Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
1.
Neuropharmacology ; : 110175, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39357738

RESUMEN

Methamphetamine (METH) has been implicated in inducing memory impairment, but the precise mechanisms underlying this effect remain unclear. Current research often limits itself to singular models or focuses on individual gene or protein functions, which hampers a comprehensive understanding of the underlying mechanisms. In this study, we established three METH mouse exposure models, extracted hippocampal nuclei, and utilized RNA sequencing to analyze changes in mRNA expression profiles. Our results indicate that METH significantly impairs the learning and memory capabilities of mice. Additionally, we observed that METH-induced inflammatory responses occur in the early phase and do not further exacerbate with repeated injections. However, RNA sequencing revealed the persistent enrichment of inflammatory pathway molecules, which correlated with worsened behaviors. This suggests that although METH-induced neuroinflammation plays a critical role in learning and memory impairment, the continued enrichment of inflammatory pathway molecules is associated with behavioral outcomes. These findings provide crucial evidence for the potential application of immune intervention in METH-related disorders.

2.
J Microbiol Biotechnol ; 34(11): 1-10, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39317682

RESUMEN

This study investigated the efficacy of a phlorotannin supplement (PS) in ameliorating scopolamine (SCO)-induced memory deficits in mice, focusing on synaptic function and the underlying molecular mechanisms. Male C57BL/6N mice were divided into six groups and treated with vehicle, donepezil (5 mg/kg body weight (BW)), or PS (100, 250, or 500 mg/kg BW) for 6 weeks. Behavioral tests were conducted , followed by Golgi staining , immunofluorescence , and immunoblotting to assess synaptic protein expression and signaling pathways . Behavioral tests showed that PS administration significantly improved SCO-induced memory impairment and restored synaptic protein expression (synaptophysin , synapsin 1, and postsynaptic density protein 95) in the hippocampus . Additionally , PS enhanced brain-derived neurotrophic factor (BDNF ) signaling and activated the extracellular signal-regulated kinase/CAMP response element binding protein ( ERK-CREB) pathway, essential for synaptic plasticity. Our findings demonstrate that PS mitigates SCO-induced memory dysfunction by protecting synaptic integrity and activating the BDNF-ERKCREB signaling pathway , indicating the potential of PS as a natural intervention for treating memory deficits.

3.
J Alzheimers Dis ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39302366

RESUMEN

Background: Idiopathic normal pressure hydrocephalus (iNPH) can present with both episodic amnestic syndrome and biomarkers of Alzheimer's disease (AD) pathology. Objective: To examine the associations between amnestic syndrome and cerebrospinal fluid (CSF) AD biomarkers in iNPH and the CSF tap test response in iNPH patients with amnestic syndrome. Methods: We used the Free and Cued Selective Reminding Test to divide iNPH into amnestic and non-amnestic patients. We compared their clinical, biological, and radiological characteristics and examined the reversibility of gait spatiotemporal parameters and neuropsychological performances after a CSF tap test. Univariate and multiple linear regression models examined the association between memory performance and clinical-biological characteristics. Results: Sixty-two non-amnestic patients (mean age 77.0±7.0 years, 38.7% female) and thirty-eight amnestic patients (mean age 77.0±5.9 years, 36.8% female) presented similar levels of AD biomarkers and clinical-radiological profiles. Global cognition and education levels were lower in the amnestic iNPH group. We found no association between AD biomarkers and memory performances (total tau: ß= -4.50; 95% CI [-11.96;2.96]; p = 0.236; amyloid-ß (1-42): ß= 8.60, 95% CI [-6.30;23.50]; p = 0.240). At baseline, amnestic iNPH patients performed worse on executive functions, attention, and gait speed but improved similarly to the non-amnestic iNPH patients after the tap test. Conclusions: In our clinical sample of iNPH patients, we confirm the lack of specificity of the amnestic profile for predicting AD pathology. Clinicians should not preclude amnestic iNPH patients from undergoing an invasive procedure of CSF derivation.

4.
J Trace Elem Med Biol ; 86: 127511, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39216433

RESUMEN

This study highlights the potential neurotoxic and impaired behavioral effects associated with high fluoride concentrations in drinking water. PURPOSE: Fluoride is known to cause neurotoxicity, evinced by lower I.Q. levels in children from high-fluoride regions as compared to those in low-fluoride regions. Thus, the present study was designed to investigate the molecular mechanism behind the neurological and behavioural changes induced by sodium fluoride in Wistar rats. MATERIAL AND METHODS: A total of 24 female Wistar rats, aged six weeks and weighing approximately 150-220 g, were randomly divided into three groups: Group I (control) received reverse osmosis (R.O.) water, Group II received Sodium Fluoride (NaF) at 10 ppm, and Group III received NaF at 50 ppm in their drinking water for 60 days. The animals underwent behavioural tests including the Forced Swim Test (F.S.T.), Open Field Test (OFT), and Novel Object Recognition Test (N.O.R.T.), to assess any alterations in behaviour. After 60 days, the animals were euthanized, and their blood and brain samples were analysed to evaluate biochemical changes by Western Blot/I.H.C. analysis of B.A.X., Bcl2, LC3B, TLR4, PARP1, p53, Caspase, α-Synuclein, PARKIN, NeuN, KI67, DNM-1, and M.F.N. for assessing molecular pathways for toxicity. RESULTS: Impaired locomotion, memory impairment, and behaviour resembling depression in the animals were evinced by reduced mobility index in the F.S.T., discrimination index in the N.O.R.T., and reduced locomotor activity in the open field test results. Additionally, alterations in antioxidant levels and oxidative stress parameters were observed in the brain. The expression levels of various apoptotic and inflammatory biomarkers (B.A.X., Bcl2, TLR4, PARP1, p53, and Caspase) showed apoptosis in neurons. The confocal studies showed increased expression of inflammatory (α-Synuclein, PARKIN), apoptotic (LC3B, B.A.X., p53, KI67), and mitochondrial dysfunction (NeuN, DNM-1, M.F.N.) markers in fluoride-treated animals. Toxicity was more prominent in 50 ppm of fluoride-treated animals. CONCLUSION: Fluoride showed potent neuronal toxicity as evidenced by alterations of various molecular markers.

5.
Neurotoxicology ; 105: 82-93, 2024 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-39216603

RESUMEN

General anesthetics exposure, particularly prolonged or repeated exposure, is a crucial cause of neurological injuries. Notably, isoflurane (ISO), used in pediatric anesthesia practice, is toxic to the developing brain. The relatively weak antioxidant system at early ages needs antioxidant support to protect the brain against anesthesia. Cerium oxide nanoparticles (CeO2-NPs, nanoceria) are nano-antioxidants and stand out due to their unique surface chemistry, high stability, and biocompatibility. Although CeO2-NPs have been shown to exhibit neuroprotective and cognitive function-facilitating effects, there are no reports on their protective effects against anesthesia-induced neurotoxicity and cognitive impairments. Herein, Wistar albino rat pups were exposed to ISO (1.5 %, 3-h) at postnatal day (P)7+P9+P11, and the protective properties of CeO2-NP pretreatment (0.5 mg/kg, intraperitoneal route) were investigated for the first time. The control group at P7+9+11 received 50 % O2 (3-h) instead of ISO. Exposure to nanoceria one-hour before ISO protected hippocampal neurons of the developing rat brain against apoptosis [determined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) analysis with caspase-3, and immunoblotting with Bax/Bcl2, cleaved caspase-3 and PARP1] oxidative stress, and inflammation [determined by immunoblotting with 4-hydroxynonenal (4HNE), nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TNF-α)]. CeO2-NP pretreatment also reduced ISO-induced learning (at P28-32) and memory (at P33) deficits evaluated by Morris Water Maze. However, memory deficits and thigmotactic behaviors were detected in the agent-control group; elimination of these harmful effects will be possible with dose studies, thus providing evidence supporting safer use. Overall, our findings support pretreatment with nanoceria application as a simple strategy that might be used for pediatric anesthesia practice to protect infants and children from ISO-induced cell death and learning and memory deficits.

6.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38981852

RESUMEN

Previously, we found that dCA1 A1-like polarization of astrocytes contributes a lot to the spatial memory deficit in methamphetamine abstinence mice. However, the underlying mechanism remains unclear, resulting in a lack of promising therapeutic targets. Here, we found that methamphetamine abstinence mice exhibited an increased M1-like microglia and A1-like astrocytes, together with elevated levels of interleukin 1α and tumor necrosis factor α in dCA1. In vitro, the M1-like BV2 microglia cell medium, containing high levels of Interleukin 1α and tumor necrosis factor α, elevated A1-like polarization of astrocytes, which weakened their capacity for glutamate clearance. Locally suppressing dCA1 M1-like microglia activation with minocycline administration attenuated A1-like polarization of astrocytes, ameliorated dCA1 neurotoxicity, and, most importantly, rescued spatial memory in methamphetamine abstinence mice. The effective time window of minocycline treatment on spatial memory is the methamphetamine exposure period, rather than the long-term methamphetamine abstinence.


Asunto(s)
Astrocitos , Trastornos de la Memoria , Metanfetamina , Microglía , Minociclina , Memoria Espacial , Animales , Metanfetamina/toxicidad , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Trastornos de la Memoria/inducido químicamente , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Memoria Espacial/fisiología , Memoria Espacial/efectos de los fármacos , Masculino , Minociclina/farmacología , Ratones Endogámicos C57BL , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Estimulantes del Sistema Nervioso Central/toxicidad
7.
Artículo en Inglés | MEDLINE | ID: mdl-38916190

RESUMEN

OBJECTIVE: Memory difficulties after brain injury are a frequent and concerning outcome, affecting a wide range of daily activities, employment, and social reintegration. Despite the importance of functional memory capacities throughout life, most studies examined the short-term effects of memory interventions in brain-damaged patients who underwent a rehabilitation program. In the present study, we investigated the long-term outcomes and intensity of memory interventions in acquired (traumatic brain injury [TBI] and non-TBI) brain-damaged patients who participated in an intensive cognitive rehabilitation program and either suffered or did not suffer from memory impairments. METHOD: We measured pre-post-treatment memory performance of patiients (N = 24) suffering from memory deficits in four common and validated memory tasks (e.g. ROCFT). We compared them to other acquired brain injury patients treated at the same rehabilitation facility who did not suffer from memory impairments (N = 16). RESULTS: Patients with memory deficits showed long-term improvements in three out of four tasks, while patients without memory deficits showed memory enhancements in only one task. In addition, rehabilitation intensity and type of brain damage predicted the extent of the memory change over time. DISCUSSION: Long-term improvements in objective memory measures can be observed in patients suffering from brain injury. These improvements can be enhanced by intensifying the treatment program. Findings also suggest that these memory improvements are more pronounced in non-TBI than TBI patients. We discuss the implications of these results in designing optimal memory rehabilitation interventions.

8.
J Ethnopharmacol ; 333: 118497, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942156

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional medicinal formulation, Qifu-yin (QFY), has been widely prescribed for Alzheimer's disease (AD) treatment in China, yet the comprehensive mechanisms through which QFY mitigates AD pathology remain to be fully delineated. AIM OF THE STUDY: This study aimed to explore the therapeutic implications of QFY on the synaptic injury and oxidative stress in the hippocampus of APPswe/PS1dE9 (APP/PS1) mice, with a concerted effort to elucidate the molecular mechanisms related to synaptic preservation and memory improvement. MATERIALS AND METHODS: The components of QFY were identified by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The neuroprotective effects of QFY was evaluated using six-month-old male APP/PS1 mice. Subsequent to a 15 days of QFY regimen, spatial memory was assessed utilizing the Morris water maze (MWM) test. Amyloid-beta (Aß) aggregation was detected via immunostaining, while the quantification of Aß1-40 and Aß1-42 was achieved through enzyme-linked immunosorbent assay (ELISA). Transmission electron microscopy (TEM) was used to investigate the synaptic structure and mitochondrial morphology. Golgi staining was applied to examine dendritic spine density. Reactive oxygen species (ROS), 3-nitrotyrosine (3-NT) and 4-hydroxy-nonenal (4-HNE) assays were employed to assess oxidative stress. The expression profiles of Aß metabolism-associated enzymes and the Keap1/Nrf2/ARE signaling pathway were determined by Western blot. RESULTS: A total of 20 principal compounds in QFY were identified. QFY mitigated memory deficits of APP/PS1 mice, including reducing escape latency and search distance and increasing the time and distance spent in the target quadrant. In addition, QFY increased platform crossings of APP/PS1 mice in the probe trial of MWM tests. TEM analysis showed that QFY increased synapse number in the CA1 region of APP/PS1 mice. Further studies indicated that QFY elevated the expression levels of Post synaptic density protein 95 (PSD95) and synaptophysin, and mitigated the loss of dendritic spine density in the hippocampus of APP/PS1 mice. QFY has been shown to ameliorated the structural abnormalities of mitochondria, including mitochondrial dissolution and degradation, up-regulate ATP synthesis and membrane potential in the hippocampus of APP/PS1 mice. Moreover, QFY activated the Keap1/Nrf2/ARE signaling pathway in the hippocampus of APP/PS1 mice, which might contribute to the neuroprotective effects of QFY. CONCLUSION: QFY activates the Keap1/Nrf2/ARE signaling, and protects against synaptic and mitochondrial dysfunction in APP/PS1 mice, proposing a potential alternative therapeutic strategy for AD management.


Asunto(s)
Enfermedad de Alzheimer , Medicamentos Herbarios Chinos , Fármacos Neuroprotectores , Estrés Oxidativo , Transducción de Señal , Animales , Masculino , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Elementos de Respuesta Antioxidante/efectos de los fármacos , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones Transgénicos , Fármacos Neuroprotectores/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Presenilina-1/genética , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-38778607

RESUMEN

OBJECTIVE: The current study was structured to evaluate the neuroprotective properties of andrographolide in the context of aluminum chloride (AlCl3)-induced neurotoxicity, along with its concurrent impact on spatial memory impairment in Wistar rats. The present investigation elucidated the biochemical and neurobehavioral outcomes of andrographolide treatment in rats, emphasizing the areas of the brain associated with memory, i.e., the cortex and the hippocampus. MATERIALS AND METHODS: Prolonged dosing of AlCl3 (7 mg/kg) intraperitoneally for 10 days exhibited a substantial enhancement in the values of oxidative stress markers associated with a reduction in the concentrations of antioxidant enzymes within the brain. The selection of andrographolide doses (1, 2, and 3 mg/kg) was grounded in precedent safety and toxicity investigations, with subsequent oral administration. The evaluation of behavioral parameters, specifically spatial memory, was conducted through the utilization of the Radial Eight Arm Maze (RAM) test. On the concluding day of the experiment, the assessment encompassed biochemical parameter analysis and histological scrutiny of the brain tissue. RESULTS: The oral dosing of andrographolide at 1, 2, and 3 mg/kg, in conjunction with AlCl3, effectively mitigated the behavioral deficits induced by aluminum exposure. Notably, a significant suppression of NFκB was uncovered in the rats treated with andrographolide. Furthermore, histopathological examinations of the cortex and hippocampus of rat brains provided corroborative evidence, demonstrating that andrographolide substantially alleviated the toxic impact of AlCl3, thereby maintaining the typical histoarchitectural arrangement of these regions. CONCLUSION: These findings collectively suggest that andrographolide holds the potential to counteract memory impairment instigated by aluminum toxicity, accomplished through the modulation of NFκB activity and the amelioration of the adverse consequences of AlCl3 exposure.

10.
Medicina (Kaunas) ; 60(5)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38792912

RESUMEN

Background and Objectives: No comparative study has evaluated the inter-method agreement and reliability between Heuron AD and other clinically available brain volumetric software packages. Hence, we aimed to investigate the inter-method agreement and reliability of three clinically available brain volumetric software packages: FreeSurfer (FS), NeuroQuant® (NQ), and Heuron AD (HAD). Materials and Methods: In this study, we retrospectively included 78 patients who underwent conventional three-dimensional (3D) T1-weighed imaging (T1WI) to evaluate their memory impairment, including 21 with normal objective cognitive function, 24 with mild cognitive impairment, and 33 with Alzheimer's disease (AD). All 3D T1WI scans were analyzed using three different volumetric software packages. Repeated-measures analysis of variance, intraclass correlation coefficient, effect size measurements, and Bland-Altman analysis were used to evaluate the inter-method agreement and reliability. Results: The measured volumes demonstrated substantial to almost perfect agreement for most brain regions bilaterally, except for the bilateral globi pallidi. However, the volumes measured using the three software packages showed significant mean differences for most brain regions, with consistent systematic biases and wide limits of agreement in the Bland-Altman analyses. The pallidum showed the largest effect size in the comparisons between NQ and FS (5.20-6.93) and between NQ and HAD (2.01-6.17), while the cortical gray matter showed the largest effect size in the comparisons between FS and HAD (0.79-1.91). These differences and variations between the software packages were also observed in the subset analyses of 45 patients without AD and 33 patients with AD. Conclusions: Despite their favorable reliability, the software-based brain volume measurements showed significant differences and systematic biases in most regions. Thus, these volumetric measurements should be interpreted based on the type of volumetric software used, particularly for smaller structures. Moreover, users should consider the replaceability-related limitations when using these packages in real-world practice.


Asunto(s)
Encéfalo , Programas Informáticos , Humanos , Masculino , Femenino , Reproducibilidad de los Resultados , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico , Imagen por Resonancia Magnética/métodos , Anciano de 80 o más Años
11.
J Neurosci Rural Pract ; 15(2): 182-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38746499

RESUMEN

Memory deficits are observed across psychiatric disorders ranging from the prodrome of psychosis to common mental disorders such as anxiety, depression, and dissociative disorders. Memory deficits among patients recovering from psychiatric disorders could be directly related to the primary illness or secondary to the adverse effect of a treatment such as Electroconvulsive Therapy (ECT). The trouble in the meaningful integration of working-memory and episodic memory is the most commonly affected domain that requires routine assessments. An update on the recent trends of methods of assessment of memory deficits is the first step towards understanding and correcting these deficits to target optimum recovery. A systematic literature search was conducted from October 2018 to October 2022 to review the recent methods of assessment of memory deficits in psychiatric disorders. The definition of 'Memory deficit' was operationalized as 'selective processes of memory, commonly required for activities of daily living, and affected among psychiatric disorders resulting in subjective distress and dysfunction'. We included 110 studies, most of them being conducted in western countries on patients with schizophrenia. Other disorders included dementia and mild cognitive impairment. Brief Assessment of Cognition in Schizophrenia, Cambridge Automated Neuropsychological Test Battery, California Verbal Learning Test, Trail Making Test Part A and B, Rey Auditory Verbal Learning Test, Wechsler Memory Scale, Wechsler Adults Intelligence Scale-IV were the most common neuropsychological assessments used. Mini-Mental State Examination and Montreal Cognitive Assessment were the most common bedside assessment tools used while Squire Subjective Memory Questionnaire was commonly used to measure ECT-related memory deficits. The review highlights the recent developments in the field of assessment of memory deficits in psychiatric disorders. Findings recommend and emphasize routine assessment of memory deficits among psychiatric disorders in developing countries especially severe mental illnesses. It remains interesting to see the role of standardized assessments in diagnostic systems given more than a decade of research on memory deficits in psychiatric disorders.

12.
J Neuroinflammation ; 21(1): 89, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600510

RESUMEN

BACKGROUND: Neuropsychiatric lupus (NPSLE) describes the cognitive, memory, and affective emotional burdens faced by many lupus patients. While NPSLE's pathogenesis has not been fully elucidated, clinical imaging studies and cerebrospinal fluid (CSF) findings, namely elevated interleukin-6 (IL-6) levels, point to ongoing neuroinflammation in affected patients. Not only linked to systemic autoimmunity, IL-6 can also activate neurotoxic glial cells the brain. A prior pre-clinical study demonstrated that IL-6 can acutely induce a loss of sucrose preference; the present study sought to assess the necessity of chronic IL-6 exposure in the NPSLE-like disease of MRL/lpr lupus mice. METHODS: We quantified 1308 proteins in individual serum or pooled CSF samples from MRL/lpr and control MRL/mpj mice using protein microarrays. Serum IL-6 levels were plotted against characteristic NPSLE neurobehavioral deficits. Next, IL-6 knockout MRL/lpr (IL-6 KO; n = 15) and IL-6 wildtype MRL/lpr mice (IL-6 WT; n = 15) underwent behavioral testing, focusing on murine correlates of learning and memory deficits, depression, and anxiety. Using qPCR, we quantified the expression of inflammatory genes in the cortex and hippocampus of MRL/lpr IL-6 KO and WT mice. Immunofluorescent staining was performed to quantify numbers of microglia (Iba1 +) and astrocytes (GFAP +) in multiple cortical regions, the hippocampus, and the amygdala. RESULTS: MRL/lpr CSF analyses revealed increases in IL-17, MCP-1, TNF-α, and IL-6 (a priori p-value < 0.1). Serum levels of IL-6 correlated with learning and memory performance (R2 = 0.58; p = 0.03), but not motivated behavior, in MRL/lpr mice. Compared to MRL/lpr IL-6 WT, IL-6 KO mice exhibited improved novelty preference on object placement (45.4% vs 60.2%, p < 0.0001) and object recognition (48.9% vs 67.9%, p = 0.002) but equivalent performance in tests for anxiety-like disease and depression-like behavior. IL-6 KO mice displayed decreased cortical expression of aif1 (microglia; p = 0.049) and gfap (astrocytes; p = 0.044). Correspondingly, IL-6 KO mice exhibited decreased density of GFAP + cells compared to IL-6 WT in the entorhinal cortex (89 vs 148 cells/mm2, p = 0.037), an area vital to memory. CONCLUSIONS: The inflammatory composition of MRL/lpr CSF resembles that of human NPSLE patients. Increased in the CNS, IL-6 is necessary to the development of learning and memory deficits in the MRL/lpr model of NPSLE. Furthermore, the stimulation of entorhinal astrocytosis appears to be a key mechanism by which IL-6 promotes these behavioral deficits.


Asunto(s)
Interleucina-6 , Lupus Eritematoso Sistémico , Vasculitis por Lupus del Sistema Nervioso Central , Animales , Ratones , Depresión , Gliosis , Interleucina-6/genética , Trastornos de la Memoria/genética , Ratones Endogámicos MRL lpr
13.
CNS Neurosci Ther ; 30(4): e14727, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38644593

RESUMEN

AIMS: Ventral pathway circuits are constituted by the interconnected brain areas that are distributed throughout the brain. These brain circuits are primarily involved in processing of object related information in brain. However, their role in object recognition memory (ORM) enhancement remains unknown. Here, we have studied on the implication of these circuits in ORM enhancement and in reversal of ORM deficit in aging. METHODS: The brain areas interconnected to ventral pathway circuits in rat brain were activated by an expression of a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414). RGS14414 is an ORM enhancer and therefore used here as a gain-in-function tool. ORM test and immunohistochemistry, lesions, neuronal arborization, and knockdown studies were performed to uncover the novel function of ventral pathway circuits. RESULTS: An activation of each of the brain areas interconnected to ventral pathway circuits individually induced enhancement in ORM; however, same treatment in brain areas not interconnected to ventral pathway circuits produced no effect. Further study in perirhinal cortex (PRh), area V2 of visual cortex and frontal cortex (FrC), which are brain areas that have been shown to be involved in ORM and are interconnected to ventral pathway circuits, revealed that ORM enhancement seen after the activation of any one of the three brain areas was unaffected by the lesions in other two brain areas either individually in each area or even concurrently in both areas. This ORM enhancement in all three brain areas was associated to increase in structural plasticity of pyramidal neurons where more than 2-fold higher dendritic spines were observed. Additionally, we found that an activation of either PRh, area V2, or FrC not only was adequate but also was sufficient for the reversal of ORM deficit in aging rats, and the blockade of RGS14414 activity led to loss in increase in dendritic spine density and failure in reversal of ORM deficit. CONCLUSIONS: These results suggest that brain areas interconnected to ventral pathway circuits facilitate ORM enhancement by an increase in synaptic connectivity between the local brain area circuits and the passing by ventral pathway circuits and an upregulation in activity of ventral pathway circuits. In addition, the finding of the reversal of ORM deficit through activation of an interconnected brain area might serve as a platform for developing not only therapy against memory deficits but also strategies for other brain diseases in which neuronal circuits are compromised.


Asunto(s)
Encéfalo , Trastornos de la Memoria , Proteínas RGS , Reconocimiento en Psicología , Animales , Reconocimiento en Psicología/fisiología , Masculino , Ratas , Proteínas RGS/metabolismo , Proteínas RGS/genética , Vías Nerviosas , Envejecimiento/fisiología
14.
Front Neurol ; 15: 1369793, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348166

RESUMEN

[This corrects the article DOI: 10.3389/fneur.2021.681141.].

15.
J Health Psychol ; 29(9): 963-975, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38230537

RESUMEN

This study aimed to examine the relationships between dietary patterns and perceived stress with memory deficits in 291 patients with heart failure aged 45-85 years. A total of 142 (48.8%) patients reported memory deficit. Three dietary patterns were identified by K-means clustering: nut-fruit-dairy, meat-processed, and traditional (high intake of cereals) diets. Compared to the traditional diet, the nut-fruit-dairy diet and meat-processed diet were associated with lower levels of deficits in short-term memory, delayed memory, and overall memory. What's more, perceived stress was positively associated with deficits in short-term memory and overall memory, but the association was only found in patients adhering to the traditional diet using stratified analyses. Our findings suggest that adhering to a healthy diet may be conducive to improving deficits in short-term memory, delayed memory, and overall memory, while also buffering the adverse association between perceived stress and deficits in short-term memory and overall memory.


Asunto(s)
Patrones Dietéticos , Insuficiencia Cardíaca , Trastornos de la Memoria , Estrés Psicológico , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Insuficiencia Cardíaca/psicología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/psicología , Estrés Psicológico/psicología
16.
Life Sci Space Res (Amst) ; 40: 135-142, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245338

RESUMEN

Long-term spaceflight composite stress (LSCS) can cause adverse effects on human systems, especially the central nervous system. This study aimed to identify the underlying mechanisms of the protective effect of Baoyuan Jieyu Formula (BYJYF) on LSCS-induced depressive-like behavior and memory deficits. In this experiment, we simulated the real space station environment for a period of 42 days. Novel object recognition test and forced swimming test were used to assess the memory abilities and depression level of rats as well as test the therapeutic effects of BYJYF treatment. Results showed LSCS could induce depressive-like behavior and damage short-term memory in the behavioral level, and BYJYF could enhance the ability to resist LSCS. Meanwhile, LSCS increased the levels of CRH, ACTH, and CORT and induced HPA axis hyperactivity, which can be relieved by BYJYF. Further, we predicted and verified the potential signaling pathways of BYJYF. Results showed BYJYF may reverse the inhibition of LSCS on Ca2+ channel currents. And we also found that BYJYF may exert its medicinal effects via four main active components including saikosaponin A. Overall, BYJYF exhibited protective effects against LSCS-induced depressive-like behavior and memory deficits, which might be ascribed to the regulation of Ca2+ channel currents and four active components. And it might become a promising candidate medicine for diseases induced by LSCS.


Asunto(s)
Depresión , Sistema Hipotálamo-Hipofisario , Humanos , Ratas , Animales , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/etiología , Trastornos de la Memoria/prevención & control , Memoria a Corto Plazo/fisiología
17.
Molecules ; 29(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276581

RESUMEN

Aging is a well-known factor that accelerates brain deterioration, resulting in impaired learning and memory functions. This current study evaluated the potential of an extract of Alternanthera philoxeroides (AP), an edible flavonoid-rich plant, to ameliorate D-galactose-induced brain aging in male mice. Chronic administration of D-galactose (150 mg/kg/day) in mice mimicked the characteristics of aging by accelerating senescence via downregulation of the following telomere-regulating factors: mouse telomerase reverse transcriptase (mTERT) and mouse telomeric repeat-binding factors 1 (mTRF1) and 2 (mTRF2). D-galactose also decreased the activities of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), while increasing expression of neuroinflammatory cytokines in the frontal cortex and hippocampus. Daily treatment of D-galactose-induced aging mice with AP at 250 and 500 mg/kg/day or vitamin E (100 mg/kg/day) significantly increased the activities of SOD and CAT, as well as expression of mTERT, mTRF1, and mTRF2, which are involved in telomere stabilization, but decreased the levels of proinflammatory cytokines IL-1ß, IL-6, and TNF-α. In the behavioral portion of the study, AP improved aging-related cognitive deficits in short-term memory as shown by the Y-maze task and the novel object recognition test (NORT) and long-term memory as shown by the Morris water maze test (MWMT). The flavones kaempferol-O-glucoside (1), quercetin (2), alternanthin B (3), demethyltorosaflavone D (4), and chrysoeriol-7-O-rhamnoside (5), which could be responsible for the observed effects of AP in the D-galactose-induced aging mice, were identified by HPLC analysis.


Asunto(s)
Antioxidantes , Galactosa , Ratones , Animales , Antioxidantes/metabolismo , Galactosa/metabolismo , Acortamiento del Telómero , Enfermedades Neuroinflamatorias , Aprendizaje por Laberinto , Envejecimiento , Encéfalo/metabolismo , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/metabolismo , Superóxido Dismutasa/metabolismo , Citocinas/metabolismo , Estrés Oxidativo
18.
Mol Neurobiol ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38010560

RESUMEN

Memory problems are often the first signs of cognitive impairment related to Alzheimer's disease (AD), and stem cells and stem cell-derived exosomes (EXOs) have been studied for their therapeutic potential to improve the disease signs. While many studies have shown the anti-inflammatory and immunomodulatory effects of stem cells and exosomes on improving memory in different AD models, there is still insufficient data to determine how they modulate neural plasticity to enhance spatial memory and learning ability. Therefore, we conducted a study to investigate the effects of exosomes derived from 3D-cultured human Unrestricted Somatic Stem Cells (hUSSCs) on spatial memory and neuroplasticity markers in a sporadic rat model of AD. Using male Wistar rats induced by intracerebral ventricle injection of streptozotocin, we demonstrated that intranasal administration of hUSSC-derived exosomes could decrease Aß accumulation and improve learning and memory in the Morris water maze test. We also observed an increase in the expression of pre-synaptic and post-synaptic molecules involved in neuronal plasticity, including NMDAR1, integrin ß1, synaptophysin, pPKCα, and GAP-43, in the hippocampus. Our findings suggest that intranasal administration of exosomes can ameliorate spatial learning and memory deficits in rats, at least in part, by increasing the expression of neuroplasticity proteins. These results may encourage researchers to further investigate the molecular pathways involved in memory improvement after stem cell and exosome therapy, with the goal of increasing the efficacy and safety of exosome-based treatments for AD.

19.
Artículo en Inglés | MEDLINE | ID: mdl-37847784

RESUMEN

Retrieval practice can reduce associative memory deficits for older adults but they underutilize this potent learning tool during self-regulated learning. The current experiment investigated whether teaching older adults to use retrieval practice more can improve their self-regulated learning. Younger and older adults made decisions about when to study, how often to engage in retrieval practice, and when to stop learning a list of medication-side effect pairs. Some younger and older adults received instructions before learning that emphasized the mnemonic benefits of retrieval practice over restudying material and described how to schedule retrieval practice to learn to a goal criterion level. This minimal intervention was effective for improving both younger and older adults' associative memory. These data indicate that a simple strategy for improving older adults self-regulated learning is to provide them with instructions that teach them how to use criterion learning to schedule their retrieval practice for to-be learned material.

20.
Metab Brain Dis ; 38(8): 2603-2613, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37906392

RESUMEN

Hypothyroidism causes learning and memory impairment. Considering the neuroprotective properties of thiamine (Vitamin B1), this study was conducted to investigate the effects of thiamine on acetylcholinesterase (AChE) activity, oxidative damage, and memory deficits in hypothyroid rats.In this study, 50 rats (21 days old) were randomly divided into 5 groups and treated with propylthiouracil (0.05% in drinking water) and thiamine (50, 100, and 200 mg/kg, oral) for 7 weeks. Following that, Morris water maze (MWM) and passive avoidance (PA) tests were performed. Finally, oxidative stress indicators and AChE activity were measured in brain tissue.Treatment of hypothyroid rats with thiamine, especially at 100 and 200 mg/kg, alleviated the ability to remember the location of the platform as reflected by less time spent and distance to reach the platform, during the MWM test (P < 0.05 to P < 0.001). In the PA test, the latency to enter the dark chamber and light stay time were increased in rats who received thiamine compared to the hypothyroid group (P < 0.05 to P < 0.001). In addition, thiamine increased the levels of total thiol groups and superoxide dismutase while decreasing the levels of malondialdehyde and AChE.Our results suggest that thiamine supplementation could effectively improve memory loss in a rat model of hypothyroidism. The positive effects of thiamin on the learning and memory of hypothyroid rats may be due to amelioration of redox hemostasis and cholinergic disturbance.


Asunto(s)
Acetilcolinesterasa , Hipotiroidismo , Ratas , Animales , Acetilcolinesterasa/metabolismo , Ratas Wistar , Hipocampo/metabolismo , Estrés Oxidativo , Trastornos de la Memoria/tratamiento farmacológico , Hipotiroidismo/inducido químicamente , Hipotiroidismo/complicaciones , Hipotiroidismo/tratamiento farmacológico , Tiamina/farmacología , Tiamina/uso terapéutico , Aprendizaje por Laberinto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA