Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.985
Filtrar
1.
Heliyon ; 10(15): e35559, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170507

RESUMEN

Acute liver injury (ALI) is an abnormal liver function caused by oxidative stress, inflammation and other mechanisms.The interaction between intestine and liver plays an important role in ALI, and natural polysaccharides can participate in the regulation of ALI by regulating the composition of intestinal flora. In this study, Ganoderma lucidum polysaccharide was used as the research object, and ICR mice were used to construct an acute liver injury model induced by carbon tetrachloride (CCl4). 16S rRNA sequencing technology was used to analyze the flora structure abundance and detect the changes of intestinal flora. The effective reading of 8 samples was obtained by 16S rRNA sequencing technology, and a total of 1233 samples were obtained. The results of alpha diversity analysis showed that the sequencing depth was sufficient, the abundance of species in the samples was high and the distribution was uniform, and the sequencing data of the samples was reasonable. Nine species with significant differences were screened out by abundence analysis of intestinal flora structure at genus level. Beta diversity analysis showed that species composition was different between the model group and the treatment group. Ganoderma lucidum polysaccharide can maintain the integrity of mucosal barrier by promoting the proliferation of intestinal epithelial cells and anti-oxidative stress injury, thereby improving the intestinal mucosal inflammation of mice, regulating intestinal flora, and effectively alleviating CCl4-induced acute liver injury.

2.
MedComm (2020) ; 5(9): e692, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39170945

RESUMEN

Understanding the endogenous mechanism of adaptive response to drug-induced liver injury (arDILI) may discover innovative strategies to manage DILI. To gain mechanistic insight into arDILI, we investigated exosomal miRNAs in the adaptive response to toosendanin-induced liver injury (TILI) of mice. Exosomal miR-106b-5p was identified as a specific regulator of arDILI by comprehensive miRNA profiling. Outstandingly, miR-106b-5p agomir treatment alleviated TILI and other DILI by inhibiting apoptosis and promoting hepatocyte proliferation. Conversely, antagomir treatments had opposite effects, indicating that miR-106b-5p protects mice from liver injury. Injured hepatocytes released miR-106b-5p-enriched exosomes taken up by surrounding hepatocytes. Vim (encodes vimentin) was identified as an important target of miR-106b-5p by dual luciferase reporter and siRNA assays. Furthermore, single-cell RNA-sequencing analysis of toosendanin-injured mouse liver revealed a cluster of Vim + hepatocytes; nonetheless declined following miR-106b-5p cotreatment. More importantly, Vim knockout protected mice from acetaminophen poisoning and TILI. In the clinic, serum miR-106b-5p expression levels correlated with the severity of DILI. Indeed, liver biopsies of clinical cases exposed to different DILI causing drugs revealed marked vimentin expression among harmed hepatocytes, confirming clinical relevance. Together, we report mechanisms of arDILI whereby miR-106b-5p safeguards restorative tissue repair by targeting vimentin.

3.
J Biochem Mol Toxicol ; 38(9): e23825, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39194333

RESUMEN

We investigated the role and mechanism of ginsenoside RD (GRD) in acute liver injury. Network pharmacology was used to analyze the correlations among GRD-liver injury-pyroptosis targets. A mouse model of acute liver injury was established by lipopolysaccharide + d-galactose(LPS + d/Gal). After pretreatment with GRD, the changes in mouse liver function were detected. The histopathological changes were assayed by hematoxylin and eosin and Masson staining, the tissue expressions of inflammatory cytokines were detected by enzyme-linked immunosorbent assay, and the protein expressions were assayed by immunohistochemical staining and Western blotting. Meanwhile, mechanism research was conducted using STAT3-knockout transgenic mice and STAT3-IN13, a STAT3 inhibitor. GRD inhibited liver injury, mitigated tissue inflammation, and suppressed STAT3-mediated pyroptosis in mice. After applying STAT3-knockout mouse model or STAT3-IN13, GRD did not further inhibit the liver injury. GRD can resist liver injury by inhibiting the STAT3-mediated pyroptosis, which is one of the hepatoprotective mechanisms of GRD.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ginsenósidos , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Factor de Transcripción STAT3 , Animales , Ginsenósidos/farmacología , Factor de Transcripción STAT3/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Masculino , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Piroptosis/efectos de los fármacos
4.
Clin Pract ; 14(4): 1601-1614, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39194933

RESUMEN

BACKGROUND: The prognostic significance of liver dysfunction in COVID-19 patients remains unclear. In this study, we investigated the association between liver function test results and severe disease progression in COVID-19 patients. METHODS: This retrospective study included consecutive Japanese COVID-19 patients admitted between February 2020 and July 2021. Predictive variables for severe disease progression were identified by multivariate logistic regression analysis. Severe disease-free survival was estimated with the Kaplan-Meier method and Cox regression analysis. Aspartate aminotransferase (AST) was divided into three grades: grade 1, AST < 30 U/L; grade 2, 30 U/L ≤ AST < 60 U/L; and grade 3, AST > 60 U/L. RESULTS: Among 604 symptomatic patients, 141 (23.3%) developed severe disease at a median of 2 days postadmission. The median hospital stay was 10 days, and 43 patients (7.1%) died during hospitalization. Multivariate regression analysis revealed that hypertension, decreased lymphocyte count, and elevated LDH, CRP, and AST levels (grade 2 and grade 3 relative to grade 1) were the significant predictive variables. Severe disease-free survival time was significantly different between the different AST grades (hazard ratio (HR): grade 2 vs. grade 1, 4.07 (95% confidential interval (CI): 2.06-8.03); grade 3 vs. grade 1, 7.66 (95% CI: 3.89-15.1)). CONCLUSIONS: The AST level at admission was an independent risk factor for severe disease in hospitalized Japanese patients with COVID-19.

5.
Gastro Hep Adv ; 3(4): 471-473, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39131718

RESUMEN

Ketamine-induced sclerosing cholangitis has been described with chronic intranasal and intravenous use. Our case follows chronic topical use for peripheral neuropathy. It is also uniquely associated with early inflammatory bowel disease, a known complication of primary sclerosing cholangitis.

6.
Liver Int ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136211

RESUMEN

Herbal and dietary supplements (HDS) are being used worldwide at an increasing rate. Mirroring this trend, HDS-induced liver injury, also known as HDS-induced liver injury (HILI), has increased significantly over the past three decades in the Drug-Induced Liver Injury Network (DILIN), now accounting for 20% of cases of drug-induced liver injury (DILI). There are significant challenges in the identification and prevention of HILI due to varying presentations, ability to make clear diagnosis, identification of the responsible ingredient, lack of treatment, and lack of regulatory oversight of HDS products to confirm their ingredients and ensure safety. The major implicated agents include anabolic steroids, green tea extract, garcinia cambogia, kratom, ashwagandha, turmeric and multi-ingredient nutritional supplements. Fortunately, with the formation of major DILI consortiums across the world, the last decade has seen advances in the identification of at-risk genetic phenotypes, the use of chemical analysis on multi-ingredient nutritional supplements, and the publication of data/injury patterns of potentially risky HDS.

7.
JGH Open ; 8(8): e13118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39114430

RESUMEN

Background and Aim: Abnormal liver biochemistry (ALB) is common among patients with COVID-19 infection due to various factors. It is uncertain if it persists after the acute infection. We aimed to investigate this. Methods: A multicenter study of adult patients hospitalized for COVID-19 infection, with at least a single abnormal liver function test, was conducted. Detailed laboratory and imaging tests, including transabdominal ultrasound and FibroScan, were performed at assessment and at 6-month follow-up after hospital discharge. Results: From an initial cohort of 1246 patients who were hospitalized, 731 (58.7%) had ALB. A total of 174/731 patients fulfilled the inclusion criteria with the following characteristics: 48.9% patients had severe COVID-19; 62.1% had chronic liver disease (CLD); and 56.9% had metabolic-associated fatty liver disease (MAFLD). ALB was predominantly of a mixed pattern (67.8%). Among those (55.2%) who had liver injury (aspartate aminotransferase/alanine aminotransferase >3 times the upper limit of normal, or alkaline phosphatase/γ-glutamyl transferase/bilirubin >2 times the upper limit of normal), a mixed pattern was similarly predominant. Approximately 52.3% had normalization of the liver lunction test in the 6-month period post discharge. Patients with persistent ALB had significantly higher mean body mass index (BMI) and serum low-density lipoprotein (LDL), higher rates of MAFLD and CLD, higher mean liver stiffness measurement and continuous attenuated parameter score on FibroScan, and higher rates of liver injury on univariate analysis. Multivariate analysis was not statistically significant. Conclusions: Approximately 47.7% of COVID-19 patients were found to have persistent ALB up to 6 months following the acute infection, and it was associated with raised BMI, elevated serum LDL, increased rates of MAFLD and CLD, and higher rates of liver injury on univariate analysis, but not on multivariate analysis.

8.
Adv Sci (Weinh) ; : e2404274, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119946

RESUMEN

The correlation between liver disease and the progression of ulcerative colitis (UC) has remained elusive. In this study, it demonstrates that liver injury is intricately linked to the heightened severity of UC in patients, and causes more profound intestinal damage during DSS-induced colitis in mice. Metabolomics analysis of plasma from liver cirrhosis patients shows liver injury compromising nicotinamide supply for NAD+ biosynthesis in the intestine. Subsequent investigation identifies intestinal group 2 innate lymphoid cells (ILC2s) are responsible for liver injury-exacerbated colitis. Reconstitution of ILC2s or the restoration of NAD+ metabolism proves effective in relieving liver injury-aggravated experimental colitis. Mechanistically, the NAD+ salvage pathway regulates gut ILC2s in a cell-intrinsic manner by supporting the generation of succinate, which fuels the electron transport chain to sustaining ILC2s function. This research deepens the understanding of cellular and molecular mechanisms in liver disease-UC interplay, identifying a metabolic target for innovative treatments in liver injury-complicated colitis.

9.
Drug Metab Rev ; : 1-16, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120430

RESUMEN

Drug-induced liver injury (DILI) is one of the most frequently adverse reactions in clinical drug use, usually caused by drugs or herbal compounds. Compared with other populations, cancer patients are more prone to abnormal liver function due to primary or secondary liver malignant tumor, radiation-induced liver injury and other reasons, making potential adverse reactions from liver damage caused by anticancer drugs of particular concernduring clinical treatment process. In recent years, the application of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) has changed the treatment status of a series of solid malignant tumors. Unfortunately, the increasing incidence of hepatotoxicitylimits the clinical application of EGFR-TKIs. The mechanisms of liver injury caused by EGFR-TKIs were complex. Despite more than a decade of research, other than direct damage to hepatocytes caused by inhibition of cellular DNA synthesis and resulting in hepatocyte necrosis, the rest of the specific mechanisms remain unclear, and few effective solutions are available. This review focuses on the clinical feature, incidence rates and the recent advances on the discovery of mechanism of hepatotoxicity in EGFR-TKIs, as well as rechallenge and therapeutic strategies underlying hepatotoxicity of EGFR-TKIs.

10.
JHEP Rep ; 6(8): 101102, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39105181

RESUMEN

Background & Aims: Currently, there is limited knowledge on the clinical profile of drug-induced liver injury (DILI) in Chinese children. We aimed to assess the clinical characteristics, suspected drugs, and outcomes associated with pediatric DILI in China. Methods: This nationwide, multicenter, retrospective study, conducted between 2012 and 2014, analyzed 25,927 cases of suspected DILI at 308 medical centers using the inpatient medical register system. Utilizing the Roussel Uclaf causality assessment method score, only patients with scores ≥6 or diagnosed with DILI by three experts after scoring <6 were included in the analysis. Among them, 460 cases met the EASL biochemical criteria. The study categorized children into three age groups: toddlers (≥30 days to <6 years old), school-age children (6 to <12 years old), and adolescents (12 to <18 years old). Results: Hepatocellular injury was the predominant clinical classification, accounting for 63% of cases, with 34% of these cases meeting Hy's law criteria. Adolescents comprised the majority of children with moderate/severe DILI (65%). Similarly, adolescents faced a significantly higher risk of severe liver injury compared to younger children (adjusted odd ratios 4.75, p = 0.002). The top three most frequently prescribed drug classes across all age groups were antineoplastic agents (25.9%), antimicrobials (21.5%), and traditional Chinese medicine (13.7%). For adolescents, the most commonly suspected drugs were antitubercular drugs (22%) and traditional Chinese medicine (23%). Conclusion: Adolescents are at a greater risk of severe and potentially fatal liver injury compared to younger children. Recognizing the risk of pediatric DILI is crucial for ensuring safe medical practices. Impact and implications: Drug-induced liver injury, a poorly understood yet serious cause of pediatric liver disease, encompasses a spectrum of clinical presentations, ranging from asymptomatic liver enzyme elevation to acute liver failure. This retrospective study, utilizing a large Chinese cohort of pediatric liver injury cases from 308 centers nationwide, characterized the major clinical patterns and suspected drugs in detail, revealing that adolescents are at a greater risk of severe liver injury compared to younger children. Vigilant care and careful surveillance of at-risk pediatric patients are crucial for physicians, researchers, patients, caregivers, and policymakers. Additional multicenter prospective studies are needed to evaluate the risk of hepatotoxicity in outpatients and hospitalized pediatric patients.

11.
Curr Top Med Chem ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39108107

RESUMEN

BACKGROUND: Self-emulsifying nano-phase of traditional Chinese medicine are a research hotspot. Xiao-Chai-Hu decoction is a commonly used compound decoction in clinical practice, which is of great research significance. The aim of this study was to isolate and characterize the self-emulsifying nano-phase and other phases of Xiao-Chai-Hu decoction, and to study the effects of each phase on acute liver injury. METHODS: The liquid medicine was prepared employing centrifugation followed by dialysis. Single- factor investigation methodology was utilized to optimize the preparation parameters for both phases. Characterization of the formulated phase involved analyses such as surface morphology assessment, measurement of nanoparticle size and Zeta potential using an analyzer, observation of the Tyndall effect, conducting diffusion and dilution tests, examination under a microscope, and structural visualization via transmission electron microscopy (TEM). Furthermore, an acute liver injury model was established in rats through intraperitoneal injection of D-Galactosamine (D-Gal- N). To assess hepatic function and oxidative stress status, serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content in liver tissue were quantified. The liver coefficients for each group were calculated as an additional parameter. For histopathological evaluation, liver tissue sections from the experimental group were stained with Hematoxylin and Eosin (H&E) and examined microscopically under light conditions. These revisions aim to enhance clarity, correct minor grammatical errors (such as capitalization of "HE" to "H&E"), and ensure a smoother flow of information without altering the scientific content of your original text. RESULTS: Successful establishment and separation of four distinct phases were achieved, including the self-emulsifying nano-phase, precipitation phase, suspension phase, and true solution phase. The self-emulsifying nano-phase was characterized as spherical particles with an average diameter of approximately 100 nm. Pharmacodynamic assessments revealed that both Xiao-Chai-Hu decoction and its self-emulsifying nano-phase significantly reduced liver coefficients and alanine aminotransferase (ALT) levels compared to controls (P<0.05). However, no statistically significant differences were observed in regards to aspartate aminotransferase (AST) concentrations, malondialdehyde (MDA) content, or superoxide dismutase (SOD) activity between the treatment groups and control (P>0.05). These findings indicate that both Xiao-Chai-Hu decoction and its self-emulsifying nano-formulation ameliorated D-GalN-induced acute liver injury, albeit without statistically distinguishable efficacy between them (P>0.05). CONCLUSION: The presence of a self-emulsifying nano-phase within Xiao-Chai-Hu decoction is confirmed, and this nano-phase emerges as a therapeutically efficacious component in mitigating acute liver injury.

12.
Arch Physiol Biochem ; : 1-13, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109872

RESUMEN

BACKGROUND: Mirabegron (MIRG) is a type of ß3 adrenoceptor agonist that is considered an alternative therapy for the treatment of overactive bladder (OAB) symptoms. Cilostazol (CITZ) is a selective inhibitor of phosphodiesterase (III) that has various pharmacological effects. OBJECTVE: The current study aimed to highlight the regulatory effects of CITZ on MIRG-induced toxicity. MATERIALS AND METHODS: Male rats were divided into six groups. Blood samples were collected to determine different hepatic and kidney function levels along with serum protein electrophoresis and inflammatory factor levels. Histopathological studies and oxidative stress (OS) were also assessed. Kidney and hepatic damage were detected following the administration of MIRG, especially at high doses, due to elevated OS, inflammation, and apoptotic marker levels. RESULTS: Rats receiving CITZ exhibited significant improvements in both hepatic and kidney functions, with decreased inflammation and OS. CONCLUSION: CITZ administration plays a beneficial role in alleviating hepatic and nephrotoxicity induced by MIRG by inhibiting OS and inflammation.

13.
Int Immunopharmacol ; 140: 112898, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128417

RESUMEN

OBJECTIVE: Disorders of lipid oxidation play an important role in organ damage, and lipid metabolites are associated with inflammation and coagulation dysfunction in sepsis. However, the specific molecular mechanism by which lipid metabolism-related proteins regulate sepsis is still unclear. The aim of this study is to investigate the role of mortality factor 4-like protein 1 (MORF4L1, also called MRG15), a hepatic lipid metabolism related gene, in sepsis-induced liver injury. METHODS: In the mouse sepsis models established by cecal ligation and puncture (CLP) and lipopolysaccharide (LPS), the impact of pretreatment with the MRG15 inhibitor argatroban on sepsis-related liver injury was investigated. In the LPS-induced hepatocyte sepsis cell model, the effects of MRG15 overexpression or knockdown on hepatic inflammation and lipid metabolism were studied. Additionally, in a co-culture system of hepatocytes and macrophages, the influence of MRG15 knockdown in hepatocytes on the synthesis and secretion of inflammation-related protein PCSK9 as well as its effect on macrophage activation were examined. RESULTS: Studies have shown that MRG15 expression was increased in septicemia mice and positively correlated with lipid metabolism and inflammation. However, knockdown of MRG15 ameliorates sepsis-induced hepatocyte injury. Increased MRG15 in LPS-stimulated hepatocytes promotes PCSK9 synthesis and secretion, which induces macrophage M1 polarization and exacerbates the inflammatory response. Agatroban, an inhibitor of MRG15, ameliorates sepsis-induced liver injury in mice by inhibiting MRG15-induced lipid metabolism disorders and inflammatory responses. CONCLUSIONS: In sepsis, increased MRG15 expression in hepatocytes leads to disturbed hepatic lipid metabolism and induces macrophage M1 polarization by secreting PCSK9, ultimately exacerbating liver injury.

14.
Foods ; 13(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39123655

RESUMEN

The purpose of this work was to construct liver-targeted nanoparticles based on the redox response to effectively deliver cannabidiol (CBD) for the prevention of acute liver injury (ALI). CBD-loaded nanoparticles (CBD NPs) with a particle size of 126.5 ± 1.56 nm were prepared using the polymer DA-PP-LA obtained by grafting pullulan polysaccharide with deoxycholic acid (DA) and α-lipoic acid (α-LA). CBD NPs showed typical redox-response release behavior. Interestingly, CBD NPs exhibited admirable liver targeting ability, significantly accumulated in the liver, and effectively promoted the internalization of CBD in liver cells, thus effectively reducing the H2O2-induced oxidative damage of HepG2 cells and avoiding apoptosis. More importantly, CBD NPs effectively prevented CCl4-induced ALI by protecting liver function, ameliorating oxidative stress levels, inhibiting the production of inflammatory factors, and protecting the liver from histological damage. This study provides a promising strategy for achieving targeted delivery of CBD NPs in the liver, thereby effectively preventing ALI.

15.
Arch Toxicol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105737

RESUMEN

Idiosyncratic drug-induced liver injury is a rare and unpredictable event. Deciphering its initiating-mechanism is a hard task as its occurrence is individual dependent. Thus, studies that utilize models that are not individual-centric might drive to a general mechanistic conclusion that is not necessarily true. Here, we use the individual-centric spheroid model to analyze the initiating-mechanism of troglitazone-mediated iDILI risk. Individual-centric spheroid models were generated using a proprietary cell educating technology. These educated spheroids contain hepatocytes, hepatic stellate cells, activated monocyte-derived macrophages, and dendritic cells under physiological conditions. We show that phases 1 and 2 drug-metabolizing enzymes were induced in an individual-dependent manner. However, we did not observe any association of DEMs induction and troglitazone (TGZ)-mediated iDILI risk. We analyzed TGZ-mediated iDILI and found that a 44-year-old male showed iDILI risk that is associated with TGZ-mediated suppression of IL-12 expression by autologous macrophages and dendritic cells. We performed a rescue experiment and showed that treatment of spheroids from this 44-year-old male with TGZ and recombinant IL-12 suppressed iDILI risk. We confirmed the mechanism in another 31-year-old female with iDILI risk. We demonstrate here that individual-centric spheroid are versatile models that allow to predict iDILI risk and to analyze a direct effect of the drug on activated macrophages and dendritic cells to uncover the initiating-mechanism of iDILI occurrence. This model opens perspectives for a personalized strategy to mitigate iDILI risk.

16.
MAGMA ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105950

RESUMEN

OBJECTIVE: Previous studies have revealed a substantial between-centre variability in DCE-MRI biomarkers of hepatocellular function in rats. This study aims to identify the main sources of variability by comparing data measured at different centres and field strengths, at different days in the same subjects, and over the course of several months in the same centre. MATERIALS AND METHODS: 13 substudies were conducted across three facilities on two 4.7 T and two 7 T scanners using a 3D spoiled gradient echo acquisition. All substudies included 3-6 male Wistar-Han rats each, either scanned once with vehicle (n = 76) or twice with either vehicle (n = 19) or 10 mg/kg of rifampicin (n = 13) at follow-up. Absolute values, between-centre reproducibility, within-subject repeatability, detection limits, and effect sizes were derived for hepatocellular uptake rate (Ktrans) and biliary excretion rate (kbh). Sources of variability were identified using analysis of variance and stratification by centre, field strength, and time period. RESULTS: Data showed significant differences between substudies of 31% for Ktrans (p = 0.013) and 43% for kbh (p < 0.001). Within-subject differences were substantially smaller for kbh (8%) but less so for Ktrans (25%). Rifampicin-induced inhibition was safely above the detection limits, with an effect size of 75 ± 3% in Ktrans and 67 ± 8% in kbh. Most of the variability in individual data was accounted for by between-subject (Ktrans = 23.5%; kbh = 42.5%) and between-centre (Ktrans = 44.9%; kbh = 50.9%) variability, substantially more than the between-day variation (Ktrans = 0.1%; kbh = 5.6%). Significant differences in kbh were found between field strengths at the same centre, between centres at the same field strength, and between repeat experiments over 2 months apart in the same centre. DISCUSSION: Between-centre bias caused by factors such as hardware differences, subject preparations, and operator dependence is the main source of variability in DCE-MRI of liver function in rats, closely followed by biological between-subject differences. Future method development should focus on reducing these sources of error to minimise the sample sizes needed to detect more subtle levels of inhibition.

17.
Autophagy ; : 1-20, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099169

RESUMEN

Disruption of mitochondrial function is observed in multiple drug-induced liver injuries (DILIs), a significant global health threat. However, how the mitochondrial dysfunction occurs and whether maintain mitochondrial homeostasis is beneficial for DILIs remains unclear. Here, we show that defective mitophagy by OPTN (optineurin) ablation causes disrupted mitochondrial homeostasis and aggravates hepatocytes necrosis in DILIs, while OPTN overexpression protects against DILI depending on its mitophagic function. Notably, mass spectrometry analysis identifies a new mitochondrial substrate, GCDH (glutaryl-CoA dehydrogenase), which can be selectively recruited by OPTN for mitophagic degradation, and a new cofactor, VCP (valosin containing protein) that interacts with OPTN to stabilize BECN1 during phagophore assembly, thus boosting OPTN-mediated mitophagy initiation to clear damaged mitochondria and preserve mitochondrial homeostasis in DILIs. Then, the accumulation of OPTN in different DILIs is further validated with a protective effect, and pyridoxine is screened and established to alleviate DILIs by inducing OPTN-mediated mitophagy. Collectively, our findings uncover a dual role of OPTN in mitophagy initiation and implicate the preservation of mitochondrial homeostasis via inducing OPTN-mediated mitophagy as a potential therapeutic approach for DILIs.Abbreviation: AILI: acetaminophen-induced liver injury; ALS: amyotrophic lateral sclerosis; APAP: acetaminophen; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DILI: drug-induced liver injury; FL: full length; GCDH: glutaryl-CoA dehydrogenase; GOT1/AST: glutamic-oxaloacetic transaminase 1; GO: gene ontology; GSEA: gene set enrichment analysis; GPT/ALT: glutamic - pyruvic transaminase; INH: isoniazid; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MMP: mitochondrial membrane potential; MST: microscale thermophoresis; MT-CO2/COX-II: mitochondrially encoded cytochrome c oxidase II; OPTN: optineurin; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TSN: toosendanin; VCP: valosin containing protein, WIPI2: WD repeat domain, phosphoinositide interacting 2.

18.
PeerJ ; 12: e17837, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099653

RESUMEN

Hexavalent chromium (Cr(VI)) is a hazardous metallic compound commonly used in industrial processes. The liver, responsible for metabolism and detoxification, is the main target organ of Cr(VI). Toxicity experiments were performed to investigate the impacts of low-dose exposure to Cr(VI) on rat livers. It was revealed that exposure of 0.05 mg/kg potassium dichromate (K2Cr2O7) and 0.25 mg/kg K2Cr2O7 notably increased malondialdehyde (MDA) levels and the expressions of P-AMPK, P-ULK, PINK1, P-Parkin, and LC3II/LC3I, and significantly reduced SOD activity and P-mTOR and P62 expression levels in liver. Electron microscopy showed that CR(VI) exposure significantly increased mitophagy and the destruction of mitochondrial structure. This study simulates the respiratory exposure mode of CR(VI) workers through intratracheal instillation of CR(VI) in rats. It confirms that autophagy in hepatocytes is induced by low concentrations of CR(VI) and suggest that the liver damage caused by CR(VI) may be associated with the AMPK-related PINK/Parkin signaling pathway.


Asunto(s)
Cromo , Hígado , Mitofagia , Proteínas Quinasas , Transducción de Señal , Ubiquitina-Proteína Ligasas , Animales , Cromo/toxicidad , Mitofagia/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transducción de Señal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratas , Masculino , Dicromato de Potasio/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Ratas Sprague-Dawley , Malondialdehído/metabolismo
19.
World J Gastroenterol ; 30(30): 3609-3624, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39193568

RESUMEN

BACKGROUND: Sepsis-associated liver injury (SLI) is a severe and prevalent complication of sepsis. AIM: To explore the literature on SLI via a bibliometric approach. METHODS: Reviews and articles correlated with SLI published from January 1, 2000 to October 28, 2023 were searched from the Web of Science Core Collection. Then, the searched data were analyzed using VOSviewer, CiteSpace, and R language. RESULTS: There were 787 publications involved in this paper, comprising 745 articles and 42 reviews. China, the United States, and Germany are the primary publication sources in this area. Studies related to SLI primarily focused on mechanisms of pathogenesis, as evidenced by analyzing keywords, references, and the counting of original research. These studies mainly involved tumor necrosis factor alpha, inflammation, oxidative stress, and nuclear factor-kappa B. CONCLUSION: There is significant growth in the research on SLI. Current investigations primarily involve basic experiments that aimed at uncovering pathogenic mechanisms. According to the analyzed literature, the identified pathogenic mechanisms and potential therapeutic targets serve as the foundation for translating findings from basic research to clinical applications.


Asunto(s)
Bibliometría , Sepsis , Humanos , Sepsis/complicaciones , Sepsis/etiología , Hepatopatías/etiología , Estrés Oxidativo , Hígado/lesiones , Hígado/patología
20.
J Ethnopharmacol ; 335: 118649, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094754

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cholestatic liver diseases (CLD) are liver disorders resulting from abnormal bile formation, secretion, and excretion from various causes. Due to the lack of suitable and safe medications, liver transplantation is the ultimate treatment for CLD patients. Isoastragaloside I (IAS I) is one of the main saponin found in Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or Astragalus membranaceus (Fisch.) Bge, which has been demonstrated to obviously alleviate CLD. Nevertheless, the IAS I's specific anti-CLD mechanism remains undecipherable. AIM OF THE STUDY: This study's purpose was to elucidate the protective consequence of IAS I on 0.1% 3, 5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC) diet-induced CLD mice, and to reveal its potential mechanism. MATERIALS AND METHODS: In this study, mice with CLD that had been fed a 0.1% DDC diet were distributed two doses of IAS I (20 mg/kg, 50 mg/kg). The effects of IAS I on CLD models were investigated by assessing blood biochemistry, liver histology, and Hyp concentrations. We investigated markers of liver fibrosis and ductular reaction using immunohistochemistry, Western blot, and qRT-PCR. Liver inflammation indicators, arachidonic acid (ARA), and ω-3 fatty acid (FA) metabolites were also analyzed. Quantitative determination of 39 bile acids (BAs) in different organs employing UHPLC-Q-Exactive Orbitrap HRMS technology. Additionally, the H&E and Western blot analysis were used to evaluate differences in intestinal barrier function in DDC-induced mice before and after administering IAS I. RESULTS: After treatment with IAS I, serum biochemical indicators and liver hydroxyproline (Hyp) increased in a dose-dependent manner in CLD mice. The IAS I group showed significant improvement in indicators of liver fibrosis and ductular response, including as α-smooth muscle actin (α-SMA) and cytokeratin 19 (CK19), and transforming growth factor-ß (TGF-ß)/Smads signaling pathway. And inflammatory factors: F4/80, tumor necrosis factor-α (TNF-α), Interleukin-1ß (IL-1ß), ARA and ω-3 FA metabolites showed significant improvement following IAS I treatment. Moreover, IAS I significantly ameliorated liver tau-BAs levels, particularly TCA, THCA, THDCA, TCDCA, and TDCA contents, which were associated with enhanced expression of hepatic farnesoid X receptor (FXR), small heterodimer partner (SHP), cholesterol 7α-hydroxylase (Cyp7a1), and bile-salt export pump (BSEP). Furthermore, IAS I significantly improved pathological changes and protein expression related to intestinal barrier function, including zonula occludens protein 1 (ZO-1), Muc2, and Occludin. CONCLUSIONS: IAS I alleviated cholestatic liver injury, relieved inflammation, improved the altered tau-BAs metabolism and restored intestinal barrier function to protect against DDC-induced cholestatic liver diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...