Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Contact (Thousand Oaks) ; 7: 25152564231223480, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108634

RESUMEN

In this News and Views, I discuss our recent publication that established how steroidogenic acute regulatory-related lipid transfer domain-3 (STARD3), a membrane contact protein situated at lysosomal membranes, plays a role in the detoxification of cholesterol hydroperoxide. STARD3's methionine residues can be oxidized to methionine sulfoxide by cholesterol hydroperoxide, after which methionine sulfoxide reductases reduce the methionine sulfoxide residues back to methionine. The reaction also results in the reduction of the cholesterol hydroperoxide to an alcohol. The cyclic oxidation and reduction of methionine residues in STARD3 at membrane contact sites creates a catalytically efficient mechanism for detoxification of cholesterol hydroperoxide during cholesterol transport, thus protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.

2.
J Agric Food Chem ; 72(34): 19040-19050, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39159198

RESUMEN

In the brewing process, methionine is a decisive amino acid for (off-)flavor formation. A significant part of methionine is oxidized to methionine sulfoxide (MetSO) in malt. We hypothesized that MetSO and MetSO2 are metabolized to volatile compounds during yeast fermentation and examined whether the yeast Saccharomyces cerevisiae is able to catabolize l-MetSO and l-MetSO2 in free and dipeptide-bound forms. We also investigated the stability of l-methionine sulfoximine and S-methylmethionine. Cell viability in the presence of the test compounds was at least 90%. Both free and peptide-bound test substances were metabolized by Saccharomyces cerevisiae. l-MetSO was degraded most rapidly as the free amino acid, while l-MetSO2 was degraded most rapidly bound in dipeptides. We observed a different degradation behavior of the (R) and (S) diastereoisomers for l-MetSO and l-methionine sulfoximine. Furthermore, we detected methionol as the only metabolite of MetSO. Methionol sulfoxide was not formed. MetSO2 was not converted to methionol or methionol sulfone but to the respective α-hydroxy acid. We conclude that the reduction of MetSO to methionine proceeds faster than transamination. The occurrence of MetSO or MetSO2 in brewing malt will not lead to the formation of hitherto unknown volatile metabolites of the Ehrlich pathway.


Asunto(s)
Fermentación , Metionina , Oxidación-Reducción , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Metionina/metabolismo , Metionina/química , Metionina/análogos & derivados , Péptidos/metabolismo , Péptidos/química , Modelos Biológicos
3.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891907

RESUMEN

Currently, tandem mass spectrometry-based newborn screening (NBS), which examines targeted biomarkers, is the first approach used for the early detection of maple syrup urine disease (MSUD) in newborns, followed by confirmatory genetic mutation tests. However, these diagnostic approaches have limitations, demanding the development of additional tools for the diagnosis/screening of MUSD. Recently, untargeted metabolomics has been used to explore metabolic profiling and discover the potential biomarkers/pathways of inherited metabolic diseases. Thus, we aimed to discover a distinctive metabolic profile and biomarkers/pathways for MSUD newborns using untargeted metabolomics. Herein, untargeted metabolomics was used to analyze dried blood spot (DBS) samples from 22 MSUD and 22 healthy control newborns. Our data identified 210 altered endogenous metabolites in MSUD newborns and new potential MSUD biomarkers, particularly L-alloisoleucine, methionine, and lysoPI. In addition, the most impacted pathways in MSUD newborns were the ascorbate and aldarate pathways and pentose and glucuronate interconversions, suggesting that oxidative and detoxification events may occur in early life. Our approach leads to the identification of new potential biomarkers/pathways that could be used for the early diagnosis/screening of MSUD newborns but require further validation studies. Our untargeted metabolomics findings have undoubtedly added new insights to our understanding of the pathogenicity of MSUD, which helps us select the appropriate early treatments for better health outcomes.


Asunto(s)
Biomarcadores , Pruebas con Sangre Seca , Enfermedad de la Orina de Jarabe de Arce , Metabolómica , Tamizaje Neonatal , Humanos , Enfermedad de la Orina de Jarabe de Arce/sangre , Enfermedad de la Orina de Jarabe de Arce/diagnóstico , Recién Nacido , Pruebas con Sangre Seca/métodos , Biomarcadores/sangre , Metabolómica/métodos , Masculino , Femenino , Tamizaje Neonatal/métodos , Metaboloma , Espectrometría de Masas en Tándem
4.
BMC Plant Biol ; 24(1): 377, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38714916

RESUMEN

BACKGROUND: European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS: Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS: We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.


Asunto(s)
Fagus , Metionina , Proteínas de Plantas , Proteómica , Semillas , Fagus/metabolismo , Metionina/metabolismo , Metionina/análogos & derivados , Semillas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinación , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Free Radic Biol Med ; 220: 207-221, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663830

RESUMEN

At inflammatory sites, immune cells generate oxidants including H2O2. Myeloperoxidase (MPO), released by activated leukocytes employs H2O2 and halide/pseudohalides to form hypohalous acids that mediate pathogen killing. Hypochlorous acid (HOCl) is a major species formed. Excessive or misplaced HOCl formation damages host tissues with this linked to multiple inflammatory diseases. Previously (Redox Biology, 2020, 28, 101331) we reported that iodide (I⁻) modulates MPO-mediated protein damage by decreasing HOCl generation with concomitant hypoiodous acid (HOI) formation. HOI may however impact on protein structure, so in this study we examined whether and how HOI, from peroxidase/H2O2/I⁻ systems ± Cl⁻, modifies proteins. Experiments employed MPO and lactoperoxidase (LPO) and multiple proteins (serum albumins, anastellin), with both chemical (intact protein and peptide mass mapping, LC-MS) and structural (SDS-PAGE) changes assessed. LC-MS analyses revealed dose-dependent iodination of anastellin and albumins by LPO/H2O2 with increasing I⁻. Incubation of BSA with MPO/H2O2/Cl⁻ revealed modest chlorination (Tyr286, Tyr475, ∼4 %) and Met modification. Lower levels of these species, and extensive iodination at specific Tyr and His residues (>20 % modification with ≥10 µM I⁻) were detected with increasing I⁻. Anastellin dimerization was inhibited by increasing I⁻, but less marked changes were observed with albumins. These data confirm that I⁻ competes with Cl⁻ for MPO and is an efficient HOCl scavenger. These processes decrease protein chlorination and oxidation, but result in extensive iodination. This is consistent with published data on the presence of iodinated Tyr on neutrophil proteins. The biological implications of protein iodination relative to chlorination require further clarification.


Asunto(s)
Halogenación , Peróxido de Hidrógeno , Ácido Hipocloroso , Yoduros , Lactoperoxidasa , Peroxidasa , Peroxidasa/metabolismo , Yoduros/metabolismo , Yoduros/química , Humanos , Lactoperoxidasa/metabolismo , Lactoperoxidasa/química , Ácido Hipocloroso/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Compuestos de Yodo
6.
ACS Appl Mater Interfaces ; 16(13): 15752-15760, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38507518

RESUMEN

Chronic wound healing impairment is a significant complication in diabetes. Hydrogels that maintain wound moisture and enable sustained drug release have become prominent for enhancing chronic wound care. Particularly, hydrogels that respond to reactive oxygen species (ROS) are sought-after for their dual capacity to mitigate ROS and facilitate controlled drug delivery at the wound site. We have strategically designed an ROS-responsive and scavenging supramolecular hydrogel composed of the simple hexapeptide Glu-Phe-Met-Phe-Met-Glu (EFM). This hydrogelator, composed solely of canonical amino acids without additional ROS-sensitive motifs, forms a hydrogel rapidly upon sonication. Interaction with ROS leads to the oxidation of Met residues to methionine sulfoxide, triggering hydrogel disassembly and consequent payload release. Cellular assays have verified their biocompatibility and efficacy in promoting cell proliferation and migration. In vivo investigations underscore the potential of this straightforward hydrogel as an ROS-scavenger and drug delivery vehicle, enhancing wound healing in diabetic mice. The simplicity and effectiveness of this hydrogel suggest its broader biomedical applications in the future.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus , Animales , Ratones , Hidrogeles/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno , Aminoácidos , Cicatrización de Heridas , Antibacterianos
7.
Food Chem ; 448: 139026, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531298

RESUMEN

Linusorbs (LOs), significantly influence oil quality and sensory properties of flaxseed oil. Trp-containing LOs exhibit distinct oxidative behavior when γ-tocopherol (γ-T) is present. Polar fractions of crude flaxseed oil were stripped via silica absorption, and reintroduced (LO and γ-T) separately into the oil matrix to investigate their interaction during storage. Compared with crude oil, LOs account for 18.49% reduction of p-anisidine value, while LOs with γ-T contributed to most of the endogenous antioxidant effect in crude oil. γ-T was found to suppress oxidation of Trp-containing LO at early stage (Met form), while facilitate oxidation while at their mid-stage (MetO form, Methionine sulfoxide). In vitro oxidation shows that CLD more likely cleaved into peptide fragments, while few products retain intact ring structures. LC-MS/MS analysis and silicon simulation revealed proximity between MetO and Trp residues, facilitating inter- or intra-molecular reactions and ring structure rupture. Remarkably, the presence of γ-T facilitate these phenomena.


Asunto(s)
Aceite de Linaza , Triptófano , gamma-Tocoferol , Triptófano/química , Aceite de Linaza/química , gamma-Tocoferol/química , Oxidación-Reducción , Antioxidantes/química , Espectrometría de Masas en Tándem , Lino/química
8.
Int J Biol Macromol ; 260(Pt 1): 129540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244733

RESUMEN

Methionine sulfoxide reductase A (MsrA) has emerged as promising biocatalysts in the enantioselective kinetic resolution of racemic (rac) sulfoxides. In this study, we engineered robust MsrA variants through directed evolution, demonstrating substantial improvements of thermostability. Mechanism analysis reveals that the enhanced thermostability results from the strengthening of intracellular interactions and increase in molecular compactness. Moreover, these variants demonstrated concurrent improvements in catalytic activities, and notably, these enhancements in stability and activity collectively contributed to a significant improvement in enzyme substrate tolerance. We achieved kinetic resolution on a series of rac-sulfoxides with high enantioselectivity under initial substrate concentrations reaching up to 93.0 g/L, representing a great improvement in the aspect of the substrate concentration for biocatalytic preparation of chiral sulfoxide. Hence, the simultaneously improved thermostability, activity and substrate tolerance of MsrA represent an excellent biocatalyst for the green synthesis of optically pure sulfoxides.


Asunto(s)
Metionina Sulfóxido Reductasas , Sulfóxidos , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/análisis , Metionina Sulfóxido Reductasas/química , Sulfóxidos/química , Metionina
9.
Chemistry ; 30(19): e202304081, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38288909

RESUMEN

Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.


Asunto(s)
Metionina Sulfóxido Reductasas , Sulfóxidos , Biocatálisis , Oxidación-Reducción , Catálisis , Estereoisomerismo
10.
Free Radic Biol Med ; 213: 322-326, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38262547

RESUMEN

Sulphur containing amino acids, methionine and cysteine are highly prone to oxidation. Reduction of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) enhances the survival of bacterial pathogens under oxidative stress conditions. S. Typhimurium encodes two types (cytoplasmic and periplasmic) of Msrs. Periplasmic proteins, due to their location are highly vulnerable to host-generated oxidants. Therefore, the periplasmic Msr (MsrP) mediated repair (as compared to the cytoplasmic counterpart) might play a more imperative role in defending host-generated oxidants. Contrary to this, we show that in comparison to the ΔmsrP strain, the mutant strains in the cytoplasmic Msrs (ΔmsrA and ΔmsrAC strains) showed many folds more susceptibility to chloramine-T and neutrophils. Further ΔmsrA and ΔmsrAC strains accumulated higher levels of ROS and showed compromised fitness in mice spleen and liver. Our data suggest the pivotal role of cytoplasmic Msrs in oxidative stress survival of S. Typhimurium.


Asunto(s)
Estrés Oxidativo , Salmonella typhimurium , Animales , Ratones , Salmonella typhimurium/genética , Virulencia , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Oxidantes , Metionina/metabolismo , Racemetionina/metabolismo
11.
J Biol Chem ; 300(3): 105662, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246354

RESUMEN

The reversible oxidation of methionine plays a crucial role in redox regulation of proteins. Methionine oxidation in proteins causes major structural modifications that can destabilize and abrogate their function. The highly conserved methionine sulfoxide reductases protect proteins from oxidative damage by reducing their oxidized methionines, thus restoring their stability and function. Deletion or mutation in conserved methionine sulfoxide reductases leads to aging and several human neurological disorders and also reduces yeast growth on nonfermentable carbon sources. Despite their importance in human health, limited information about their physiological substrates in humans and yeast is available. For the first time, we show that Mxr2 interacts in vivo with two core proteins of the cytoplasm to vacuole targeting (Cvt) autophagy pathway, Atg19, and Ape1 in Saccharomyces cerevisiae. Deletion of MXR2 induces instability and early turnover of immature Ape1 and Atg19 proteins and reduces the leucine aminopeptidase activity of Ape1 without affecting the maturation process of Ape1. Additonally, Mxr2 interacts with the immature Ape1, dependent on Met17 present within the propeptide of Ape1 as a single substitution mutation of Met17 to Leu abolishes this interaction. Importantly, Ape1 M17L mutant protein resists oxidative stress-induced degradation in WT and mxr2Δ cells. By identifying Atg19 and Ape1 as cytosolic substrates of Mxr2, our study maps the hitherto unexplored connection between Mxr2 and the Cvt autophagy pathway and sheds light on Mxr2-dependent oxidative regulation of the Cvt pathway.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Autofagia , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citoplasma/metabolismo , Vacuolas/metabolismo , Estrés Oxidativo , Estabilidad Proteica
12.
mBio ; 14(5): e0147523, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37607056

RESUMEN

IMPORTANCE: Campylobacter concisus is an excellent model organism to study respiration diversity, including anaerobic respiration of physiologically relevant N-/S-oxides compounds, such as biotin sulfoxide, dimethyl sulfoxide, methionine sulfoxide (MetO), nicotinamide N-oxide, and trimethylamine N-oxide. All C. concisus strains harbor at least two, often three, and up to five genes encoding for putative periplasmic Mo/W-bisPGD-containing N-/S-oxide reductases. The respective role (substrate specificity) of each enzyme was studied using a mutagenesis approach. One of the N/SOR enzymes, annotated as "BisA", was found to be essential for anaerobic respiration of both N- and S-oxides. Additional phenotypes associated with disruption of the bisA gene included increased sensitivity toward oxidative stress and elongated cell morphology. Furthermore, a biochemical approach confirmed that BisA can repair protein-bound MetO residues. Hence, we propose that BisA plays a role as a periplasmic methionine sulfoxide reductase. This is the first report of a Mo/W-bisPGD-enzyme supporting both N- or S-oxide respiration and protein-bound MetO repair in a pathogen.


Asunto(s)
Metionina , Óxidos , Anaerobiosis , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Respiración
13.
J Biol Chem ; 299(9): 105099, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507014

RESUMEN

Methionine sulfoxide reductases (MSRs) are key enzymes in the cellular oxidative defense system. Reactive oxygen species oxidize methionine residues to methionine sulfoxide, and the methionine sulfoxide reductases catalyze their reduction back to methionine. We previously identified the cholesterol transport protein STARD3 as an in vivo binding partner of MSRA (methionine sulfoxide reductase A), an enzyme that reduces methionine-S-sulfoxide back to methionine. We hypothesized that STARD3 would also bind the cytotoxic cholesterol hydroperoxides and that its two methionine residues, Met307 and Met427, could be oxidized, thus detoxifying cholesterol hydroperoxide. We now show that in addition to binding MSRA, STARD3 binds all three MSRB (methionine sulfoxide reductase B), enzymes that reduce methionine-R-sulfoxide back to methionine. Using pure 5, 6, and 7 positional isomers of cholesterol hydroperoxide, we found that both Met307 and Met427 on STARD3 are oxidized by 6α-hydroperoxy-3ß-hydroxycholest-4-ene (cholesterol-6α-hydroperoxide) and 7α-hydroperoxy-3ß-hydroxycholest-5-ene (cholesterol-7α-hydroperoxide). MSRs reduce the methionine sulfoxide back to methionine, restoring the ability of STARD3 to bind cholesterol. Thus, the cyclic oxidation and reduction of methionine residues in STARD3 provides a catalytically efficient mechanism to detoxify cholesterol hydroperoxide during cholesterol transport, protecting membrane contact sites and the entire cell against the toxicity of cholesterol hydroperoxide.


Asunto(s)
Colesterol , Peróxido de Hidrógeno , Proteínas de la Membrana , Metionina Sulfóxido Reductasas , Colesterol/análogos & derivados , Colesterol/metabolismo , Peróxido de Hidrógeno/metabolismo , Metionina/metabolismo , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Oxidación-Reducción , Sulfóxidos/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo
14.
Biochimie ; 213: 190-204, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37423556

RESUMEN

Trypanosoma cruzi is the causal agent of Chagas Disease and is a unicellular parasite that infects a wide variety of mammalian hosts. The parasite exhibits auxotrophy by L-Met; consequently, it must be acquired from the extracellular environment of the host, either mammalian or invertebrate. Methionine (Met) oxidation produces a racemic mixture (R and S forms) of methionine sulfoxide (MetSO). Reduction of L-MetSO (free or protein-bound) to L-Met is catalyzed by methionine sulfoxide reductases (MSRs). Bioinformatics analyses identified the coding sequence for a free-R-MSR (fRMSR) enzyme in the genome of T. cruzi Dm28c. Structurally, this enzyme is a modular protein with a putative N-terminal GAF domain linked to a C-terminal TIP41 motif. We performed detailed biochemical and kinetic characterization of the GAF domain of fRMSR in combination with mutant versions of specific cysteine residues, namely, Cys12, Cys98, Cys108, and Cys132. The isolated recombinant GAF domain and full-length fRMSR exhibited specific catalytic activity for the reduction of free L-Met(R)SO (non-protein bound), using tryparedoxins as reducing partners. We demonstrated that this process involves two Cys residues, Cys98 and Cys132. Cys132 is the essential catalytic residue on which a sulfenic acid intermediate is formed. Cys98 is the resolutive Cys, which forms a disulfide bond with Cys132 as a catalytic step. Overall, our results provide new insights into redox metabolism in T. cruzi, contributing to previous knowledge of L-Met metabolism in this parasite.


Asunto(s)
Metionina Sulfóxido Reductasas , Trypanosoma cruzi , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/química , Metionina Sulfóxido Reductasas/metabolismo , Trypanosoma cruzi/genética , Oxidación-Reducción , Cisteína/química , Metionina/metabolismo
15.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37403401

RESUMEN

Among others, methionine residues are highly susceptible to host-generated oxidants. Repair of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) play a chief role in stress survival of bacterial pathogens, including Salmonella Typhimurium. Periplasmic proteins, involved in many important cellular functions, are highly susceptible to host-generated oxidants. According to location in cell, two types of Msrs, cytoplasmic and periplasmic are present in S. Typhimurium. Owing to its localization, periplasmic Msr (MsrP) might play a crucial role in defending the host-generated oxidants. Here, we have assessed the role of MsrP in combating oxidative stress and colonization of S. Typhimurium. ΔmsrP (mutant strain) grew normally in in-vitro media. In comparison to S. Typhimurium (wild type), mutant strain showed mild hypersensitivity to HOCl and chloramine-T (ChT). Following exposure to HOCl, mutant strain showed almost similar protein carbonyl levels (a marker of protein oxidation) as compared to S. Typhimurium strain. Additionally, ΔmsrP strain showed higher susceptibility to neutrophils than the parent strain. Further, the mutant strain showed very mild defects in survival in mice spleen and liver as compared to wild-type strain. In a nutshell, our results indicate that MsrP plays only a secondary role in combating oxidative stress and colonization of S. Typhimurium.


Asunto(s)
Metionina Sulfóxido Reductasas , Salmonella typhimurium , Animales , Ratones , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Virulencia , Oxidantes , Estrés Oxidativo , Metionina/metabolismo , Racemetionina/metabolismo , Oxidación-Reducción
16.
Geroscience ; 45(5): 3003-3017, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37391679

RESUMEN

Methionine restriction (MR) extends lifespan in various model organisms, and understanding the molecular effectors of MR could expand the repertoire of tools targeting the aging process. Here, we address to what extent the biochemical pathway responsible for redox metabolism of methionine plays in regulating the effects of MR on lifespan and health span. Aerobic organisms have evolved methionine sulfoxide reductases to counter the oxidation of the thioether group contained in the essential amino acid methionine. Of these enzymes, methionine sulfoxide reductase A (MsrA) is ubiquitously expressed in mammalian tissues and has subcellular localization in both the cytosol and mitochondria. Loss of MsrA increases sensitivity to oxidative stress and has been associated with increased susceptibility to age-associated pathologies including metabolic dysfunction. We rationalized that limiting the available methionine with MR may place increased importance on methionine redox pathways, and that MsrA may be required to maintain available methionine for its critical uses in cellular homeostasis including protein synthesis, metabolism, and methylation. Using a genetic mutant mouse lacking MsrA, we tested the requirement for this enzyme in the effects of MR on longevity and markers of healthy aging late in life. When initiated in adulthood, we found that MR had minimal effects in males and females regardless of MsrA status. MR had minimal effect on lifespan with the exception of wild-type males where loss of MsrA slightly increased lifespan on MR. We also observed that MR drove an increase in body weight in wild-type mice only, but mice lacking MsrA tended to maintain more stable body weight throughout their lives. We also found that MR had greater benefit to males than females in terms of glucose metabolism and some functional health span assessments, but MsrA generally had minimal impact on these metrics. Frailty was also found to be unaffected by MR or MsrA in aged animals. We found that in general, MsrA was not required for the beneficial effects of MR on longevity and health span.


Asunto(s)
Metionina Sulfóxido Reductasas , Metionina , Masculino , Femenino , Animales , Ratones , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Metionina/metabolismo , Longevidad/fisiología , Racemetionina , Peso Corporal , Mamíferos/metabolismo
17.
Curr Opin Chem Biol ; 76: 102350, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37331217

RESUMEN

Thrombosis is the leading cause of death in many diseased conditions. Oxidative stress is characteristic of these conditions. Yet, the mechanisms through which oxidants become prothrombotic are unclear. Recent evidence suggests protein cysteine and methionine oxidation as prothrombotic regulators. These oxidative post-translational modifications occur on proteins that participate in the thrombotic process, including Src family kinases, protein disulfide isomerase, ß2 glycoprotein I, von Willebrand factor, and fibrinogen. New chemical tools to identify oxidized cysteine and methionine proteins in thrombosis and hemostasis, including carbon nucleophiles for cysteine sulfenylation and oxaziridines for methionine, are critical to understanding why clots occur during oxidative stress. These mechanisms will identify alternative or novel therapeutic approaches to treat thrombotic disorders in diseased conditions.


Asunto(s)
Metionina , Trombosis , Humanos , Metionina/metabolismo , Cisteína/metabolismo , Oxidación-Reducción , Proteínas/metabolismo , Racemetionina/metabolismo
18.
Biosensors (Basel) ; 13(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37366994

RESUMEN

Chlorate can contaminate food due to the use of chlorinated water for processing or equipment disinfection. Chronic exposure to chlorate in food and drinking water is a potential health concern. The current methods for detecting chlorate in liquids and foods are expensive and not easily accessible to all laboratories, highlighting an urgent need for a simple and cost-effective method. The discovery of the adaptation mechanism of Escherichia coli to chlorate stress, which involves the production of the periplasmic Methionine Sulfoxide Reductase (MsrP), prompted us to use an E. coli strain with an msrP-lacZ fusion as a biosensor for detecting chlorate. Our study aimed to optimize the bacterial biosensor's sensitivity and efficiency to detect chlorate in various food samples using synthetic biology and adapted growth conditions. Our results demonstrate successful biosensor enhancement and provide proof of concept for detecting chlorate in food samples.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Cloratos , Alimentos , Bacterias
19.
Free Radic Biol Med ; 205: 100-106, 2023 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-37290581

RESUMEN

Methionine sulfoxide reductases are enzymes that reduce methionine oxidation in the cell. In mammals there are three B-type reductases that act on the R-diastereomer of methionine sulfoxide, and one A-type reductase (MSRA) that acts on the S-diastereomer. Unexpectedly, knocking out the four genes in the mouse protected from oxidative stresses such as ischemia-reperfusion injury and paraquat. To elucidate the mechanism by which lack of the reductases protects against oxidative stresses, we aimed to create a cell culture model with AML12 cells, a differentiated hepatocyte cell line. We employed CRISPR/Cas9 to create lines lacking the four individual reductases. All were viable and their susceptibility to oxidative stresses was the same as the parental strain. The triple knockout lacking all three methionine sulfoxide reductases B was also viable, but the quadruple knockout was lethal. We thus modeled the quadruple knockout mouse by creating an AML12 line lacking the three MSRB and heterozygous for the MSRA (Msrb3KO-Msra+/-). We measured the effect of ischemia-reperfusion on the various AML12 cell lines, using a protocol that modeled the ischemic phase by glucose and oxygen deprivation for 36 h followed by return of glucose and oxygen for 3 h as the reperfusion phase. This stress killed ∼50% of the parental line, an effect we chose to facilitate detection of either protective or deleterious changes in the knockout lines. Unlike the protection afforded the mouse, the knockout lines produced by CRISPR/Cas9 did not differ from the parental line in their response to ischemia-reperfusion injury or paraquat poisoning. In the mouse, inter-organ communication may be essential for protection induced by lack of methionine sulfoxide reductases.


Asunto(s)
Metionina Sulfóxido Reductasas , Daño por Reperfusión , Ratones , Animales , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Paraquat/toxicidad , Estrés Oxidativo/genética , Ratones Noqueados , Daño por Reperfusión/genética , Oxígeno , Mamíferos/metabolismo
20.
Front Neurosci ; 17: 1158111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123363

RESUMEN

Objective: Methionine sulfoxide (MetO) has been identified as a risk factor for vascular diseases and was considered as an important indicator of oxidative stress. However, the effects of MetO and its association with moyamoya disease (MMD) remained unclear. Therefore, we performed this study to evaluate the association between serum MetO levels and the risk of MMD and its subtypes. Methods: We eventually included consecutive 353 MMD patients and 88 healthy controls (HCs) with complete data from September 2020 to December 2021 in our analyzes. Serum levels of MetO were quantified using liquid chromatography-mass spectrometry (LC-MS) analysis. We evaluated the role of MetO in MMD using logistic regression models and confirmed by receiver-operating characteristic (ROC) curves and area under curve (AUC) values. Results: We found that the levels of MetO were significantly higher in MMD and its subtypes than in HCs (p < 0.001 for all). After adjusting for traditional risk factors, serum MetO levels were significantly associated with the risk of MMD and its subtypes (p < 0.001 for all). We further divided the MetO levels into low and high groups, and the high MetO level was significantly associated with the risk of MMD and its subtypes (p < 0.05 for all). When MetO levels were assessed as quartiles, we found that the third (Q3) and fourth (Q4) MetO quartiles had a significantly increased risk of MMD compared with the lowest quartile (Q3, OR: 2.323, 95%CI: 1.088-4.959, p = 0.029; Q4, OR: 5.559, 95%CI: 2.088-14.805, p = 0.001). Conclusion: In this study, we found that a high level of serum MetO was associated with an increased risk of MMD and its subtypes. Our study raised a novel perspective on the pathogenesis of MMD and suggested potential therapeutic targets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA