Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.277
Filtrar
1.
Gene ; 932: 148898, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39209182

RESUMEN

BACKGROUND: Lactic acid (LA) can promote the malignant progression of tumors through the crosstalk with the tumor microenvironment (TME). However, the function of long non-coding RNAs (lncRNAs) related to LA metabolism in Wilms tumor (WT) remains unclear. METHODS: Gene expression data and clinical data of WT patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Through the ESTIMATE algorithm and Pearson correlation analysis, lncRNAs related to tumor immunity and LA metabolism were screened. Subsequently, Cox regression analysis and Lasso Cox regression analysis were used to construct a model. Furthermore, candidate genes were identified and a competitive endogenous RNA (ceRNA) network was conducted to explore the specific mechanism of characteristic genes. Finally, based on the strong clinical relevance of UNC5B-AS1, its expression and function were experimentally verified. RESULTS: The immune score and stromal score were found to be closely related to the prognosis of WT. Eventually, a prognostic model (TME-LA-LM) consisting of 6 lncRNAs was successfully identified. The model demonstrated favorable predictive ability and accuracy, with significant variation in immune infiltration and drug susceptibility observed between risk groups. Additionally, the study revealed the involvement of 2 candidate genes and 5 microRNAs (miRNAs) in the tumor's development. Notably, UNC5B-AS1 was highly expressed and found to promote the proliferation and migration of tumor cells. CONCLUSION: This study, for the first time, elucidated the prognostic signatures of WT using lncRNAs related to TME and LA metabolism. The fundings of this research offer valuable insights for future studies on immunotherapy, personalized chemotherapy and mechanism research.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Ácido Láctico , ARN Largo no Codificante , Microambiente Tumoral , Tumor de Wilms , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Humanos , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patología , Microambiente Tumoral/genética , Ácido Láctico/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Pronóstico , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Redes Reguladoras de Genes , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
2.
Iran J Med Sci ; 49(9): 550-558, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39371385

RESUMEN

Background: Conventional ultrafiltration (CUF) during cardiopulmonary bypass (CPB) is utilized to minimize hemodilution. However, removing high volumes leads to tissue hypoperfusion by activating the anaerobic glycolysis pathways. This study aimed to determine the association between weight-indexed CUF volumes and lactate in patients who underwent coronary artery bypass grafting (CABG). Methods: In this single-center retrospective study, 641 CABG patients, who were referred to Al-Zahra Hospital (Shiraz, Iran) and underwent CPB, during 2019-2021, were recruited. Peri-operative parameters were extracted from the patient's records. The patients with non-elective status, pre-existing liver and renal diseases, ejection fraction<35%, and repeated sternotomy were excluded from the study. An increase in post-operative lactate level≥4 mmol/L after 6 hours was defined as hyperlactatemia (HL). To predict HL, univariable and multiple logistic regression modeling, while controlling confounding factors, were employed. Results: The patients' mean age was 58.8±11.1 years, and 39.2% were women. The incidence of HL was 14.5% (93 patients). There was a significant association between weight-indexed CUF volume and HL. The volume removed in the HL patients was almost doubled (43.37±11.32 vs. 21.41±8.15 mL/Kg, P<0.001), and the higher the weight-indexed CUF volume, the more likely to develop an HL at a rate of 1.38 (Odds ratio=1.38 [1.27-1.49], 95% CI, P<0.001). Furthermore, the multiple logistic regression model showed that HL was associated with the lowest mean arterial pressure (MAP) during CPB. Conclusion: A higher volume of ultrafiltration was associated with increased post-operative serum lactate levels.


Asunto(s)
Puente Cardiopulmonar , Hiperlactatemia , Ácido Láctico , Ultrafiltración , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Puente Cardiopulmonar/métodos , Puente Cardiopulmonar/estadística & datos numéricos , Puente Cardiopulmonar/efectos adversos , Anciano , Ácido Láctico/sangre , Ácido Láctico/análisis , Ultrafiltración/métodos , Ultrafiltración/estadística & datos numéricos , Ultrafiltración/normas , Hiperlactatemia/etiología , Puente de Arteria Coronaria/métodos , Puente de Arteria Coronaria/estadística & datos numéricos , Puente de Arteria Coronaria/efectos adversos , Puente de Arteria Coronaria/tendencias , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/sangre , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/prevención & control , Irán
3.
Front Immunol ; 15: 1483400, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39372401

RESUMEN

Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.


Asunto(s)
Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Sepsis , Humanos , Sepsis/inmunología , Sepsis/metabolismo , Ácido Láctico/metabolismo , Animales , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/inmunología , Biomarcadores , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/inmunología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/inmunología , Procesamiento Proteico-Postraduccional , Proteínas Musculares/metabolismo , Proteínas Musculares/inmunología , Simportadores/metabolismo , Simportadores/inmunología
4.
Int J Biol Macromol ; : 136363, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39374729

RESUMEN

Soybean cellulose nanofibrils (SCNFs) were formed by autoclave-enzymatic hydrolysis combined with ball milling. SCNFs were blended with sodium alginate (SA) to encapsulate lactic acid bacteria (LAB) through inotropic gelation. The effect of SCNFs on the multiscale structure of SA beads, leading to changes in the survival and release of LAB during simulated digestion, was investigated. Microscopy and rheological testing indicated that SCNF10-30 was well-dispersed in the SA paste in the form of interlaced nanofibrils, and could reduce the deformation of the paste under stress by 47.31 %. Multiscale structural analysis indicated SCNF10-30 not only increased the immobilized water of SA beads by 15.59 % by coordinating calcium, but also regulated the in situ-assembly of SA beads, including an increase in the scale of dimers from 6.73 nm to 8.32 nm and improved arrangement, thus forming a dense gel network. LAB viability of SA-SCNF10-30 in simulated digestion was increased by 1.3 log CFU/g compared to SA beads. Cellulose nanofibrils improved gastrointestinal survival and controlled release of LAB better than fiber rods. This study provides a strategy to regulate the multiscale structure of SA beads through nanofibrils to enable stabilization and sustainable release of LAB in gastrointestinal fluids.

5.
J Sport Rehabil ; : 1-8, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39374911

RESUMEN

CONTEXT: The aim of this study was to investigate the acute effects of Swedish massage and manual lymph drainage (MLD) on performance parameters related to jumping, walking, and blood lactic acid levels after Nordic hamstring exercises. DESIGN: This study was designed as a controlled crossover study. METHODS: The study included 16 young trained men. Participants' lactic acid levels, gait-related parameters, and jumping performance were assessed. Assessments were performed at baseline, after Nordic hamstring exercises, and after 3 different passive recovery strategies: resting, Swedish massage, and MLD for 3 weeks. RESULTS: As a result of the study, it was observed that lactic acid levels after the MLD and massage intervention were significantly lower in both MLD and massage conditions compared with the control condition (P < .05). There was no within- and between-conditions difference in jumping parameters after the MLD and massage interventions (P > .05). Walking speed in the MLD condition was statistically higher following the intervention compared with both before and after exercise (P < .05). Step time in the massage condition was statistically lower after the intervention compared with after Nordic hamstring exercise (P < .05). CONCLUSIONS: Although MLD and massage interventions have positive effects on lactic acid levels and walking and jumping parameters, they are not superior to each other. MLD can be used as a passive recovery technique after exercise.

6.
Microbiol Resour Announc ; : e0060624, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377600

RESUMEN

We report the complete genome sequence of Lactiplantibacillus plantarum LP140, a cheese isolate from the Nordbiotic collection, comprising 3,371,266 bp with 44.4% GC content. Our data provide insight into the potential of LP140 for use as a probiotic strain.

7.
Front Nutr ; 11: 1467724, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39360269

RESUMEN

Fermented foods have regained popularity in Western diets for their health-promoting potential, mainly related to the role of lactic acid bacteria (LAB) during the fermentation process. Nowadays, there is an increasing demand for vegetable-based fermented foods, representing an environmentally sustainable options to overcome the limitations of lactose intolerance, vegetarian, or cholesterol-restricted diets. Among them, table olives and their co-products (i.e., olive pomace) represent important plant-origin matrices, whose exploitation is still limited. Olives are an important source of fiber and bioactive molecules such as phenolic compounds with recognized health-promoting effects. Based on that, this minireview offer a brief overview about the potential beneficial role of fermented table olives/olive pomace, with a particular focus on the role of LAB to obtain healthy and/or probiotic-enriched fermented foods.

8.
Int J Biol Macromol ; : 136189, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362433

RESUMEN

Despite the exceptional biocompatibility and degradability of Poly (L-lactic acid) (PLLA), its brittleness, low melting strength, and poor bone induction makes it challenging to utilize for bone repair. This study used a simple, efficient solid hot drawing (SHD) method to produce high-strength PLLA, using supercritical CO2 (SC-CO2) foaming technology to give PLLA a bionic microporous structure to enhance its toughness, while precisely controlling micropore homogeneity and improving the melt strength by using Polydimethylsiloxane (PDMS). This PDMS-regulated oriented microporous structure resembled that of natural bone, displaying a maximum tensile strength of 165.9 MPa and a maximum elongation at break of 164.2 %. Furthermore, this bionic structure promoted the polarization of mouse bone marrow macrophages (iBMDM), exhibiting a simultaneous pro- and anti-inflammatory effect. This structure also contributed to the adhesion and growth of mouse embryonic fibroblasts (NIH-3 T3), promoting osteogenic differentiation, which paved the way for developing degradable PLLA bone-repair load-bearing materials.

9.
Braz J Microbiol ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39365429

RESUMEN

The present study focused on the antibacterial and antibiofilm activity of novel lactic acid bacterial (LAB) strains isolated from the healthy human volunteers of different age groups and their consortium (LABCON), against the enteropathogenic bacteria. From the study, methanolic extract of LAB isolates and their consortia were found to have promising antibacterial activity and antibiofilm activity against Escherichia coli (ATCC 35218) and Staphylococcus aureus (ATCC 25923). The antimicrobial compounds including the DL-3 phenyllactic acid, DL-p-hydroxyphenyllactic acid, and Succinic acid produced by the LAB could be considered to inhibit the growth and biofilm formation by E. coli (ATCC 35218) and S. aureus (ATCC 25923). Detailed insight into the antibiofilm activity could also be demonstrated by Confocal Raman microscopy attached with AFM and Fluorescent microscope. From the results of the study, the consortium LABCON was superior in antimicrobial and antibiofilm activity and can be considered to have promising application in infection control.

10.
AMB Express ; 14(1): 112, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361085

RESUMEN

The continuous growth of biofilm infections and their resilience to conventional cleaning methods and antimicrobial agents pose a worldwide challenge across diverse sectors. This persistent medical, industrial, and environmental issue contributes to treatment challenges and chronic diseases. Lactic acid bacteria have garnered global attention for their substantial antimicrobial effects against pathogens and established beneficial roles. Notably, their biofilms are also predicted to show a promising control strategy against pathogenic biofilm formation. The prevalence of biofilm-related problems underscores the need for extensive research and innovative solutions to tackle this global challenge. This novel study investigates the effect of different extracts (external, internal, and mixed extracts) obtained from Lactobacillus rhamnosus GG biofilm on pathogenic-formed biofilms. Subsequently, external extracts presented an important eradication effectiveness. Furthermore, a 6-fold concentration of these extracts led to eradication percentages of 57%, 67%, and 76% for Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa biofilms, respectively, and around 99.9% bactericidal effect of biofilm cells was observed for the three strains. The results of this research could mark a significant breakthrough in the field of anti-biofilm and antimicrobial strategies. Further studies and molecular research will be necessary to detect the molecules secreted by the biofilm, and their mechanisms of action engaged in new anti-biofilm strategies.

11.
Food Chem ; 463(Pt 4): 141493, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39366093

RESUMEN

Lactic acid (LA) serves as a freshness marker in certain foods. In the present work, electrified interfaces of different nature (i.e., liquid-liquid and liquid-organogel) have been developed for the quantification of LA. Electrochemical sensing of LA at the liquid-organogel interface revealed that adsorptive stripping voltammetry, with a preconcentration time of 500 s offered better sensitivity. Electroanalytical ability of LA under optimized conditions displayed a detection limit of 0.97 µM and 0.71 µM with sensitivity of 2.84 nA µM-1 and 3.59 nA µM-1 for liquid-liquid and liquid-organogel interfaces respectively. Quantification of LA using the developed methodology has been demonstrated in buttermilk as the real matrix. Analysis demonstrate that electrified liquid-liquid and liquid-organogel interfaces are promising approach for sensing LAin buttermilk extract.

12.
Gut Microbes ; 16(1): 2409209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39353090

RESUMEN

The gut microbiota can produce a variety of microbial-derived metabolites to influence tumor development. Tryptophan, an essential amino acid in the human body, can be converted by microorganisms via the indole pathway to indole metabolites such as Indole-3-Lactic Acid (ILA), Indole-3-Propionic Acid (IPA), Indole Acetic Acid (IAA) and Indole-3-Aldehyde (IAld). Recent studies have shown that indole metabolites play key roles in tumor progression, and they can be used as adjuvant regimens for tumor immunotherapy or chemotherapy. Here, we summarize recent findings on the common microbial indole metabolites and provide a review of the mechanisms of different indole metabolites in the tumor microenvironment. We further discuss the limitations of current indole metabolite research and future possibilities. It is expected that microbial indole metabolites will provide new strategies for clinical therapy.


Asunto(s)
Microbioma Gastrointestinal , Indoles , Neoplasias , Humanos , Indoles/metabolismo , Neoplasias/metabolismo , Neoplasias/microbiología , Animales , Microambiente Tumoral , Bacterias/metabolismo , Bacterias/genética , Triptófano/metabolismo , Ácidos Indolacéticos/metabolismo
13.
Biosci Microbiota Food Health ; 43(4): 381-390, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364129

RESUMEN

This research aimed to examine the effect of daily intake of food containing Lactococcus lactis strain T21 (T21) on skin conditions and inflammation-related markers in healthy adults who experience itching because of dry skin and have an atopic predisposition. A randomized, double-blind, placebo-controlled parallel-group study was conducted on 44 subjects aged 20 to 64 years. Subjects were randomly assigned to receive a T21-containing food or placebo daily for 8 weeks. The hydration of stratum corneum, trans-epidermal water loss, skin brightness (L*), skin redness (a*), and quality of life (QOL) scores were evaluated. Moreover, SCCA2, Th1/Th2, peripheral blood eosinophil count, TGF-ß1, TARC, total IgE, and LDH were measured as inflammation-related markers. The results showed that, compared with the placebo, food containing T21 reduced trans-epidermal water loss in the neck and increased neck skin brightness (L*) after 8 weeks of consumption. Furthermore, a stratified analysis in subjects with a history of atopy showed improvements in neck skin redness (a*) and skin-related QOL. No significant improvement in inflammation-related markers was observed. Intake of food containing T21 for 8 weeks in healthy adult with atopic predisposition was suggested to improve skin barrier function in the neck and brightness in the neck skin. Furthermore, the results also suggested that it had the effect of improving rough skin and reducing discomfort due to dryness in healthy adults with a history of atopy.

14.
Front Microbiol ; 15: 1452573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364161

RESUMEN

Droplet microfluidic-based technology is a powerful tool for biotechnology, and it is also expected that it will be applied to culturing and screening methods. Using this technology, a new high-throughput screening method for lactic acid bacteria was developed. In this study, the conventional culture of lactic acid bacteria that form clear zones on an agar medium was reproduced in water-in-oil droplets, and only the droplets in which lactic acid bacteria grew were collected one by one. Using this method, the specific recovery of Lactiplantibacillus plantarum from a mixture of L. plantarum and Escherichia coli and the acquirement of lactic acid bacteria from an environmental sample were successful. This method could be applied to various conventional screening methods using the clear zone as a microbial growth indicator. This has expanded the possibilities of applying droplet microfluidic-based technology to microbial cultivations.

15.
Int J Biol Macromol ; : 136188, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368570

RESUMEN

Traditional dressings have shortcomings such as poor moisture absorption and easy to adhere, making the development of new dressings crucial. In this work, a PLA/PVP crosslinked drug-loaded nanofiber membrane was prepared through electrospinning and ultraviolet crosslinking, with poly (lactic acid) (PLA), polyvinylpyrrolidone (PVP), and salicylic acid (SA) as starting materials. The results demonstrated that the inclusion of PVP notably boosted the viscosity and conductivity of the blend spinning solution. The roughness of the fabricated fiber was elevated, and the diameter of the fibers was more uniform. Additionally, the incorporation of PVP not only enhanced the porosity of the fiber membrane but also effectively decreased its contact angle. Notably, when the PVP content reached 40 %, the contact angle underwent a substantial reduction, decreasing significantly from 125.4° to 82.2°. The SA drug-loaded fiber membrane exhibited a notable bacteriostatic effect against Escherichia coli and Staphylococcus aureus, with its release behavior adhering to Fick's diffusion law. In the cell viability experiment, the cell proliferation rate increased from 94 % to 129 % after 3 days. This shows that the prepared membrane has good antibacterial effect and cell compatibility, which provides a theoretical basis for the construction of a new medical dressing.

16.
Int J Biol Macromol ; : 136296, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368574

RESUMEN

The study investigates the impact of the d-lactic acid units content on the crystallinity and crystal structure of commercial poly(lactic acid) (PLA) grades, which are copolymers of poly(l-lactic acid) (PLLA) containing a minor amount of d-units. As the d-units content increases, a detectable decrease in crystallinity was observed along with a simultaneous rise in mobile amorphous fraction (MAF) and a reduction in rigid amorphous fraction (RAF). The percentage of d-units was found not to significantly affect RAF thickness, suggesting that the d-units are not completely excluded from the crystals. The inclusion of d-units as defects in the PLA crystal lattice was confirmed by XRD analysis, which disclosed that the crystal phase gets gradually richer of d-units as the crystallization time evolves. FT-IR analysis proved that the incorporation of d-units in the crystal phase is promoted by the formation of local CH3···O=C interactions, similar to those massively active between PLLA and poly(d-lactic acid) (PDLA) in the stereocomplex. The establishment of these interactions leads to a contraction of the interplanar distances and a decrease in the crystal cell volume with increasing the crystallization time and the d-units percentage. In summary, the study proves that for PLA copolymers containing a d-units percentage at least up to about 8 %, d-units are included in the crystal lattice.

17.
Artículo en Inglés | MEDLINE | ID: mdl-39350545

RESUMEN

The wide use of conventional polymeric air filters is causing a dramatically increasing accumulation of plastic and microplastic pollution. The development of poly(lactic acid) (PLA) fibrous membranes for efficient air purification is of important significance but frequently challenged by the rapid decay of filtration performance due to the intrinsically poor electret properties of PLA. Here, we propose an electroactivity promotion methodology, involving the one-step synthesis and homogeneous incorporation of high-dielectric ZIF-8 nanosheets (ZIFNSs), to facilitate interfacial polarization and fiber refinement during electrospinning of PLA nanofibers. The preparative electrospun PLA/ZIFNS meta-membranes exhibited an unusual combination of significantly reduced nanofiber diameter (∼462 nm), enhanced surface potential (approaching 10 kV), and increased surface activity and facilitated the formation of electroactive phases. With well-controlled morphological features, the highly electroactive PLA/ZIFNS meta-membranes exhibited exceptional filtration efficiencies for PM2.5 and PM0.3 (99.2 and 96.0%, respectively) even at the highest airflow rate of 85 L/min, in clear contrast to that of its pure PLA counterpart (only 79.3 and 74.6%). Arising from the increased electroactivity and active contact sites, remarkable triboelectric performance and self-charging mechanisms were demonstrated for the PLA/ZIFNS meta-membranes, contributing to long-term efficient PM0.3 filtration (97.5% for over 360 min). Moreover, as triggered by physiological activities like respiration and speaking, the electroactive PLA/ZIFNS meta-membranes enabled real-time monitoring with high sensitivity and specificity. The proposed strategy affords significant promotion of electroactivity and triboelectric performance for PLA nanofibers, which may motivate the development of ecofriendly protective membranes for respiratory healthcare and real-time monitoring.

18.
Front Nutr ; 11: 1441355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351492

RESUMEN

Introduction: The influence of chitosan's physicochemical characteristics on the functionality of lactic acid bacteria and the production of lactic acid remains very obscure and contradictory to date. While some studies have shown a stimulatory effect of oligochitosans on the growth of Lactobacillus spp, other studies declare a bactericidal effect of chitosan. The lack and contradiction of knowledge prompted us to study the effect of chitosan on the growth and productivity of L. bulgaricus in the presence of chitosan and its derivatives. Methods: We used high molecular weight chitosan (350 kDa) and oligochitosans (25.4 and 45.3 kDa). The experiment was carried out with commercial strain of L. bulgaricus and the low fat skim cow milk powder reconstituted with sterile distilled water. After fermentation, dynamic viscosity, titratable acidity, pH, content of lactic acid, colony forming units, chitosan and oligochitosans radii were measured in the samples. Fermented dairy products were also examined using sodium dodecyl sulfate electrophoretic analysis, gas chromatography-mass spectrometry and light microscopy. Results and discussion: The results of the study showed that when L. bulgaricus was cultured in the presence of 25.4 kDa oligochitosans at concentrations of 0.0025%, 0.005%, 0.0075% and 0.01%, the average rate of LA synthesis over 24 hours was 11.0 × 10-3 mol/L/h, 8.7 × 10-3 mol/L/h, 6.8 × 10-3 mol/L/h, 5.8 × 10-3 mol/L/h, respectively. The 45.3 kDa oligochitosans had a similar effect, while the average rate of lactic acid synthesis in the control sample was only 3.5 × 10-3 mol/L/h. Notably, 350 kDa chitosan did not affect the rate of lactic acid synthesis compared with the control sample. Interestingly, interaction of chitosan with L. bulgaricus led to a slowdown in the synthesis of propanol, an increase in the content of unsaturated and saturated fatty acids, and a change in the composition and content of other secondary metabolites. The quantity of L. bulgaricus in a sample with 0.01% chitosan exceeded their content in the control sample by more than 1,700 times. At the same chitosan concentration, the fermentation process was slowed down, increasing the shelf life of the fermented milk product from 5 to 17 days while maintaining a high content of L. bulgaricus (6.34 × 106 CFU/g).

19.
Waste Manag ; 190: 208-216, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39357301

RESUMEN

Acidified food waste significantly disrupts anaerobic digestion, highlighting the need for effective solutions to mitigate its impact. This study presents a method that utilizes acidified sludge to pretreat acidified food waste, thereby significantly improving the efficiency of hydrolysis and acidogenesis. After acidification pretreatment, hydrolysis efficiency improved from 64.54 % to 96.51 %, while acidogenesis efficiency increased from 34.82 % to 49.95 %. Additionally, the concentration of short-chain fatty acids and hydrogen production in the acidification pretreatment group increased by 45.89 % and 48.67 %, respectively. The pretreatment group exhibited a biochemical methane potential of 512.84 ± 13.73 mL/(g volatile suspended solids), which was 35.77 % higher than that of the control group. Mechanism analysis revealed that the higher abundance of genes associated with lactate dehydrogenase in the acidified sludge facilitated the rapid degradation of lactic acid. Moreover, the abundant Clostridium butyricum in the acidified sludge promoted the targeted conversion of lactic acid and other organic matter into butyric acid within the food waste system. This efficient butyric acid fermentation improved the fermentation environment and provided abundant substrates for methane production. This study introduces a promising bio-based strategy to improve the anaerobic digestion efficiency of acidified food waste.

20.
BMC Plant Biol ; 24(1): 844, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251915

RESUMEN

This study investigated the influence of different temperatures (35℃ High temperature and average indoor ambient temperature of 25℃) and lactic acid bacterial additives (Lactiplantibacillus plantarym, Lentilactobacillus buchneri, or a combination of Lactiplantibacillus plantarym and Lentilactobacillus buchneri) on the chemical composition, fermentation quality, and microbial community of alfalfa silage feed. After a 60-day ensiling period, a significant interaction between temperature and additives was observed, affecting the dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) of the silage feed (p < 0.05). Temperature had a highly significant impact on the pH value of the silage feed (p < 0.0001). However, the effect of temperature on lactic acid, acetic acid, propionic acid, and butyric acid was not significant (p > 0.05), while the inoculation of additives had a significant effect on lactic acid, acetic acid, and butyric acid (p > 0.05). As for the dynamic changes of microbial community after silage, the addition of three kinds of bacteria increased the abundance of lactobacillus. Among all treatment groups, the treatment group using complex bacteria had the best fermentation effect, indicating that the effect of complex lactic acid bacteria was better than that of single bacteria in high temperature fermentation. In summary, this study explained the effects of different temperatures and lactic acid bacterial additives on alfalfa fermentation quality and microbial community, and improved our understanding of the mechanism of alfalfa related silage at high temperatures.


Asunto(s)
Medicago sativa , Ensilaje , Temperatura , Medicago sativa/microbiología , Ensilaje/microbiología , Fermentación , Microbiota , Lactobacillales , Ácido Láctico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA