Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Intervalo de año de publicación
1.
Nanotechnology ; 35(20)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38320322

RESUMEN

The increasing use of nanomaterials in consumer products is expected to lead to environmental contamination sometime soon. As water pollution is a pressing issue that threatens human survival and impedes the promotion of human health, the search for adsorbents for removing newly identified contaminants from water has become a topic of intensive research. The challenges in the recyclability of contaminated water continue to campaign the development of highly reusable catalysts. Although exfoliated 2D MXene sheets have demonstrated the capability towards water purification, a significant challenge for removing some toxic organic molecules remains a challenge due to a need for metal-based catalytic properties owing to their rapid response. In the present study, we demonstrate the formation of hybrid structure AuNPs@MXene (Mo2CTx) during the sensitive detection of Au nanoparticle through MXene sheets without any surface modification, and subsequently its applications as an efficient catalyst for the degradation of 4-nitrophenol (4-NP), methyl orange (MO), and methylene blue (MB). The hybrid structure (AuNPs@MXene) reveals remarkable reusability for up to eight consecutive cycles, with minimal reduction in catalytic efficiency and comparable apparent reaction rate constant (Kapp) values for 4-NP, MB, and MO, compared to other catalysts reported in the literature.

2.
Nanomaterials (Basel) ; 13(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37999321

RESUMEN

In this research work, the photocatalytic capacity shown by the nanoparticles of the CaTiO3 system was evaluated to degrade two pollutants of emerging concern, namely methyl orange (MO)-considered an organic contaminating substance of the textile industry that is non-biodegradable when dissolved in water-and levofloxacin (LVF), an antibiotic widely used in the treatment of infectious diseases that is released mostly to the environment in its original chemical form. The synthesis process used to obtain these powders was the polymeric precursor method (Pechini), at a temperature of 700 °C for 6 h. The characterization of the obtained oxide nanoparticles of interest revealed the presence of a majority perovskite-type phase with an orthorhombic Pbnm structure and a minority rutile-type TiO2 phase, with a P42/mnm structure and a primary particle size <100nm. The adsorption-desorption isotherms of the synthesized solids had H3-type hysteresis loops, characteristic of mesoporous solids, with a BET surface area of 10.01m2/g. The Raman and FTIR spectroscopy results made it possible to identify the characteristic vibrations of the synthesized system and the characteristic deformations of the perovskite structure, reiterating the results obtained from the XRD analysis. Furthermore, a bandgap energy of ~3.4eV and characteristic emissions in the violet (437 nm/2.8 eV) and orange (611 nm/2.03 eV) were determined for excitation lengths of 250 nm and 325 nm, respectively, showing that these systems have a strong emission in the visible light region and allowing their use in photocatalytic activity to be potentialized. The powders obtained were studied for their photocatalytic capacity to degrade methyl orange (MO) and levofloxacin (LVF), dissolved in water. To quantify the coloring concentration, UV-visible spectroscopy was used considering the variation in the intensity of the characteristic of the greatest absorption, which correlated with the change in the concentration of the contaminant in the solution. The results showed that after irradiation with ultraviolet light, the degradation of the contaminants MO and LVF was 79.4% and 98.1% with concentrations of 5 g/L and 10 g/L, respectively.

3.
Environ Sci Pollut Res Int ; 30(3): 7186-7197, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36030516

RESUMEN

Here, we propose an original method of photochemical deposition for the synthesis of metal oxides from coordination complexes sensitive to UV light. The method consists of the synthesis of zinc oxide amorphous films doped with different concentrations of copper oxide followed by annealing at 600 °C. The photo-reactivity of the samples was evaluated by the decrease of the FT-IR spectroscopy bands. The films were analyzed by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD) to study their morphology and structures, respectively. The results show an amorphous characteristic in the photo-deposits. The optical properties show a gradual decrease of both the optical band gap and the luminescent emissions of the ZnO photo-deposits when CuO doping increases. Both properties allow a shift in absorption towards the visible and a decrease in the rate of recombination of charge carriers. The photocatalytic activity was analyzed using methyl orange and methylene blue as pollutants under a lamp that emulates solar energy. The results show that the photocatalytic activity is favored by the insertion of CuO; 46.6 and 93.0% efficiency in the photodegradation of methyl orange and methylene blue, respectively, were reached at 1.0 mol % of CuO with respect to pure ZnO. These differences in degradation efficiency respond to the chemical stability of the dyes. Finally, the use of appropriate scavengers suggests an oxidative route in the dye degradation mechanism.


Asunto(s)
Óxido de Zinc , Óxido de Zinc/química , Fotólisis , Colorantes/química , Azul de Metileno/química , Espectroscopía Infrarroja por Transformada de Fourier , Catálisis
4.
Polymers (Basel) ; 14(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458248

RESUMEN

Novel hydrogel systems based on polyacrylamide/chitosan (PAAM/chitosan) or polyacrylic acid/alginate (PAA/alginate) were prepared, characterized, and applied to reduce the concentrations of dyes in water. These hydrogels were synthetized via a semi-interpenetrating polymer network (semi-IPN) and then characterized by Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), and their swelling capacities in water were measured. In the adsorption experiments, methylene blue (MB) was used as a cationic dye, and methyl orange (MO) was used as an anionic dye. The study was carried out using a successive batch method for the dye absorption process and an equilibrium system to investigate the adsorption of MO on PAAM/chitosan hydrogels and MB on PAA/alginate in separate experiments. The results showed that the target hydrogels were synthetized with high yield (more than 90%). The chemical structure of the hydrogels was corroborated by FTIR, and their high thermal stability was verified by TGA. The absorption of the MO dye was higher at pH 3.0 using PAAM/chitosan, and it had the ability to remove 43% of MO within 10 min using 0.05 g of hydrogel. The presence of interfering salts resulted in a 20-60% decrease in the absorption of MO. On the other hand, the absorption of the MB dye was higher at pH 8.5 using PAA/alginate, and it had the ability to remove 96% of MB within 10 min using 0.05 g of hydrogel, and its removal capacity was stable for interfering salts.

5.
Environ Sci Pollut Res Int ; 29(38): 57127-57146, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35344143

RESUMEN

Seven composites of iron oxide nanoparticles embedded in organic microparticles mediated by Cu(II) were synthesized using yerba mate (Ilex paraguariensis) dry leaf extract as precipitant, capping agent, and dispersant medium, using different Cu/Fe molar ratios. A thorough characterization of the particles by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis-mass spectrometry (TGA-MS), Fourier transform infrared spectrometer (FTIR), and atomic absorption-spectrometry (AA) indicates that all materials have spheric-like morphology with nanoparticles composed by metal oxide phases embedded into organic microparticles. Interestingly, this organic matter is proposed to play an important role in the solids' photocatalytic activity in a photo-Fenton reaction, in which iron photo-leaching was elucidated, and a mechanism through ligand-to-metal charge transfer processes was proposed. All materials showed catalytic activity in the methyl orange elimination, achieving discolorations up to 96% in 2 h under UV irradiation at 375 nm. An experimental correlation between all samples' UV/Vis spectra and their performances for methyl orange discoloration was observed. This process opens a landscape very interesting for the use of agroindustrial residues for green synthesis of metal oxide nanomaterials and their use and understanding of organo-metallic systems participation in Fenton-based processes.


Asunto(s)
Ilex paraguariensis , Ilex paraguariensis/química , Nanopartículas Magnéticas de Óxido de Hierro , Óxidos , Textiles , Aguas Residuales
6.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34578028

RESUMEN

One of the biggest problems worldwide is the pollution of natural water bodies by dyes coming from effluents used in the textile industry. In the quest for novel effluent treatment alternatives, the aim of this work was to immobilize Fe(III) complexes in molecularly imprinted polymers (MIPs) to produce efficient Fenton-like heterogeneous catalysts for the green oxidative degradation of the methyl orange (MO) dye pollutant. Different metal complexes bearing commercial and low-cost ligands were assayed and their catalytic activity levels towards the discoloration of MO by H2O2 were assessed. The best candidates were Fe(III)-BMPA (BMPA = di-(2-picolyl)amine) and Fe(III)-NTP (NTP = 3,3',3″-nitrilotripropionic acid), displaying above 70% MO degradation in 3 h. Fe(III)-BMPA caused the oxidative degradation through two first-order stages, related to the formation of BMPA-Fe-OOH and the generation of reactive oxygen species. Only the first of these stages was detected for Fe(III)-NTP. Both complexes were then employed to imprint catalytic cavities into MIPs. The polymers showed catalytic profiles that were highly dependent on the crosslinking agent employed, with N,N-methylenebisacrylamide (MBAA) being the crosslinker that rendered polymers with optimal oxidative performance (>95% conversion). The obtained ion-imprinted polymers constitute cheap and robust solid matrices, with the potential to be coupled to dye-containing effluent treatment systems with synchronous H2O2 injection.

7.
Polymers (Basel) ; 13(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34301023

RESUMEN

Bio-based hydrogels that adsorb contaminant dyes, such as methyl orange (MO), were synthesized and characterized in this study. The synthesis of poly([2-(acryloyloxy)ethyl] trimethylammonium chloride) and poly(ClAETA) hydrogels containing cellulose nanofibrillated (CNF) was carried out by free-radical polymerization based on a factorial experimental design. The hydrogels were characterized by Fourier transformed infrared spectroscopy, scanning electron microscopy, and thermogravimetry. Adsorption studies of MO were performed, varying time, pH, CNF concentration, initial dye concentration and reuse cycles, determining that when the hydrogels were reinforced with CNF, the dye removal values reached approximately 96%, and that the material was stable when the maximum swelling capacity was attained. The maximum amount of MO retained per gram of hydrogel (q = mg MO g-1) was 1379.0 mg g-1 for the hydrogel containing 1% (w w-1) CNF. Furthermore, it was found that the absorption capacity of MO dye can be improved when the medium pH tends to be neutral (pH = 7.64). The obtained hydrogels can be applicable for the treatment of water containing anionic dyes.

8.
Environ Sci Pollut Res Int ; 28(14): 18234-18245, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33410051

RESUMEN

Semiconductor nanoparticle-mediated photocatalysis is an attractive option for water decontamination, being the semiconductors as SnS2 with a bandgap in the visible region, the most promising materials. In the present work, we evaluated the influence of important parameters in the photocatalytic application of SnS2 nanoparticles. Our results show that the presence of citric acid (used as a capping agent) restricts the formation of hexagonal nanoparticles. We also demonstrated that using thioacetamide as a sulfur source results in smaller nanoparticles than thiourea, 24.0 nm and 616 nm respectively. Moreover, small hexagonal nanoparticles play a key role in the photocatalytic activity of SnS2 nanoparticles. Compared with TiO2 performance, SnS2 nanoparticles exhibited faster kinetics for methyl orange (MO) degradation, Kapp = 0.0102 min-1, and 0.029 min-1, respectively. We proved that SnS2 is capable of breaking the azo bond of methyl orange by direct reduction. Furthermore, our analyses indicate that SnS2 nanoparticles do not degrade atrazine and imazapic, but the photocatalytic route of metribuzin competed with photolysis, resulting in a particular transformation product that was not obtained with light irradiation only. We demonstrated that SnS2 nanoparticles have high bond selectivity for azo breaking. Furthermore, they represent an advance for the development of designed materials (such as heterostructures), where the properties of SnS2 can be tuned.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Compuestos Azo , Catálisis , Ácido Cítrico , Fotólisis , Azufre , Titanio
9.
Materials (Basel) ; 13(16)2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32823951

RESUMEN

The efficiency of acid treatment on natural calcium bentonite (natural bentonite) for anionic dye adsorption was investigated using methyl orange (MO) as a probe. Additionally, adsorption experiments were accomplished between the natural bentonite, acidified bentonite, and a cationic dye (methylene blue, MB). Acid functionalization in natural bentonite (RF) was carried out with HCl and H2SO4 acids (RF1 and RF2, respectively). The samples were characterized by chemical analysis, mineralogy, particle size, and thermal behavior with the associated mass losses. The adsorption efficiency of MO and MB dyes was investigated by the effects of the initial concentration of adsorbate (Ci) and the contact time (tc). The acid treatment was efficient for increasing the adsorption capacity of the anionic dye, and the Qmaxexp values measured were 2.2 mg/g, 67.4 mg/g e 47.8 mg/g to RF, RF1 e RF2, respectively. On the other hand, the acid functionalization of bentonite did not significantly modify the MB dye adsorption. The Sips equation was the best fit for the adsorption isotherms. Thus, we found that the acid-functionalized bentonite increases the anionic dye adsorption by up to 8000%. The increased adsorptive capacity of acidified bentonite was explained in terms of electrostatic attraction between the clay surface and the dye molecule.

10.
Sci Total Environ ; 748: 141381, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798874

RESUMEN

Three different composites were produced, based on zinc oxide and biochar (ZnO/biochar), varying the type of biomass (Salvinia molesta: SM; exhausted husk of black wattle: EH; and sugarcane bagasse: SB), with pyrolysis under mild conditions at 350 and 450 °C. Evaluation was made of the capacities of the composites for photocatalytic degradation of sulfamethoxazole antibiotic (SMX) and methyl orange dye (MO). The properties of the prepared composites were influenced by the biomass source, with larger crystallite size (SB), lower band gap energy (SM), higher specific surface area (SB), and larger pore size (SM) resulting in higher photocatalytic efficiency. Good degradation results were obtained using these innovative photocatalysts prepared at low temperatures, when compared to ZnO/biochar materials reported in previous studies. The best degradation capacities were obtained for the composites produced at 450 °C from SB and SM, with 99.3 and 97% degradation of SMX after 45 min, and 90.8 and 88.3% degradation of MO after 120 min, respectively.


Asunto(s)
Sulfametoxazol , Óxido de Zinc , Compuestos Azo , Carbón Orgánico
11.
Front Chem ; 7: 772, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799238

RESUMEN

The catalytic wet peroxide oxidation (CWPO) of the industrial azo-dye methyl orange (MO) activated by an Al/Fe-pillared clay catalyst was optimized by the Response-Surface Methodology (RSM). Three sequential sets of factorial 2k central composite experiments were required for the full optimization of the process; catalyst loading and stoichiometric dose of hydrogen peroxide were the experimental factors studied through different times of reaction by means of all, Dissolved Organic Carbon (DOC) removal, Total Nitrogen (TN) removal, reacted fraction of hydrogen peroxide, and decolorization as experimental responses to be maximized. The resulting single-response RSM optimums were combined in a multi-response Desirability function ruling out the differential effect of adsorption on the catalyst's surface by defining all responses per gram of clay catalyst. Former two statistical sets of experiments (DOE-1 and DOE-2) showed the CWPO degradation of MO to get favored at increasing both catalyst loading and time of reaction (up to 180 min). Afterwards, third final design of experiments (DOE-3) displayed 75% of DOC removal, 78% of TN removal, 97% of reacted H2O2, and 95% of decolorization by using a catalyst loading of 5.0 g/L of Al/Fe-PILC together with just 50% of the stoichiometric amount of H2O2. The multi-response optimum conditions based on the Desirability function showed excellent fitting explaining at least 99.3% of the optimal overall responses at 95% of confidence. A further analysis revealed that no one of the non-controllable variables under real conditions of industrial wastewater treatment (covariates): starting total organic carbon (TOC) (2.0-20 mg/L), temperature (5.0-25°C) or circumneutral pH (6.0-9.0), exhibited statistically significant effect (P > 0.05), suggesting the system to be almost insensitive against them within studied range of close to ambient conditions in the tropic. Finally, HPLC/PDA and GC/FID measurements identified phenol, cyclohexa-2,5-diene-1,4-dione, phenylamine, N-methylaniline and N,N-dimethylaniline in very low concentrations as main intermediates in the CWPO degradation of MO, which nevertheless disappeared over 90 min of treatment. Meanwhile, 4-aminobenzenesulfonic and oxalic acids were recorded as unique by-products at final time of reaction, but both of them fairly less toxic than the starting azo-dye.

12.
Water Environ Res ; 91(2): 157-164, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30710408

RESUMEN

The photocatalytic activity of hydrogenated TiO2 was evaluated in the photooxidation of methyl orange (MO). The hydrogenation of TiO2 was carried out by calcination of a mixture of TiO2 P-25 and NaBH4 , at 300 and 350°C for blue TiO2 and black TiO2 , respectively. An experimental design was made for the determination of the best reaction conditions for the oxidation of MO. The influence of catalyst dosage and pH on photocatalytic efficiency was optimized, and the degradation percentage of MO was the response factor. The photocatalytic reaction was performed using a Xenon lamp that simulates the solar light spectrum for the activation of the catalyst. It was determined that both blue and black TiO2 show the greatest activity at pH = 2 and 0.8 g/L of catalyst. Additionally, the positive influence of hydrogen peroxide in the photocatalytic activity of both hydrogenated catalysts was determined. In parallel, COD and TOC were also studied. PRACTITIONER POINTS: The extent of titania reduction by hydrogenation is dependent on the reaction time with sodium borohydride. The extent of titania reduction affects the photocatalytic activity in the oxidation of methyl orange. An excess of catalyst reduction inhibits the oxidation of the dye because of the increase of recombination points. The best reaction conditions were determined by multivariate optimization as pH 2 and 0.8 g L-1 of hydrogenated catalyst. The addition of hydrogen peroxide into the reaction system improves the oxidation yield attributed to their electron accepting capacity.


Asunto(s)
Luz , Fotólisis , Titanio/química , Compuestos Azo/química , Análisis de la Demanda Biológica de Oxígeno , Catálisis , Transporte de Electrón , Concentración de Iones de Hidrógeno , Hidrogenación , Análisis Multivariante , Temperatura
13.
Chemosphere ; 204: 548-555, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29684874

RESUMEN

Peroxi-coagulation (PC) is an interesting new process that has not been widely studied in the literature. This work presents the application of this technology to treat an azo dye synthetic effluent, studying the effect of different parameters including initial pH, current density (j), initial dye concentration and supporting electrolyte. The two former variables significantly affected the colour removal of the wastewater, followed by the initial dye concentration and the kind of electrolyte, in a lesser extent. The optimum operating conditions achieved were initial pH of 3.0, j = 33.3 mA cm-2, 100 mg L-1 of methyl orange (MO) and Na2SO4 as supporting electrolyte. The performance of PC was also compared to other electrochemical advanced processes, under similar experimental conditions. Results indicate that the kinetic decay of the MO increases in the following order: electrocoagulation (EC) < electrochemical oxidation (EO) with electrogenerated H2O2 << PC < electro-Fenton (EF). This behaviour is given to the high oxidant character of the homogenous OH radicals generated by EF and PC approaches. The EO process with production of H2O2 (EO-H2O2) is limited by mass transport and the EC, as a separation method, takes longer times to achieve similar removal results. Energy requirements about 0.06 kWh gCOD-1, 0.09 kWh gCOD-1, 0.7 kWh gCOD-1 and 0.1 kWh gCOD-1 were achieved for PC, EF, EO-H2O2 and EC, respectively. Degradation intermediates were monitored and carboxylic acids were detected for PC and EF processes, being rapidly removed by the former technology. PC emerges as a promising and competitive alternative for wastewaters depollution, among other oxidative approaches.


Asunto(s)
Compuestos Azo/química , Técnicas Electroquímicas/métodos , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Electrodos , Cinética , Oxidación-Reducción
14.
Environ Technol ; 39(21): 2822-2833, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28797210

RESUMEN

This study aims to prepare environmentally friendly iron catalysts supported on silica, using glycerol as green reducing and stabilizing agent, for application in heterogeneous Fenton degradation of the pollutant dye methyl orange (MO). The catalysts were characterized by X-ray powder diffraction, atomic absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analyses, Mössbauer and Fourier transform infrared spectroscopies, which revealed the formation of iron(II)/(III) oxalates from the oxidation of glycerol by the iron(III) nitrate precursor. Besides, iron oxihydroxide nanoparticles with superparamagnetic behavior were also formed. Iron catalysts prepared in the presence of nickel(II) or zinc(II) nitrates lead to the formation of the corresponding oxalates. The catalysts were able to degrade MO, efficiently in 180 min of reaction. Fe/SiO2 furnished higher reaction rates, followed by Zn4Fe2/SiO2, which presented higher iron content as well as the smallest nanoparticles. Reaction parameters such as catalyst dosage, hydrogen peroxide concentration, pH and reaction temperature were investigated.


Asunto(s)
Glicerol , Sustancias Reductoras , Compuestos Azo , Compuestos Férricos , Peróxido de Hidrógeno , Dióxido de Silicio
15.
Braz. arch. biol. technol ; Braz. arch. biol. technol;61: e18160237, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-974114

RESUMEN

ABSTRACT Dye stuff released to the ecosystem from textile industries cause a serious contamination and become a major environmental problem over the last few decades. As biological decolorization of textile wastewater is an important issue, Fusarium . acuminatum was used to removal of a frequently used textile dye, methyl orange. Live pellet of Fusarium acuminatum was used and decolorization studies performed in various temperatures and pH conditions with different dye concentrations. The highest decolorization rate was observed at 35ᴼC. 60 mg/L was found as the optimum initial dye concentration. In the pH range of 3-4, decolorization rate was approximately 70%. It was seen that Fusarium acuminatum have the great ability of the methyl orange removal. To our knowledge, it took place for the first time in the literature.


Asunto(s)
Compuestos Azo , Fusarium , Adsorción , Colorantes
16.
Carbohydr Polym ; 177: 443-450, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28962790

RESUMEN

The efficiency of Fenton and Fenton-like processes can be seriously affected by the continuous loss of iron ions and by the formation of solid sludge. Here, alginate (Alg) films were synthesized to stabilize iron ions (Fe2+ and Fe3+) and to enhance their catalytic activities towards the decolorization of methyl orange via heterogeneous Fenton and Fenton-like processes. Iron ions were ionically bond to the Alg molecules resulting in a three-dimensional network with specific structural and morphological features according to the valence states of iron. Our results demonstrated that both Alg-Fe2+ and Alg-Fe3+ films show highlighted catalytic activity for the decolorization of MO and high decolorization rates. Reuse experiments demonstrated that both films could be employed in at least five consecutive decolorization processes without losing their catalytic efficiency or stability. Taken together, our findings reveal that the Alg-Fe2+ and Alg-Fe3+ films may be suitable low-cost catalysts in heterogeneous Fenton and Fenton-like processes.

17.
Sci Total Environ ; 596-597: 79-86, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28426988

RESUMEN

Water recycling and industrial effluents remediation are a hot topic of research to reduce the environmental impact of the human activity. Persistent organic pollutants are highly recalcitrant compounds with hazardous effects associated to their fate in water bodies. Several novel technologies have been developed during the last decades to deal with this novel contamination. However, the natural sources and idiosyncrasy of each country lead to the potential application of different technologies. In this context, we have focused on the development of phocotalytic treatment of solutions containing dyes using a novel photocatalytic material, the NbO2OH. The NbO2OH was synthesized and characterized with different techniques. Several assays demonstrated the solar photoactivity of this novel oxyhydroxide catalyst, achieving complete decolorizations after 10min of treatment under optimal conditions of 1.0gL-1 NbO2OH photocatalyst loading, 0.1M of H2O2 as electron scavenger, pH4.0 and methyl orange concentrations up to 15mgL-1. Also, the catalyst recuperation demonstrated the potential reuse of this photocatalyst without losing catalytic response after five cycles. This work is of significant importance because niobium is a natural resource, mainly extracted in Brazil and the annual global sunlight irradiation in the near-equatorial region of northeast Brazil is over the average solar irradiation of the planet. Thus, the solar photocatalytic treatment using NbO2OH in northeast Brazil appears as a highly potential environmental-friendly nanotechnology to mitigate the water pollution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA