizations, and behave as redox sensors. The vimentin monomer possesses a central α-helical rod domain flanked by N- and C-terminal low complexity domains. Interactions between this type of domains play an important function in the formation of phase-separated biomolecular condensates, which in turn are critical for the organization of cellular components. Here we show that several oxidants, including hydrogen peroxide and diamide, elicit the remodeling of vimentin filaments into small particles. Oxidative stress elicited by diamide induces a fast dissociation of filaments into circular, motile dots, which requires the presence of the single vimentin cysteine residue, C328. This effect is reversible, and filament reassembly can occur within minutes of oxidant removal. Diamide-elicited vimentin droplets recover fluorescence after photobleaching. Moreover, fusion of cells expressing differentially tagged vimentin allows the detection of dots positive for both tags, indicating that vimentin dots merge upon cell fusion. The aliphatic alcohol 1,6-hexanediol, known to alter interactions between low complexity domains, readily dissolves diamide-elicited vimentin dots at low concentrations, in a C328 dependent manner, and hampers reassembly. Taken together, these results indicate that vimentin oxidation promotes a fast and reversible filament remodeling into biomolecular condensate-like structures, and provide primary evidence of its regulated phase separation. Moreover, we hypothesize that filament to droplet transition could play a protective role against irreversible damage of the vimentin network by oxidative stress.


Asunto(s)
Diamida , Peróxido de Hidrógeno , Filamentos Intermedios , Estrés Oxidativo , Vimentina , Vimentina/metabolismo , Humanos , Filamentos Intermedios/metabolismo , Diamida/farmacología , Peróxido de Hidrógeno/metabolismo , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/química , Oxidación-Reducción
11.
Biochemistry (Mosc) ; 89(4): 726-736, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38831508

RESUMEN

Intermediate filaments (IFs), being traditionally the least studied component of the cytoskeleton, have begun to receive more attention in recent years. IFs are found in different cell types and are specific to them. Accumulated data have shifted the paradigm about the role of IFs as structures that merely provide mechanical strength to the cell. In addition to this role, IFs have been shown to participate in maintaining cell shape and strengthening cell adhesion. The data have also been obtained that point out to the role of IFs in a number of other biological processes, including organization of microtubules and microfilaments, regulation of nuclear structure and activity, cell cycle control, and regulation of signal transduction pathways. They are also actively involved in the regulation of several aspects of intracellular transport. Among the intermediate filament proteins, vimentin is of particular interest for researchers. Vimentin has been shown to be associated with a range of diseases, including cancer, cataracts, Crohn's disease, rheumatoid arthritis, and HIV. In this review, we focus almost exclusively on vimentin and the currently known functions of vimentin intermediate filaments (VIFs). This is due to the structural features of vimentin, biological functions of its domains, and its involvement in the regulation of a wide range of basic cellular functions, and its role in the development of human diseases. Particular attention in the review will be paid to comparing the role of VIFs with the role of intermediate filaments consisting of other proteins in cell physiology.


Asunto(s)
Filamentos Intermedios , Vimentina , Vimentina/metabolismo , Vimentina/química , Humanos , Filamentos Intermedios/metabolismo , Animales , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas de Filamentos Intermediarios/química
12.
Cells ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891038

RESUMEN

Eukaryotic cells tether the nucleoskeleton to the cytoskeleton via a conserved molecular bridge, called the LINC complex. The core of the LINC complex comprises SUN-domain and KASH-domain proteins that directly associate within the nuclear envelope lumen. Intra- and inter-chain disulphide bonds, along with KASH-domain protein interactions, both contribute to the tertiary and quaternary structure of vertebrate SUN-domain proteins. The significance of these bonds and the role of PDIs (protein disulphide isomerases) in LINC complex biology remains unclear. Reducing and non-reducing SDS-PAGE analyses revealed a prevalence of SUN2 homodimers in non-tumorigenic breast epithelia MCF10A cells, but not in the invasive triple-negative breast cancer MDA-MB-231 cell line. Furthermore, super-resolution microscopy revealed SUN2 staining alterations in MCF10A, but not in MDA-MB-231 nuclei, upon reducing agent exposure. While PDIA1 levels were similar in both cell lines, pharmacological inhibition of PDI activity in MDA-MB-231 cells led to SUN-domain protein down-regulation, as well as Nesprin-2 displacement from the nucleus. This inhibition also caused changes in perinuclear cytoskeletal architecture and lamin downregulation, and increased the invasiveness of PDI-inhibited MDA-MB-231 cells in space-restrictive in vitro environments, compared to untreated cells. These results emphasise the key roles of PDIs in regulating LINC complex biology, cellular architecture, biomechanics, and invasion.


Asunto(s)
Invasividad Neoplásica , Proteína Disulfuro Isomerasas , Humanos , Línea Celular Tumoral , Proteína Disulfuro Isomerasas/metabolismo , Femenino , Regulación hacia Abajo/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Membrana Nuclear/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Péptidos y Proteínas de Señalización Intracelular
13.
Neurocrit Care ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769253

RESUMEN

BACKGROUND: This study investigated trajectory profiles and the association of concentrations of the biomarkers neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) in ventricular cerebrospinal fluid (CSF) with clinical outcome at 1 year and 10-15 years after a severe traumatic brain injury (sTBI). METHODS: This study included patients with sTBI at the Neurointensive Care Unit at Sahlgrenska University Hospital, Gothenburg, Sweden. The injury was regarded as severe if patients had a Glasgow Coma Scale ≤ 8 corresponding to Reaction Level Scale ≥ 4. CSF was collected from a ventricular catheter during a 2-week period. Concentrations of NfL and GFAP in CSF were analyzed with enzyme-linked immunosorbent assay. The Glasgow Outcome Scale (GOS) was used to assess the 1-year and 10-15-year outcomes. After adjustment for age and previous neurological diseases, logistic regression was performed for the outcomes GOS 1 (dead) or GOS 2-5 (alive) and GOS 1-3 (poor) or GOS 4-5 (good) versus the independent continuous variables (NfL and GFAP). RESULTS: Fifty-three patients with sTBI were investigated; forty-seven adults are presented in the article, and six children (aged 7-18 years) are described in Supplement 1. The CSF concentrations of NfL gradually increased over 2 weeks post trauma, whereas GFAP concentrations peaked on days 3-4. Increasing NfL and GFAP CSF concentrations increased the odds of GOS 1-3 outcome 1 year after trauma (odds ratio [OR] 1.73, 95% confidence interval [CI] 1.07-2.80, p = 0.025; and OR 1.61, 95% CI 1.09-2.37, p = 0.016, respectively). Similarly, increasing CSF concentrations of NfL and GFAP increased the odds for GOS 1-3 outcome 10-15 years after trauma (OR 2.04, 95% CI 1.05-3.96, p = 0.035; and OR 1.60, 95% CI 1.02-2.00, p = 0.040). CONCLUSIONS: This study shows that initial high concentrations of NfL and GFAP in CSF are both associated with higher odds for GOS 1-3 outcome 1 year and 10-15 years after an sTBI, implicating its potential usage as a prognostic marker in the future.

14.
Genes (Basel) ; 15(5)2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38790262

RESUMEN

Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.


Asunto(s)
Filamentos Intermedios , Dominios Proteicos , Filamentos Intermedios/metabolismo , Filamentos Intermedios/genética , Filamentos Intermedios/química , Humanos , Animales , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/química , Proteínas de Filamentos Intermediarios/metabolismo , Citoesqueleto , Modelos Moleculares
15.
J Mol Cell Biol ; 16(3)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38429984

RESUMEN

The dynamic remodeling of the cytoskeletal network of vimentin intermediate filaments supports various cellular functions, including cell morphology, elasticity, migration, organelle localization, and resistance against mechanical or pathological stress. Currently available chemicals targeting vimentin predominantly induce network reorganization and shrinkage around the nucleus. Effective tools for long-term manipulation of vimentin network dispersion in living cells are still lacking, limiting in-depth studies on vimentin function and potential therapeutic applications. Here, we verified that a commercially available small molecule, trametinib, is capable of inducing spatial spreading of the cellular vimentin network without affecting its transcriptional or Translational regulation. Further evidence confirmed its low cytotoxicity and similar effects on different cell types. Importantly, Trametinib has no impact on the other two cytoskeletal systems, actin filaments and the microtubule network. Moreover, Trametinib regulates vimentin network dispersion rapidly and efficiently, with effects persisting for up to 48 h after drug withdrawal. We also ruled out the possibility that Trametinib directly affects the phosphorylation level of vimentin. In summary, we identified an unprecedented regulator Trametinib, which is capable of spreading the vimentin network toward the cell periphery, and thus complemented the existing repertoire of vimentin remodeling drugs in the field of cytoskeletal research.


Asunto(s)
Citoesqueleto , Piridonas , Pirimidinonas , Vimentina , Vimentina/metabolismo , Piridonas/farmacología , Pirimidinonas/farmacología , Humanos , Citoesqueleto/metabolismo , Citoesqueleto/efectos de los fármacos , Filamentos Intermedios/metabolismo , Filamentos Intermedios/efectos de los fármacos , Fosforilación/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Línea Celular Tumoral
16.
Biochemistry (Mosc) ; 89(1): 184-195, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38467554

RESUMEN

Cell migration is largely determined by the type of protrusions formed by the cell. Mesenchymal migration is accomplished by formation of lamellipodia and/or filopodia, while amoeboid migration is based on bleb formation. Changing of migrational conditions can lead to alteration in the character of cell movement. For example, inhibition of the Arp2/3-dependent actin polymerization by the CK-666 inhibitor leads to transition from mesenchymal to amoeboid motility mode. Ability of the cells to switch from one type of motility to another is called migratory plasticity. Cellular mechanisms regulating migratory plasticity are poorly understood. One of the factors determining the possibility of migratory plasticity may be the presence and/or organization of vimentin intermediate filaments (VIFs). To investigate whether organization of the VIF network affects the ability of fibroblasts to form membrane blebs, we used rat embryo fibroblasts REF52 with normal VIF organization, fibroblasts with vimentin knockout (REF-/-), and fibroblasts with mutation inhibiting assembly of the full-length VIFs (REF117). Blebs formation was induced by treatment of cells with CK-666. Vimentin knockout did not lead to statistically significant increase in the number of cells with blebs. The fibroblasts with short fragments of vimentin demonstrate the significant increase in number of cells forming blebs both spontaneously and in the presence of CK-666. Disruption of the VIF organization did not lead to the significant changes in the microtubules network or the level of myosin light chain phosphorylation, but caused significant reduction in the focal contact system. The most pronounced and statistically significant decrease in both size and number of focal adhesions were observed in the REF117 cells. We believe that regulation of the membrane blebbing by VIFs is mediated by their effect on the focal adhesion system. Analysis of migration of fibroblasts with different organization of VIFs in a three-dimensional collagen gel showed that organization of VIFs determines the type of cell protrusions, which, in turn, determines the character of cell movement. A novel role of VIFs as a regulator of membrane blebbing, essential for manifestation of the migratory plasticity, is shown.


Asunto(s)
Adhesiones Focales , Filamentos Intermedios , Ratas , Animales , Filamentos Intermedios/metabolismo , Adhesiones Focales/metabolismo , Vimentina/genética , Vimentina/metabolismo , Vimentina/farmacología , Microtúbulos/metabolismo , Movimiento Celular , Extensiones de la Superficie Celular/metabolismo
17.
Biochem Soc Trans ; 52(2): 849-860, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38451193

RESUMEN

Intermediate filaments (IFs) are cytoskeletal elements involved in mechanotransduction and in the integration of cellular responses. They are versatile structures and their assembly and organization are finely tuned by posttranslational modifications. Among them, type III IFs, mainly vimentin, have been identified as targets of multiple oxidative and electrophilic modifications. A characteristic of most type III IF proteins is the presence in their sequence of a single, conserved cysteine residue (C328 in vimentin), that is a hot spot for these modifications and appears to play a key role in the ability of the filament network to respond to oxidative stress. Current structural models and experimental evidence indicate that this cysteine residue may occupy a strategic position in the filaments in such a way that perturbations at this site, due to chemical modification or mutation, impact filament assembly or organization in a structure-dependent manner. Cysteine-dependent regulation of vimentin can be modulated by interaction with divalent cations, such as zinc, and by pH. Importantly, vimentin remodeling induced by C328 modification may affect its interaction with cellular organelles, as well as the cross-talk between cytoskeletal networks, as seems to be the case for the reorganization of actin filaments in response to oxidants and electrophiles. In summary, the evidence herein reviewed delineates a complex interplay in which type III IFs emerge both as targets and modulators of redox signaling.


Asunto(s)
Cisteína , Filamentos Intermedios , Oxidación-Reducción , Cisteína/metabolismo , Cisteína/química , Filamentos Intermedios/metabolismo , Humanos , Animales , Vimentina/metabolismo , Vimentina/química , Procesamiento Proteico-Postraduccional , Estrés Oxidativo , Citoesqueleto/metabolismo
18.
J Biomed Sci ; 31(1): 14, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263015

RESUMEN

BACKGROUND: The expression of aquaporin 4 (AQP4) and intermediate filament (IF) proteins is altered in malignant glioblastoma (GBM), yet the expression of the major IF-based cytolinker, plectin (PLEC), and its contribution to GBM migration and invasiveness, are unknown. Here, we assessed the contribution of plectin in affecting the distribution of plasmalemmal AQP4 aggregates, migratory properties, and regulation of cell volume in astrocytes. METHODS: In human GBM, the expression of glial fibrillary acidic protein (GFAP), AQP4 and PLEC transcripts was analyzed using publicly available datasets, and the colocalization of PLEC with AQP4 and with GFAP was determined by immunohistochemistry. We performed experiments on wild-type and plectin-deficient primary and immortalized mouse astrocytes, human astrocytes and permanent cell lines (U-251 MG and T98G) derived from a human malignant GBM. The expression of plectin isoforms in mouse astrocytes was assessed by quantitative real-time PCR. Transfection, immunolabeling and confocal microscopy were used to assess plectin-induced alterations in the distribution of the cytoskeleton, the influence of plectin and its isoforms on the abundance and size of plasmalemmal AQP4 aggregates, and the presence of plectin at the plasma membrane. The release of plectin from cells was measured by ELISA. The migration and dynamics of cell volume regulation of immortalized astrocytes were assessed by the wound-healing assay and calcein labeling, respectively. RESULTS: A positive correlation was found between plectin and AQP4 at the level of gene expression and protein localization in tumorous brain samples. Deficiency of plectin led to a decrease in the abundance and size of plasmalemmal AQP4 aggregates and altered distribution and bundling of the cytoskeleton. Astrocytes predominantly expressed P1c, P1e, and P1g plectin isoforms. The predominant plectin isoform associated with plasmalemmal AQP4 aggregates was P1c, which also affected the mobility of astrocytes most prominently. In the absence of plectin, the collective migration of astrocytes was impaired and the dynamics of cytoplasmic volume changes in peripheral cell regions decreased. Plectin's abundance on the plasma membrane surface and its release from cells were increased in the GBM cell lines. CONCLUSIONS: Plectin affects cellular properties that contribute to the pathology of GBM. The observed increase in both cell surface and released plectin levels represents a potential biomarker and therapeutic target in the diagnostics and treatment of GBMs.


Asunto(s)
Glioblastoma , Animales , Humanos , Ratones , Acuaporina 4 , Astrocitos , Biomarcadores , Plectina , Isoformas de Proteínas
19.
Cells ; 13(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38201309

RESUMEN

The formation of specific cellular protrusions, plasma membrane blebs, underlies the amoeboid mode of cell motility, which is characteristic for free-living amoebae and leukocytes, and can also be adopted by stem and tumor cells to bypass unfavorable migration conditions and thus facilitate their long-distance migration. Not all cells are equally prone to bleb formation. We have previously shown that membrane blebbing can be experimentally induced in a subset of HT1080 fibrosarcoma cells, whereas other cells in the same culture under the same conditions retain non-blebbing mesenchymal morphology. Here we show that this heterogeneity is associated with the distribution of vimentin intermediate filaments (VIFs). Using different approaches to alter the VIF organization, we show that blebbing activity is biased toward cell edges lacking abundant VIFs, whereas the VIF-rich regions of the cell periphery exhibit low blebbing activity. This pattern is observed both in interphase fibroblasts, with and without experimentally induced blebbing, and during mitosis-associated blebbing. Moreover, the downregulation of vimentin expression or displacement of VIFs away from the cell periphery promotes blebbing even in cells resistant to bleb-inducing treatments. Thus, we reveal a new important function of VIFs in cell physiology that involves the regulation of non-apoptotic blebbing essential for amoeboid cell migration and mitosis.


Asunto(s)
Filamentos Intermedios , Vimentina , Movimiento Celular , Citoplasma , Membrana Celular
20.
Int J Cosmet Sci ; 46(2): 153-161, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37771155

RESUMEN

OBJECTIVES: Through the cooperation with an industrial partner, we gained a set of data for the tensile properties (wet) of human hair. The hair samples originated from a cross-over study with two groups of individuals, using for a topical application sequentially two products (A and B). Each phase of the study lasted 6 months. The phases of the study by chance covered first largely the winter and then the summer period. Initially, tensile variables were chosen, which not only reflect the mechanical properties of hair (modulus, break strain, and break stress) but which are also considered to have a good connection to practice-relevant hair properties. The initial analysis of the data showed that changes were observed for the variables due to the treatment phases. However, these were either small or difficult to interpret. METHODS: Against this background and using two-factor analysis of variance, we investigated the hypothesis that the tensile properties of hair (wet) may show significant seasonal changes. For this, we chose those two independent variables, which reflect the properties of the intermediate filaments (modulus) and the matrix (break strain) in the composite structure of the hair cortex. RESULTS: The results support the 'seasonal' hypothesis and clearly show that the variables show significant changes from Winter to Summer (modulus: 10% increase; break strain: 3% decrease). The seasonal effect was thus a major reason, why the first stage of the analysis of the data was inconclusive. CONCLUSIONS: The tensile properties of the main morphological components of the cortex show distinct seasonal changes. Towards the summer, the hair becomes stiffer and more brittle. Furthermore, the results suggest that seasonal effects may need to be taken into account when conducting studies on lengths of hair grown during different seasons.


OBJECTIFS: Grâce à la coopération avec un partenaire industriel, nous avons obtenu un ensemble de données sur les propriétés de traction des cheveux (humides) humains. Les échantillons de cheveux provenaient d'une étude croisée avec deux groupes de personnes, utilisant pour une application topique deux produits (A et B) de manière séquentielle. Chaque phase de l'étude a duré 6 mois. Les phases de l'étude ont principalement couvert l'hiver, puis l'été. Initialement les variables de traction ont été choisies reflètent non seulement les propriétés mécaniques des cheveux (modulus, extension de rupture et stress de rupture), mais sont également considérées comme ayant un lien étroit avec les propriétés pertinentes des cheveux. L'analyse initiale des données a montré que des changements ont été observés pour les variables en raison des phases de traitement. Cependant, ils étaient faibles ou difficiles à interpréter. MÉTHODES: Dans ce contexte et à l'aide d'une analyse de variance à deux facteurs, nous avons étudié l'hypothèse selon laquelle les propriétés de traction des cheveux (humides) pourraient montrer des changements saisonniers significatifs. Pour cela, nous avons choisi ces deux variables indépendantes, qui reflètent les propriétés des filaments intermédiaires (modulus) et de la matrice (extension de rupture) dans la structure composite du cortex capillaire. RÉSULTATS: Les résultats appuient l'hypothèse « saisonnière ¼ et indiquent clairement que les variables montrent des évolutions significatives de l'hiver à l'été (modulus : augmentation de 10 % ; extension de rupture : diminution de 3 %). L'effet saisonnier était donc une raison majeure pour laquelle la première étape de l'analyse des données n'a pas été concluante. CONCLUSIONS: Les propriétés de traction des principaux composants morphologiques du cortex montrent des changements saisonniers distincts. Vers l'été, les cheveux deviennent plus raides et plus cassants. En outre, les résultats indiquent que les effets saisonniers devrait être pris en compte lors de la réalisation d'études sur les longueurs des cheveux ayant poussé à différentes saisons.


Asunto(s)
Preparaciones para el Cabello , Cabello , Humanos , Estudios Cruzados , Estaciones del Año , Cabello/química , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA