Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.817
Filtrar
1.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095155

RESUMEN

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Dióxido de Carbono/química , Adsorción , Estructuras Metalorgánicas/química , Contaminantes Atmosféricos/química , Carbón Orgánico/química
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124989, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39154403

RESUMEN

A newly developed 2H5MA-MOF sensor by covalently linking NH2-MIL-53(Al) with 2'-Hydroxy-5'-methylacetophenon, designed for highly sensitive and selective detection of Cd2+ ions using fluorometric methods. Detailed structural and morphological analyses confirmed the sensor's unique properties. It demonstrated an impressive linear detection range from 0 to 2 ppm, with an exceptionally low detection limit of 5.77 × 10-2 ppm and a quantification limit of 1.75 × 10-1 ppm, indicating its high sensitivity (R2 = 0.9996). The sensor also responded quickly, detecting Cd2+ within just 30 s at pH 4. We successfully tested it on real samples of tap water and human blood plasma, achieving recovery rates between 96 % and 104 %. The accuracy of these findings was further validated by comparison with ICP-OES. Overall, the 2H5MA-MOF sensor shows great potential for fast, ultra-sensitive, and reliable detection of Cd2+ ions, making it a promising tool for environmental and biomedical applications.


Asunto(s)
Cadmio , Agua Potable , Límite de Detección , Estructuras Metalorgánicas , Cadmio/sangre , Cadmio/análisis , Humanos , Estructuras Metalorgánicas/química , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/sangre , Iones/sangre , Concentración de Iones de Hidrógeno
3.
J Hazard Mater ; 480: 136036, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39366050

RESUMEN

Reducing nitrate (NO3-) in an aqueous solution to ammonia under ambient conditions can provide a green and sustainable NH3-synthesis technology and mitigate global energy and pollution issues. In this work, a CuNi0.75-1,3,5-benzenetricarboxylic acid/nickel foam (CuNi0.75-MOF/NF) catalyst grown in situ was prepared via a one-pot method as an efficient cathode material for electrocatalytic nitrate reduction reaction (NO3RR). The CuNi0.75-MOF/NF catalyst exhibited excellent electrocatalytic NO3RR performance at -1.0 V versus a reversible hydrogen electrode, achieving an outstanding faradaic efficiency of 95.88 % and an NH3 yield of 51.78 mg h-1 cm-2. The 15N isotope labeling experiments confirmed that the sole source of N in the electrocatalytic NO3RR was the NO3- in the electrolyte. The reaction pathway for the electrocatalytic NO3RR was derived by in situ Fourier transform infrared spectroscopy and in situ differential electrochemical mass spectrometry. Density functional theory calculations revealed that the Ni element in the CuNi0.75-MOF/NF catalyst had excellent O-H activation ability and strong *H adsorption capacity. These *H species were transferred from the Ni sites to the *NO adsorption intermediates located on the Cu sites, providing a continuous supply of *H to Cu, thereby promoting the formation of *NOH intermediates and enhancing the hydrogenation process of the electrocatalytic NO3RR.

4.
Int J Biol Macromol ; : 136286, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368584

RESUMEN

To address the growing problem of dye wastewater pollution, a novel MOFs adsorbent calcium alginate/polyvinyl alcohol@UiO-66 was developed using environmentally friendly polymers, sodium alginate and polyvinyl alcohol creating gel spheres with a double-network structure through cross-linking. UiO-66 metal-organic frameworks are then grown onto the gel spheres, resulting in the final CA/PVA@UiO-66 adsorbent. This adsorbent boasts a high surface area (17.4 m2/g) and a mesoporous-nested microporous structure. It effectively removes MB from water, the actual maximum adsorption capacity was measured at 275.8 mg/g, which surpasses most existing adsorbents. Remarkably, the adsorbent retains 93.9 % of its initial capacity even after 10 reuse cycles. The adsorption process adhered to the Redlich-Peterson model and the PFO model. The N2-Sorption isotherm, actual Methylene blue (MB) adsorption experiments, and model analysis further suggest that the adsorption process is a complex heterogeneous diffusion process involving simultaneous chemical and physical adsorption. Additionally, the adsorption process is endothermic, indicating that it can occur spontaneously at 298 K. Increasing the temperature promotes the forward progress of the adsorption reaction, thereby enhancing the adsorption capacity. The gel adsorbent exhibited excellent dye wastewater purification capabilities, coupled with commendable reusability.

5.
Top Curr Chem (Cham) ; 382(4): 30, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39369352

RESUMEN

In this article, we examine the recent uses of magnetic metal-organic frameworks (MMOFs). MMOFs can be used in various fields such as water purification, laboratory, food, environment, etc. Their materials can be composed of different metals and ligands, each of which has its own properties. Also, the presence of a magnetic property in these absorbents adds good features such as easy separation, faster absorption, and better interaction with other particles, which improves their application and performance. In recent years, various types of these compounds have been made, and, in this article, while classifying them, we will discuss the structure and application of some MMOFs.


Asunto(s)
Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Fenómenos Magnéticos , Magnetismo
6.
Mikrochim Acta ; 191(11): 646, 2024 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367246

RESUMEN

A reusable fluorescent nanoprobe was developed using DNA-functionalized metal-organic framework (MOF) for ratiometric detection of Hg2+. We utilized a zirconium-based MOF (UiO-66) to encapsulate tris(bipyridine) ruthenium(II) chloride (Ru(bpy)32+), resulting in Ru(bpy)32+@UiO-66 (RU) with red fluorescence. The unsaturated metal sites in UiO-66 facilitate the attachment of thymine-rich single-strand DNA (T-ssDNA) through Zr-O-P bond, producing T-ssDNA-functionalized RU complex (RUT). The T-ssDNA selectively binds to Hg2+, forming stable T-Hg2+-T base pairs and folding into double-stranded DNA, which permits the intercalation of SYBR Green I (SGI) and activates its green fluorescence. In the presence of Hg2+, SGI fluorescence increases in a dose-dependent manner, while Ru(bpy)32+ fluorescence remains constant. This fluorescence contrast enables RUT to serve as an effective ratiometric nanoprobe for Hg2+ detection, with a detection limit of 3.37 nM. Additionally, RUT demonstrates exceptional reusability due to the ability of cysteine to remove Hg2+, given its stronger affinity for thiol groups. The RUT was successfully applied to detect Hg2+ in real water samples. This work advances the development of ratiometric fluorescence nanoprobe based on DNA-functionalized MOFs.


Asunto(s)
Colorantes Fluorescentes , Límite de Detección , Mercurio , Estructuras Metalorgánicas , Espectrometría de Fluorescencia , Mercurio/análisis , Mercurio/química , Colorantes Fluorescentes/química , Estructuras Metalorgánicas/química , Espectrometría de Fluorescencia/métodos , Contaminantes Químicos del Agua/análisis , ADN/química , Quinolinas/química , Benzotiazoles/química , ADN de Cadena Simple/química , Circonio/química , Diaminas/química , Ácidos Ftálicos
7.
J Nanobiotechnology ; 22(1): 594, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350179

RESUMEN

Oral ulcers are a common oral mucosal disease that seriously affect the quality of life. Traditional drug treatments have shown unsatisfactory efficacy and potential adverse reactions. In this study, curcumin-loaded multifunctional magnesium metal-organic framework-embedded hyaluronic acid-soluble microneedles patches were developed to optimize treatment strategies for oral ulcers. This microneedles patch achieves efficient release of curcumin and Mg2+ in the ulcer through precisely targeted delivery and controllable release mechanism, significantly regulates inflammation, promotes cell migration and angiogenesis, and accelerates the ulcer healing process. At the same time, the synergistic effect of curcumin and gallic acid effectively alleviated oxidative stress, while the backplate ε-poly-L-lysine and needle tip Mg2+ jointly constructed an antibacterial barrier to effectively inhibit pathogens. Verification using an oral ulcer rat model showed that the microneedles patch exhibited excellent therapeutic effects. This not only opens up a new avenue for clinical oral treatment but also marks a breakthrough in nanobiomaterials science and drug delivery technology and heralds a broad prospect in the field of oral ulcer treatment in the future.


Asunto(s)
Curcumina , Sistemas de Liberación de Medicamentos , Magnesio , Estructuras Metalorgánicas , Agujas , Úlceras Bucales , Cicatrización de Heridas , Curcumina/farmacología , Curcumina/química , Curcumina/administración & dosificación , Animales , Estructuras Metalorgánicas/química , Úlceras Bucales/tratamiento farmacológico , Ratas , Cicatrización de Heridas/efectos de los fármacos , Magnesio/química , Magnesio/farmacología , Sistemas de Liberación de Medicamentos/métodos , Ratas Sprague-Dawley , Masculino , Humanos , Ácido Hialurónico/química , Estrés Oxidativo/efectos de los fármacos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125226, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39362042

RESUMEN

Flunitrazepam, as an emerging new psychoactive substance classified as a third-generation drug that is more harmful and camouflaged, is gradually proliferating globally. Maliciously used as a criminal tool in homicide and rape cases, it has already caused serious harm to public safety and social stability. Owing to its special molecular structure, low concentration level and rapid metabolic process in the human body, accurate detection of flunitrazepam remains a major challenge, especially for real sample and on-site detection. In this paper, a lanthanide MOF (Eu-MOF) based on bi-ligand was constructed as a luminescence probe and used for the first time to detect trace amounts of flunitrazepam. The 'antenna effect' promotes strong luminescence of Eu-MOF, while the lower LUMO orbital energy level of flunitrazepam allows it to accept electrons from the electron donor leading to quenching of Eu-MOF luminescence. The probe has a high sensitivity and can detect flunitrazepam in the range of 0-800 µM with a detection limit as low as 73 nM. Moreover, flunitrazepam was detected in urine from real samples as well as in a variety of beverages to further validate its accuracy and practicality. The reported Eu-MOF represents one of the pioneering luminescence probes for the detection of flunitrazepam, which offers great promise for the on-site or on-line analysis of flunitrazepam.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39364809

RESUMEN

Self-driven photodetectors (PDs) hold significant potential for the development of new information devices, which boast the advantages of ultralow power consumption and straightforward fabrication. In this study, we have proposed and demonstrated a self-driven ultraviolet PD utilizing gallium nitride/metal-organic framework (GaN/MOF) heterojunction nanowires successfully. By introducing Gd-ETTC MOFs on the surface of GaN nanowires, the photocurrent and responsivity of the device can be improved by approximately 75% under 310 nm illumination. Furthermore, they can also be effectively enhanced under visible light illumination. Owing to the appropriate energy level alignment, Gd-ETTC MOFs can serve as both a light harvester and a hole conductor, facilitating the efficient absorption, separation, and transmission of photogenerated carriers. It has been observed that due to reduced interface resistance, MOFs can enhance the charge transport through the acceleration of charge transfer. Furthermore, the PD equipped with MOFs is capable of continuous operation for 30,000 s, a feat attributable to the exceptional stability of both GaN nanowires and Gd-ETTC MOFs. By implementation of the humanoid robot systems, the control commands from the self-driven PD can drive the humanoid robot to execute different actions. The PD-equipped autonomous feedback system of a humanoid robot enables a seamless integration of light perception with intelligent robotic actions. Therefore, the design and demonstration of GaN/MOF nanowires hold significant reference value for further enhancing the performance of PDs and broadening their applications in ultralow-power artificial intelligence systems, humanoid intelligent robots, etc.

10.
Angew Chem Int Ed Engl ; : e202417658, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354679

RESUMEN

Metal-organic frameworks (MOFs) have been widely studied due to their versatile applications and easily tunable structures. However, heteroatom-metal coordination dominates the MOFs community, and the rational synthesis of carbon-metal coordination-based MOFs remains a significant challenge. Herein, two-dimensional (2D) MOFs based on silver-carbon linkages are synthesized through the coordination between silver(I) salt and isocyanide-based monomers at ambient condition. The as-synthesized 2D MOFs possess well-defined crystalline structures and a staggered AB stacking mode. Most interestingly, these 2D MOFs, without π-π stacking between layers, exhibit narrow bandgaps down to 1.42 eV. As electrochemical catalysts for converting CO2 to CO, such 2D MOFs demonstrate Faradaic efficiency over 92%. Surprisingly, the CO2 reduction catalyzed by these MOFs indicates favorable adsorption of CO2 and *COOH on the active carbon sites of the isocyanide groups rather than on silver sites. This is attributed to the critical σ donor role of isocyanides and the corresponding ligand-to-metal charge-transfer effect. This work not only paves the way toward a new family of MOFs based on metal-isocyanide coordination but also offers a rare platform for understanding the electrocatalysis processes on strongly polarized carbon species.

11.
J Colloid Interface Sci ; 679(Pt A): 119-131, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39357222

RESUMEN

Rechargeable zinc-air batteries (ZABs) are viewed as a promising solution for electric vehicles due to their potential to provide a clean, cost-effective, and sustainable energy storage system for the next generation. Nevertheless, sluggish kinetics of the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR) at the air electrode, and low power density are significant challenges that hinder the practical application of ZABs. The key to resolving the development of ZABs is developing an affordable, efficient, and stable catalyst with bifunctional catalytic. In this study, we present a series of bifunctional catalysts composed of Co/Zn nanoparticles uniformly embedded in nitrogen-doped carbon (NC) and multi-walled carbon nanotubes (MWCNTs) denoted as Co/Zn@NC@MWCNTs. The incorporation of MWCNTs using a facile and non-toxic method significantly decreased the overpotential of the OER from 570 to 430 mV at 10 mA cm-2 and the peak power density from 226 to 263 mW cm-2. Besides, the electrochemical surface area measurements and electrochemical impedance spectroscopy indicate that the three-dimensional (3D) network structure of MWCNTs facilitates mass transport for ORR and reduces electron transfer resistance during OER, leading to a small potential gap of 0.86 V between OER and ORR, high electron transfer number (3.92-3.98) of the ORR, and lowest Tafel slope (47.8 mV dec-1) of the OER in aqueous ZABs. In addition, in-situ Raman spectroscopy revealed a notable decrease in the ID/IG ratio for the optimally configured Co/Zn@NC@MWCNTs (75:25), indicating a reduction in defect density and improved structural ordering during the electrochemical process, which directly contributes to enhanced ORR activity. Hence, this study provides an excellent strategy for constructing a bifunctional catalyst material with a 3D MWCNTs conductive network for the development of advanced ZAB systems for sustainable energy applications.

12.
Biomed Mater ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39357776

RESUMEN

Chemodynamic therapy (CDT) is a new method for cancer treatment that produces highly toxic reactive oxygen species (ROS) in the tumor microenvironment to induce cancer cell apoptosis or necrosis. However, the therapeutic effect of CDT is often hindered by intracellular H2O2 deficiency and the activity of antioxidants such as glutathione. In this study, a nano-catalyst HCM was developed using a self-assembled Cu/Mn-doped metal-organic framework, and its surface was modified with hyaluronic acid to construct a tumor-targeting CDT therapeutic agent with improved the efficiency and specificity. Three substances HHTP (2, 3, 6, 7, 10, 11- hexahydroxybenzophenanthrene), Cu2+, and Mn2+) were shown to be decomposed and released under weakly acidic conditions in tumor cells. HHTP produces exogenous H2O2 in the presence of oxygen to increase the H2O2 content in tumors, Cu2+ reduces glutathione content and generates Cu+ in the tumor, and Cu+ and Mn2+ catalyze H2O2 to produce ∙OH in a Fenton-like reaction. Together, these three factors change the tumor microenvironment and improve the efficiency of ROS production. HCM showed selective and efficient cytotoxicity to cancer cells, and could effectively inhibit tumor growth in vivo, indicating a good CDT effect.

13.
Luminescence ; 39(10): e4916, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39359211

RESUMEN

In this paper, a highly sensitive method for sulfur ion (S2-) detection was developed based on a four-color fluorescence probe constructed from copper-containing metal-organic framework (CuBDC) and four dye-labeled single-strand DNA (ssDNA). In the absence of S2-, dye-labeled ssDNA can be adsorbed on the surface of CuBDC, and the dyes are close to copper ion on the CuBDC surface, their fluorescence is quenched by copper ion, and their fluorescence signals are weak. In the presence of S2- in the system, S2- reacts with copper ion in CuBDC to form CuS, which has a more stable structure than complex CuBDC, resulting in the decomposition of CuBDC. In this case, dye-labeled ssDNA are detached from the CuBDC surface and dissolved in the solution, and the fluorescence of the dyes is restored. Under the optimized conditions, there is a good linear relationship between the total fluorescence intensity of four dyes and the concentration of S2- in the range of 2 × 10-9 to 5 × 10-8 mol/L; the detection limit is 2.2 × 10-10 mol/L. The method has a good selectivity and accuracy, and it can be applied to the analysis and detection of S2- in actual water samples.


Asunto(s)
Cobre , Colorantes Fluorescentes , Estructuras Metalorgánicas , Espectrometría de Fluorescencia , Azufre , Cobre/química , Cobre/análisis , Azufre/química , Estructuras Metalorgánicas/química , Colorantes Fluorescentes/química , Contaminantes Químicos del Agua/análisis , Fluorescencia , ADN de Cadena Simple/química , Límite de Detección , Agua/química , Iones/análisis , Iones/química , Color , Estructura Molecular
14.
Adv Healthc Mater ; : e2402376, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39373278

RESUMEN

Overproduction of reactive oxygen species (ROS) during reperfusion in ischemic stroke (IS) severely impedes neuronal survival and results in high rates of morbidity and disability. The effective blood-brain barrier (BBB) penetration and brain delivery of antioxidative agents remain the biggest challenge in treating ischemic reperfusion-induced cerebrovascular and neural injury. In this study, a metal-organic framework (MOF) nanozyme (MIL-101-NH2(Fe/Cu)) with ROS scavenging activities to encapsulate neuroprotective agent rapamycin is fabricated and decorating the exterior with BBB-targeting protein ligands (transferrin), thereby realizing enhanced drug retention and controlled release within ischemic lesions for the synergistic treatment of IS. Through the receptor-mediated transcellular pathway, the transferrin-coated MOF nanoparticles achieved efficient transport across the BBB and targeted accumulation at the cerebral ischemic injury site of mice with middle cerebral artery occlusion/reperfusion (MCAO/R), wherein the nanocarrier exhibited catalytic activities of ROS decomposition into O2 and H2O2-responsive rapamycin release. By its BBB-targeting, antioxidative, anti-inflammatory, and antiapoptotic properties, the MOF nanosystem addressed multiple pathological factors of IS and realized remarkable neuroprotective effects, leading to the substantial reduction of cerebral infarction volume and accelerated recovery of nerve functions in the MCAO/R mouse model. This MOF-based nanomedicine provides valuable design principles for effective IS therapy with multi-mechanism synergies.

15.
J Chromatogr A ; 1736: 465373, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39316975

RESUMEN

This study presents a method utilizing solid-phase microextraction Arrow (SPME Arrow) combined with ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) for the selective detection of three veterinary drugs-thiabendazole, sulfamethazine, and clenbuterol-in milk and pork. Two-dimensional metal-organic framework nanosheets (2D-MOFs) were employed as coating materials for the SPME Arrow. Three types of 2D-MOFs (Ni, Mn, and Co based) were synthesized and characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and a physical adsorption analyzer. The 2D-MOF coatings were fabricated using the electrospinning technique, with polyacrylonitrile (PAN) serving as the binder. Comparative analysis of the three 2D-MOF coatings revealed that 2D-Ni-MOF was the optimal coating material for the SPME Arrow. Optimization of the coating preparation conditions and SPME procedures included determining the optimal mass ratio of 2D-Ni-MOF to PAN, electrospinning time, and extraction and desorption parameters. Equilibrium extraction was achieved within 60 min, and desorption was completed within 30 min. Subsequently, the 2D-Ni-MOF-SPME Arrow-UPLC-Q-TOF-MS method was established and validated under optimal conditions, demonstrating high precision with inter-day precision ranging from 3.8 % to 9.5 % and intra-day precision ranging from 5.1 % to 11.5 %. The reusability study indicated that the extraction performance of the new SPME Arrow remained consistent after 90 adsorption-desorption cycles. The method exhibited linearity in milk and pork over the ranges of 0.002-5 µg L-1 and 0.01-5 µg L-1, respectively. The detection limits in milk and pork were 0.001-0.004 µg L-1 and 0.003-0.007 µg L-1, respectively. This method demonstrated excellent applicability for determining residues of the three veterinary drugs in milk and pork.

16.
Int J Pharm ; : 124744, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39317244

RESUMEN

The combination of chemotherapy and ferroptosis therapy can greatly improve the efficiency of tumor treatment. However, ferroptosis-based therapy is limited by the unsatisfactory Fenton activity and insufficient H2O2 supply in tumor cells. In this work, a nano-drug delivery system Cur@DOX@MOF-199 NPs was constructed to combine ferroptosis and apoptosis by loading curcumin (Cur) and doxorubicin (DOX) based on the copper-based organic framework MOF-199. Cur@DOX@MOF-199 NPs decompose quickly by glutathione (GSH), releasing Cu2+, DOX and Cur. Cu2+ can deplete GSH while also being reduced to Cu+; DOX can induce apoptosis and simultaneously boost H2O2 production. Moreover, Cur enhanced the expression of intracellular heme oxygenase-1 (HO-1), for decomposing heme and releasing Fe2+, which further combined with Cu+ to catalyze H2O2 for hydroxyl radical (OH) generation, leading to the accumulation of lipid peroxide and ferroptosis. As a result, Cur@DOX@MOF-199 NPs exhibited significantly enhanced antitumor efficacy in MCF-7 tumor-bearing mouse model, suggesting this nano formulation is an excellent synergetic pathway for apoptosis and ferroptosis.

17.
Angew Chem Int Ed Engl ; : e202413115, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39317992

RESUMEN

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have shown great promise in various electrochemical applications due to their intrinsic electrical conductivity. A large pore aperture is a favorable feature of this type of material because it facilitates the mass transport of chemical species and electrolytes. In this work, we propose a ligand insertion strategy in which a linear ligand is inserted into the linkage between multitopic ligands, extending the metal ion into a linear unit of -M-ligand-M-, for the construction of 2D c-MOFs with large pore apertures, utilizing only small ligands. As a proof-of-concept trial of this strategy, a 2D c-MOF with mesopores of 3.2 nm was synthesized using commercially available ligands hexahydrotriphenylene and 2,5-dihydroxybenzoquinone. The facilitation of the diffusion of redox species by the large pore size of this MOF was demonstrated through a series of probes. With this feature, it showed superior performance in the electrochemical analysis of a variety of biological species.

18.
Adv Mater ; : e2409959, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39318090

RESUMEN

2D materials can be isolated as monolayer sheets when interlayer interactions involve weak van der Waals forces. These atomically thin structures enable novel topological physics and open chemical questions of how to tune the structure and properties of the sheets while maintaining them as isolated monolayers. Here, this work investigates 2D electroactive sheets that exfoliate in solution into colloidal nanosheets, but aggregate upon oxidation, giving rise to tunable interlayer charge transfer absorption and photoluminescence. This optical behavior resembles interlayer excitons, now intensely studied due to their long-lived emission, but which remain difficult to tune through synthetic chemistry. Instead, the interlayer excitons of these framework sheets can be modulated through control of solvent, electrolyte, oxidation state, and the composition of the framework building blocks. Compared to other 2D materials, these framework sheets display the largest known interlayer binding strengths, attributable to specific orbital interactions between the sheets, and among the longest interlayer exciton lifetimes. Taken together, this study provides a microscopic basis for manipulating long-range opto-electronic behavior in van der Waals materials through molecular synthetic chemistry.

19.
Int J Biol Macromol ; 280(Pt 2): 135750, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299419

RESUMEN

With recent advances in the field of tissue engineering, composite films with biocompatibility, antimicrobial properties, and wound healing properties have gained potential applications in the field of wound dressings. In this research work, composite films of soy protein (S)/oxidized tragacanth gum (G) were successfully made using the solution casting process. The metal-organic framework containing curcumin (MOF) with concentrations of 5 and 10 wt% and tannic acid (TA) with concentrations of 6 and 12 wt% were entered into the polymer film. Surface morphology with scanning electron microscope (FE-SEM), thermal stability, mechanical properties, chemical structure, antioxidant, water absorption, cell viability, antibacterial activity, and biodegradability of the prepared films were investigated in laboratory conditions. In addition, the toxicity of the films in the cell environment was investigated, and the results showed that cell growth and proliferation improved in the presence of the prepared films, especially films SG/MOF10/TA6 and SG/MOF10/TA12 due to the presence of TA and MOF containing curcumin. Also, the antibacterial activity of the films showed that the presence of tannic acid and curcumin in the structure of the films increases their ability against pathogens. According to the obtained results, the newly produced nanocomposite film (SG/MOF10/TA12) has a high potential to be used for wound dressing due to its favorable characteristics and was considered the optimal film.

20.
Chemosphere ; 364: 143240, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39222696

RESUMEN

Iron(II)-based metal organic framework (Fe(II)-MOF) nanosheets have emerged as promising candidates for photo-Fenton catalysis. However, efficiently synthesizing Fe(II)-MOF nanosheets remains a significant challenge. Here, a bottom-up synthesis strategy is proposed to prepare two-dimensional Fe-MOF nanosheets (TFMN) with micrometer lateral dimensions and nanometer thickness, featuring Fe(II) as the metal nodes. The application of TFMN in the photo-Fenton degradation of carbamazepine (CBZ) demonstrates remarkable CBZ degradation performance and excellent efficiency across a wide range of pH values. The electron density and density of states are further calculated by density functional theory. Mechanism analysis identifies h+, •OH and •O2- as the predominant active species contributing to the catalytic oxidation process in the Vis/TFMN/H2O2 system.


Asunto(s)
Carbamazepina , Peróxido de Hidrógeno , Hierro , Estructuras Metalorgánicas , Nanoestructuras , Oxidación-Reducción , Carbamazepina/química , Estructuras Metalorgánicas/química , Peróxido de Hidrógeno/química , Hierro/química , Catálisis , Nanoestructuras/química , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA