Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.630
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411121, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39218793

RESUMEN

Traditionally used phenylethylamine iodide (PEAI) and its derivatives, such as ortho-fluorine o-F-PEAI, in interfacial modification, are beneficial for perovskite solar cell (PSC) efficiency but vulnerable to heat stability above 85 °C due to ion migration. To address this issue, we propose a composite interface modification layer incorporating the discotic liquid crystal 2,3,6,7,10,11-hexa(pentoxy)triphenylene (HAT5) into o-F-PEAI. The triphenyl core in HAT5 promotes π-π stacking self-assembly and enhances its interaction with o-F-PEAI, forming an oriented columnar phase that improves hole extraction along the one-dimensional direction. HAT5 repairs structural defects in the interfacial layer and retains the layered structure to inhibit ion migration after annealing. Ultimately, our approach increases the efficiency of solar cells from 23.36% to 25.02%. The thermal stability of the devices retains 80.1% of their initial efficiency after aging at 85 °C for 1008 hours without encapsulation. Moreover, the optimized PSCs maintained their initial efficiency of 82.4% after aging under one sunlight exposure for 1008 hours. This study provides a novel strategy using composite materials for interface modification to enhance the thermal and light stability of semiconductor devices.

2.
Environ Sci Technol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143808

RESUMEN

Fluorinated liquid-crystal monomers (FLCMs) are a potential emerging class of persistent, bioaccumulative, and toxic compounds. Humans inevitably ingest FLCMs via food and the environment. However, there are limited studies on internal exposure biomonitoring of FLCMs. Herein, we evaluated the estimated daily intakes (EDIs) of FLCMs in the general population based on serum residue levels. For the first time, 38 FLCMs were detected in 314 serum samples from the general population in Beijing, with a median value of 132.48 ng/g of lipid weight (lw). BDPrB is a predominant FLCM in serum. The median EDI of ∑38FLCMs in the general residents was 37.96 pg/kg bw/day. The residual levels of most FLCMs were higher in urban than in suburban areas (p < 0.05). The concentrations of EFPEB, EDPrB, EDFPBB, and PDTFMTFT in serum showed positive associations with blood glucose (GLU) (r = 0.126-0.275, p < 0.05). Logistic regression analysis showed that FLCMs were significantly positively correlated with dyslipidemia, with an odds ratio of 2.19; BDPrB was significantly positively correlated with hyperglycemia (OR: 2.48). Overall, the present study suggests the occurrence of FLCMs in the nonoccupational population, and the exposure of certain FLCMs may cause abnormal blood glucose and lipid levels.

3.
Small ; : e2402305, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155423

RESUMEN

Liquid crystal elastomers (LCEs) exhibit unique mechanical properties of soft elasticity and reversible shape-changing behaviors, and so serve as potentially transformative materials for various protective and actuation applications. This study contributes to filling a critical knowledge gap in the field by investigating the microscale mesogen organization of nematic LCEs with diverse macroscopic deformation. A polarized Fourier transform infrared light spectroscopy (FTIR) tester is utilized to examine the mesogen organizations, including both the nematic director and mesogen order parameter. Three types of material deformation are analyzed: uniaxial tension, simple shear, and bi-axial tension, which are all commonly encountered in practical designs of LCEs. By integrating customized loading fixtures into the FTIR tester, mesogen organizations are examined across varying magnitudes of strain levels for each deformation mode. Their relationships with macroscopic stress responses are revealed and compared with predictions from existing theories. Furthermore, this study reveals unique features of mesogen organizations that have not been previously reported, such as simultaneous evolutions of the mesogen order parameter and nematic director in simple shear and bi-axial loading conditions. Overall, the findings presented in this study offer significant new insights for future rational designs, modeling, and applications of LCE materials.

4.
Macromol Rapid Commun ; : e2400513, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162697

RESUMEN

Many polypeptides form stable, helical secondary structures enabling the formation of lyotropic liquid crystalline (LLC) phases. Contrary to the well-studied polyglutamate, their counterparts based on polyaspartates exhibit a much lower helix inversion barrier. Therefore, the helix sense is not solely dictated by the chirality of the amino acid used, but additionally by the nature and conformation of the polymer sidechain. In this work, polymers responsive to irradiation with visible light are designed achieving conformational transitions from helix-to-coil and helix-to-helix. The synthesis and the application as LLC mesogens of several (co-)polyaspartates bearing ortho-fluorinated azobenzene (FAB) as a photochromic group are presented. Many of the obtained polymers undergo changes in their secondary structure upon E-Z-isomerization of the FAB-containing sidechain. Of special interest are copolymers that exhibit photo-responsive helix inversion without loss of their helical secondary structure. These copolymers form stable LLC phases in helicogenic solvents, where the effect of photo-switching on the macroscopic behavior is studied by NMR spectroscopy. Especially, the irradiation of the different LLC phases of the helix inversion polymers displays a change in the LLC order experienced by the solvent. These peculiar properties are promising for future applications as photo-responsive alignment media for structure elucidation in NMR.

5.
Angew Chem Int Ed Engl ; : e202413215, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105624

RESUMEN

Gyroid, double diamond and the body-centred "Plumber's nightmare" are the three most common bicontinuous cubic phases in lyotropic liquid crystals and block copolymers. While the first two are also present in solvent-free thermotropics, the latter had never been found. Containing six-fold junctions, it was unlikely to form in the more common phases with rod-like cores normal to the network columns, where a maximum of four branches can join at a junction. The solution has therefore been sought in side-branched mesogens that lie in axial bundles joined at their ends by flexible "hinges". But for the tightly packed double framework, geometric models predicted that the side-chains should be very short. The true Plumber's nightmare reported here, using fluorescent dithienofluorenone rod-like mesogen, has been achieved with, indeed, no side chains at all, but with 6 flexible end-chains. Such molecules normally form columnar phases, but the key to converting a complex helical column-forming mesogen into a framework-forming one was the addition of just one methyl group to each pendant chain. A geometry-based explanation is given.

6.
ACS Appl Mater Interfaces ; 16(32): 42957-42965, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39104122

RESUMEN

Chiral liquid crystals (CLCs) self-assemble into a helical structure and can efficiently reflect circularly polarized light with corresponding handedness. Utilizing a curved glass substrate and polymerization of photoaligned CLCs, the operation of focusing and diffraction of incident light can be performed efficiently by a single component. When focusing and diffraction in a planar CLC cell are combined between two glass plates, the imaging suffers from astigmatism in the resulting spectrum. In this work, we demonstrate the operation of a spectrometer with low astigmatism using a polymerized CLC layer on a curved substrate. Two samples are fabricated, and the resulting components are operating in the wavelength range of 500-650 nm. Numerical optical modeling is used to minimize transverse aberrations and obtain a highly linear mapping on a camera sensor. In this way, it is demonstrated that a single reflective thin-film optical CLC component with a thickness of only a few micrometers can be used to realize a compact and efficient spectrometer.

7.
J Hazard Mater ; 477: 135365, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088946

RESUMEN

The rapid and accurate identification of live pathogens with high proliferative ability is in great demand to mitigate foodborne infection outbreaks. Herein, we have developed an ultrasensitive image-based aptasensing array to directly detect live Salmonella typhimurium (S.T) cells. This method relies on the long-range orientation of surfactant-decorated liquid crystals (LCs) and the superiority of aptamers (aptST). The self-assembling of hydrophobic surfactant tails leads to a perpendicular/vertical ordered film at the aqueous/LC interface and signal-off response. The addition of aptST perturbed LCs' ordering into a planar/tilted state at the aqueous phase due to electrostatic interactions between the surfactant with the aptST, and a signal-on response. Following the conformational switch of aptST in the presence of live S. typhimurium, a relative reversing signal-off response was observed upon the target concentration. This aptasensor could promptly confirm the presence of S. typhimurium without intricate DNA-extraction or pre-enrichment stats over a linear range of 1-1.1 × 106 CFU/mL and a detection limit of 1.2 CFU/mL within ∼30 min. These results were successfully validated using molecular and culture-based methods in spiked-milk samples, with a 92.61-104.61 % recovery value. Meanwhile, the flexibility of this portable sensing platform allows for its development and adoption for the precise detection of various pathogens in food and the environment.


Asunto(s)
Aptámeros de Nucleótidos , Cristales Líquidos , Salmonella typhimurium , Salmonella typhimurium/aislamiento & purificación , Cristales Líquidos/química , Aptámeros de Nucleótidos/química , Tensoactivos/química , Técnicas Biosensibles/métodos , Leche/microbiología , Leche/química , Límite de Detección , Microbiología de Alimentos , Animales
8.
J Hazard Mater ; 477: 135372, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106723

RESUMEN

Tree bark has been proven as an effective passive air sampler, particularly where access to active sampling methods is limited. In this study, 60 target liquid crystal monomers (LCMs; comprising 10 cyanobiphenyl and analogs (CBAs), 13 biphenyl and analogs (BAs), and 37 fluorinated biphenyl and analogs (FBAs)) were analyzed in 34 tree barks collected from the vicinity of a liquid crystal display (LCD) manufacturer situated in the Pearl River Delta, South China. The concentrations of LCMs in tree barks ranged from 1400 to 16000 ng/g lipid weight, with an average of 5900 ng/g lipid weight. Generally, bark levels of BAs exponentially decreased within 5 km of the LCD manufacturer. The profiles of LCMs in tree barks are similar to previously reported patterns in gaseous phase, suggesting bark's efficacy as a sampler for gaseous LCMs. The inclusion of different congeners in existing studies on the environmental occurrence of LCMs has hindered the horizontal comparisons. Therefore, this study established a list of priority LCMs based on environmental monitoring data and the publicly accessible production data. This list comprised 146 LCMs, including 63 REACH registered LCMs that haven't been analyzed in any study and 56 belonging to 4 types of mainstream LCMs.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Cristales Líquidos , Corteza de la Planta , Corteza de la Planta/química , Cristales Líquidos/química , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , China , Compuestos de Bifenilo
9.
Sci Total Environ ; 951: 175398, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39128516

RESUMEN

Liquid crystal monomers (LCMs) are identified as emerging organic contaminations with largely unexplored health impacts. To elucidate their toxic mechanisms, support the establishment of environmental discharge and management standards, and promote effective LCMs control, this study constructs a database covering 20,545 potential targets of 1431 LCMs, highlighting 9 key toxic target proteins that disrupt the nervous system and metabolic functions. GO and KEGG pathway analysis suggests LCMs severely affect nervous system, linked to neurodegenerative diseases and mental health disorders, with toxicity variations driven by electronegativity and structural complexity of LCM terminal groups. To achieve tiered control of LCMs, construct toxicity risk control lists for 9 key toxic target proteins, suitable for the graded control of LCMs, management recommendations are provided based on toxicity levels. These lists were validated for reliability and offer reliable toxicity predictions for LCMs. SHAP analysis points to electronic properties, molecular shape, and structural characteristics of LCMs as primary health impact factors. As the first study integrating machine learning with computational toxicology to outline LCMs health impacts, it aims to enhance public understanding of LCM toxicity risks and support the development of environmental standards, effective management of LCM production and emissions, and reduction of public exposure risks.

10.
Nano Lett ; 24(32): 9990-9997, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39101516

RESUMEN

Liquid crystal elastomers (LCEs), consisting of polymer networks and liquid crystal mesogens, show a reversible phase change under thermal stimuli. However, the kinetic performance is limited by the inherently low thermal conductivity of the polymers. Transforming amorphous bulk into a fiber enhances thermal conductivity through the alignment of polymer chains. Challenges are present due to their rigid networks, while cross-links are crucial for deformation. Here, we employ hydrodynamic alignment to orient the LCE domains assisted by controlled in situ cross-linking and to remarkably reduce the diameter to submicrons. We report that the intrinsic thermal conductivity of LCE fibers at room temperature reaches 1.44 ± 0.32 W/m-K with the sub-100 nm diameter close to the upper limit determined in the quasi-1D regime. Combining the outstanding thermal conductivity and thin diameters, we anticipate these fibers to exhibit a rapid response and high force output in thermomechanical systems. The fabrication method is expected to apply to other cross-linked polymers.

11.
Angew Chem Int Ed Engl ; : e202409182, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086017

RESUMEN

Dynamic covalent bonds endow liquid crystal elastomers (LCEs) with network rearrangeability, facilitating the fixation of mesogen alignment induced by external forces and enabling reversible actuation. In comparison, the bond exchange of supramolecular interactions is typically too significant to stably maintain the programmed alignment, particularly under intensified external stimuli. Nevertheless, the remaking and recycling of supramolecular interaction-based polymer networks are more accessible than those based on dynamic covalent bonds, as the latter are difficult to completely dissociate. Thus, preparing an LCE that possesses both supramolecular-like exchangeability and covalent bond-level stability remains a significant challenge. In this work, we addressed this issue by employing metal-ligand bonds as the crosslinking points of LCE networks. As such, mesogen alignment can be repeatedly encoded through metal-ligand bond exchange and stably maintained after programming, since the bond exchange rate is sufficiently slow when the programming and actuation temperatures are below the bond dissociation temperature. More importantly, the metal-ligand bonds can be completely dissociated at high temperatures, allowing the LCE network to be dissolved in a solvent and reshaped into desired geometries via solution casting. Building on these properties, our LCEs can be fabricated into versatile actuators, such as reversible folding origami, artificial muscles, and soft robotics.

12.
Heliyon ; 10(15): e35399, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170528

RESUMEN

This paper reports the design and development of thin-film resonant absorbers for narrowband and multiband operation in the frequency regions centered at 10 GHz. The structure of the resonant metasurface absorber (RMA) is based on a liquid crystal polymer (LCP) thin-film spacer with a copper patch array on the front surface and un-patterned copper film on the back surface of the LCP film. The design and simulation works were carried out using full-wave analysis of the RMA characteristics. The copper-based periodic patch array acts as a metasurface. The perfect RMA for a given LCP film thickness can be obtained through impedance optimization by adjustment of the dimensions of the lattice periods. The electric and magnetic field distributions were studied. The resonant film absorber based on a 100 µm thick LCP film has an electrical thickness of λ / 300 at 10 GHz. The experimental work was conducted using a narrowband RMA prototype consisting of 11 × 11 cells. The measured result of the resonant absorption is at 10.1 GHz, which is in close agreement with the design frequency of 10 GHz. For multiband functionality, double- and quad-band film resonant absorbers have been designed based on a coplanar supercell utilizing the superposition of the resonance effect. The LCP film-based absorbers have the potential to be used in EM shielding and sensing applications in centimeter-wave applications.

13.
Environ Sci Technol ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190601

RESUMEN

Liquid crystal monomers (LCMs) are emerging organic pollutants due to their potential persistence, toxicity, and bioaccumulation. This study first characterized the levels and compositions of 19 LCMs in organisms in the Pearl River Estuary (PRE), estimated their bioaccumulation and trophic transfer potential, and identified priority contaminants. LCMs were generally accumulated in organisms from sediment, and the LCM concentrations in all organisms ranged from 32.35 to 1367 ng/g lipid weight. The main LCMs in organisms were biphenyls and analogues (BAs) (76.6%), followed by cyanobiphenyls and analogues (CBAs) (15.1%), and the least were fluorinated biphenyls and analogues (FBAs) (11.2%). The most abundant LCM monomers of BAs, FBAs, and CBAs in LCMs in organisms were 1-(4-propylcyclohexyl)-4-vinylcyclohexane (15.1%), 1-ethoxy-2,3-difluoro-4-(4-(4-propylcyclohexyl) cyclohexyl) benzene (EDPBB, 10.1%), and 4'-propoxy-4-biphenylcarbonitrile (5.1%), respectively. The niche studies indicated that the PRE food web was composed of terrestrial-based diet and marine food chains. Most LCMs exhibited biodilution in the terrestrial-based diet and marine food chains, except for EDPBB and 4,4'-bis(4-propylcyclohexyl) biphenyl (BPCHB). The hydrophobicity, position of fluorine substitution of LCMs, and biological habits may be important factors affecting the bioaccumulation and trophic transfer of LCMs. BPCHB, 1-(prop-1-enyl)-4-(4-propylcyclohexyl) cyclohexane, and EDPBB were characterized as priority contaminants. This study first reports the trophic transfer processes and mechanisms of LCMs and the biomonitoring in PRE.

14.
Chemphyschem ; : e202400779, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39192741

RESUMEN

This review article mainly delves into the comprehensive development, thermal stabilization, characteristics, and applications of Blue Phase III (BPIII) derived from non-calamitic, mainly T-shaped and bent-core liquid crystals (BCLC). The discussion begins with discovering and characterizing various liquid crystal (LC) phases of BCLCs, emphasizing the significance of the nematic (N) phase in three and four-ring BCLCs. Following this, the focus shifts to the stabilization, properties, and potential applications of BPIII, particularly those derived from non-conventional liquid crystals. The review highlights the exceptional electro-optical (E-O) properties of BPIII, including high Kerr constants and distinct phase transitions. Studies reveal the impact of chirality on thermal behavior, microscopic observations, and the influence of molecular structures on mesophase formation. Investigations into asymmetrical chiral liquid crystal diads and hydrogen-bonded complexes underscore the importance of molecular design in expanding BPIII ranges. Furthermore, achiral unsymmetrical BCLC designs reveal significant insights into the interplay between molecular structure, phase transitions, and E-O behavior. Additionally, the structural transformation and E-O properties of highly polar BCLCs are examined to stabilize BPIII at room temperature, achieving notable Kerr constants and low voltage requirements. These collective studies provide a thorough understanding of BPIII and its promising applications in materials science and technology.

15.
Nanotechnology ; 35(47)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39191266

RESUMEN

The ability to detect the polarization information of light is often crucial for various applications in optical systems. However, conventional polarization-sensitive photodetectors struggle to simultaneously achieve a wide band coverage and high-precision detection, severely hindering the development of polarization detectors. In this study, a reflective metasurface with full-Stokes detection capabilities over a wide range is proposed. It integrates four linear polarization filters and two circular polarization filters operating in the near-infrared region. By dynamically adjusting the refractive index of the liquid crystal covering the detector surface, high performance full-Stokes parameter detection can be achieved between 730-770 nm with detection error below 0.07. Therefore, this study provides a design approach for the potential application of Stokes polarization detection over a broadband spectrum.

16.
ACS Appl Mater Interfaces ; 16(34): 44350-44360, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39145510

RESUMEN

Single-ion conductive polymer electrolytes can improve the safety of lithium ion batteries (LIBs) by increasing the lithium transference number (tLi+) and avoiding the growth of lithium dendrites. Meanwhile, the self-assembled ordered structure of liquid crystal polymer networks (LCNs) can provide specific channels for the ordered transport of Li ions. Herein, single-ion conductive nematic and cholesteric LCN electrolyte membranes (denoted as NLCN-Li and CLCN-Li) were successfully prepared. NLCN-Li was then coated on commercial Celgard 2325 while CLCN-Li was coated on poly(vinylidene fluoride-hexafluoropropylene) film, coupled with plasticizer, to make NLCN-Li/Cel and CLCN-Li/Pv quasi-solid-state electrolyte membranes, respectively. Their electrochemical properties were evaluated, and it was found that they possessed benign thermal stability and electrolyte/electrode compatibility, high tLi+ up to 0.98 and high electrochemical stability window up to 5.2 V. A small amount (0.5M) of extra Li salt added to the plasticizer could improve the ion conductivity from 1.79 × 10-5 to 5.04 × 10-4 S cm-1, while the tLi+ remained 0.85. The assembled LFP|Li batteries also exhibited excellent cycling and rate performances. The orderliness of the LCN layer played an important role in the distribution and movement of Li ions, thereby affecting the Li deposition and growth of Li dendrites. As the first report of nematic and cholesteric LCN single-ion conductors, this work sheds light on the design and fabrication of ordered quasi-solid-state electrolytes for high-performance and safe LIBs.

17.
Polymers (Basel) ; 16(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39204483

RESUMEN

The self-excited oscillation system, owing to its capability of harvesting environmental energy, exhibits immense potential in diverse fields, such as micromachines, biomedicine, communications, and construction, with its adaptability, efficiency, and sustainability being highly regarded. Despite the current interest in track sliders in self-vibrating systems, LCE fiber-propelled track sliders face significant limitations in two-dime nsional movement, especially self-rotation, necessitating the development of more flexible and mobile designs. In this paper, we design a spatial slider system which ensures the self-rotation of the slider propelled by a light-fueled LCE fiber on a rigid circular track. A nonlinear dynamic model is introduced to analyze the system's dynamic behaviors. The numerical simulations reveal a smooth transition from the static to self-rotating states, supported by ambient illumination. Quantitative analysis shows that increased light intensity, the contraction coefficient, and the elastic coefficient enhance the self-rotating frequency, while more damping decreases it. The track radius exhibits a non-monotonic effect. The initial tangential velocity has no impact. The reliable self-rotating performance under steady light suggests potential applications in periodic motion-demanding fields, especially in the construction industry where energy dissipation and utilization are of utmost urgency. Furthermore, this spatial slider system possesses the ability to rotate and self-vibrate, and it is capable of being adapted to other non-circular curved tracks, thereby highlighting its flexibility and multi-use capabilities.

18.
Polymers (Basel) ; 16(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39204513

RESUMEN

Liquid crystals have been extensively used in various applications, such as optoelectronic devices, biomedical applications, sensors and biosensors, and packaging, among others. Liquid crystal polymers are one type of liquid crystal material, combining their intrinsic properties with polymeric flexibility for advanced applications in displays and smart materials. For instance, liquid crystal polymers can serve as drug nanocarriers, forming cubic or hexagonal mesophases, which can be tailored for controlled drug release. Further applications of liquid crystals and liquid crystal polymers include the preparation of membranes for separation processes, such as wastewater treatment. Furthermore, these materials can be used as ion-conducting membranes for fuel cells or lithium batteries due to their broad types of mesophases. This review aims to provide an overall explanation and classification of liquid crystals and liquid crystal polymers. Furthermore, the great potential of these materials relies on their broad range of applications, which are determined by their unique properties. Moreover, this study provides the latest advances in liquid crystal polymer-based membranes and their applications, focusing especially on fuel cells. Moreover, future directions in the applications of various liquid crystals are highlighted.

19.
Polymers (Basel) ; 16(16)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204594

RESUMEN

In this paper, we propose an innovative light-powered LCE-slider system that enables continuous self-circling on an elliptical track and is comprised of a light-powered LCE string, slider, and rigid elliptical track. By formulating and solving dimensionless dynamic equations, we explain static and self-circling states, emphasizing self-circling dynamics and energy balance. Quantitative analysis reveals that the self-circling frequency of LCE-slider systems is independent of the initial tangential velocity but sensitive to light intensity, contraction coefficients, elastic coefficients, the elliptical axis ratio, and damping coefficients. Notably, elliptical motion outperforms circular motion in angular velocity and frequency, indicating greater efficiency. Reliable self-circling under constant light suggests applications in periodic motion fields, especially celestial mechanics. Additionally, the system's remarkable adaptability to a wide range of curved trajectories exemplifies its flexibility and versatility, while its energy absorption and conversion capabilities position it as a highly potential candidate for applications in robotics, construction, and transportation.

20.
Materials (Basel) ; 17(16)2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39203158

RESUMEN

Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA