Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.502
Filtrar
1.
Int J Biol Macromol ; 279(Pt 3): 135382, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39250992

RESUMEN

Synthesis of novel agro-industrial wastes/sodium alginate/bovine gelatin-based polysaccharide hydrogel beads, micromeritic/morphometric characteristics of the prepared formulations, greenhouse trials using controlled-release microencapsulated fertilizers, and acute fish toxicity testing were conducted simultaneously for the first time within the scope of an integrated research. In the present analysis, for the first time, 16 different morphometric features, and 32 disinct plant growth traits of the prepared composite beads were explored in detail within the framework of a comprehensive digital image analysis. The hydrogel beads composed of 19 different agro-industrial wastes/materials were successfully synthesized using the ionotropic external gelation technique and CaCl2 as cross-linker. According to micromeritic characteristics, the ionotropically cross-linked beads exhibited 77.86 ± 3.55 % yield percentage and 2.679 ± 0.397 mm average particle size. The dried microbeads showed a good swelling ratio (270.02 ± 80.53 %) and had acceptable flow properties according to Hausner's ratio (1.136 ± 0.028), Carr's index (11.94 ± 2.17 %), and angle of repose (25.03° ± 5.33°) values. The settling process of the prepared microbeads was observed in the intermediate flow regime, as indicated by the average particle Reynolds numbers (169.17 ± 82.81). Experimental findings and non-parametric statistical tests reveal that dried fertilizer matrices demonstrated noteworthy performance on the cultivation of red hot chili pepper plant (Capsicum annuum var. fasciculatum) according to the results of greenhouse trials. Surface morphologies of the best-performing fertilizer matrices were also characterized by Scanning Electron Microscopy. Moreover, the static fish bioassay experiment confirmed that no abnormalities and acute toxic reactions occurred in shortfin molly fish (Poecilia sphenops) fed with dried leaves of red hot chili pepper plants grown with formulated fertilizers. This study showcased a pioneering investigation into the synthesis of microcapsules using synthesized hydrogel beads along with digital image processing for bio-waste management and sustainable agro-application.

2.
Food Chem ; 463(Pt 3): 141276, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39312832

RESUMEN

Polysaccharides are used as wall materials to extend the shelf life of lactic acid bacteria. Ice crystal formation during freezing leads to probiotic death. We prepared a series of dodecenyl succinic anhydride (DDSA)-modified rice starches with varying degrees of substitution and compared their functional properties. Fourier-transform infrared spectroscopy, X-ray diffraction analysis, and nuclear magnetic resonance results confirmed successful DDSA modification and the disruption of the long-range ordering of starch molecules. The structural changes modified the physicochemical properties of starch. For example, the apparent viscosity and viscoelastic characteristics of modified rice starch increased, and its freeze-thaw stability and emulsion capacity were remarkably improved after DDSA modification. Moreover, the modified starches exhibited promising performance for microencapsulating Pediococcus acidilactici. This study describes a rice starch derivative with excellent physicochemical properties that can be used to enhance the storage stability of bioactive probiotics.

3.
Antioxidants (Basel) ; 13(9)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39334690

RESUMEN

Garambullo is a plant with little industrial application. However, garambullo contains betalains, photosensitive phytochemical compounds, which through microencapsulation can be used in chitosan-polyvinyl alcohol (PVOH) films for application in tomato coatings. These biopackages were characterized by physical tests, water vapor permeability, puncture tests, extension, color, differential scanning calorimetry (DCS), Fourier transform infrared (FTIR) spectroscopy, and antioxidant and antimicrobial activity analyses. The influence of the biopackages on the tomato coatings was measured using parameters such as minimum weight loss close to 2% at day 9, pH of 4.6, Brix of 5.5, titratable acidity of 1 g acid/100 mL sample, and shelf life of up to 18 days. The biopackages containing betalain microcapsules had a water vapor permeability of 2 × 10-14 g/h·m·Pa and an elongation of 5 ± 0.5%, indicating that the package did not stretch. The deformation at the breaking point for the package without and with microcapsules was 0.569 and 1.620, respectively. With respect to color, adding white microcapsules and betalains can cause the material to darken, resulting in a yellowish color. Furthermore, the phenolic content was greater for the biopackages with betalains, while there was no significant difference in the antioxidant activity since the active compounds were not released. According to the in vitro results, the inhibition of B. cinerea was achieved on the eighth day when the active compounds were released from the microcapsules. The tomato with betalains lost 2% of its weight, and B. cinerea was inhibited, extending its shelf life to 18 days. The proposed biopackages have good properties as biopolymers and inhibit the presence of B. cinerea.

4.
Animals (Basel) ; 14(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39335294

RESUMEN

The study investigated the effects of microencapsulated essential oils (MEO) on the growth performance, diarrhea, and intestinal microenvironment of weaned piglets. The 120 thirty-day-old weaned piglets (Duroc × Landrace × Yorkshire, 8.15 ± 0.07 kg) were randomly divided into four groups and were fed with a basal diet (CON) or CON diet containing 300 (L-MEO), 500 (M-MEO), and 700 (H-MEO) mg/kg MEO, respectively, and data related to performance were measured. The results revealed that MEO supplementation increased the ADG and ADFI in weaned piglets (p < 0.05) compared with CON, and reduced diarrhea rates in nursery pigs (p < 0.05). MEO supplementation significantly increased the duodenum's V:C ratio and the jejunal villi height of weaned piglets (p < 0.05). The addition of MEO significantly increased the T-AOC activity in the jejunum of piglets (p < 0.05), but only L-MEO decreased the MDA concentration (p < 0.01). H-MEO group significantly increases the content of isobutyric acid (p < 0.05) in the piglet colon, but it does not affect the content of other acids. In addition, MEO supplementation improved appetite in the nursery and increased the diversity and abundance of beneficial bacteria in the intestinal microbiome. In conclusion, these findings indicated that MEO supplementation improves growth and intestinal health in weaned piglets.

5.
Foods ; 13(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39335864

RESUMEN

Lavender oil (LEO) is one of the most well-known essential oils worldwide which, besides its extensive application in aromatherapy, serves as raw material for various fields, including the food, cosmetic, and pharmaceutical industries. Accordingly, several global requirements were established to warrant its quality. Microencapsulation represents an emerging technology widely applied for the preservation of essential oils, simultaneously providing new ways of application. In the current study, lavender oil was obtained from the flowering tops of Lavandula angustifolia Mill. on a semi-industrial-scale steam distillation system. According to the GC-MS investigation, lavender oil obtained in the third year of cultivation met the European Pharmacopoeia standards for linalyl acetate and linalool contents ≈38% and ≈26%, respectively. Microcapsules (MCs) containing the so-obtained essential oil were successfully produced by complex coacervation technology between gum arabic (GA) and three different grades of type-A gelatin (GE). Optical microscopic investigations revealed a significant difference in particle size depending on the gelatin grade used. The variation observed for coacervates was well reflected on the scanning electron micrographs of the freeze-dried form. The highest encapsulation efficiency values were obtained by UV-VIS spectrophotometry for microcapsules produced using gelatin with the medium gel strength. FT-IR spectra confirmed the structural modifications attributed to microencapsulation. According to the GC-MS analysis of the freeze-dried form, the characteristic components of lavender oil were present in the composition of the encapsulated essential oil.

6.
Food Sci Biotechnol ; 33(14): 3181-3198, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39328216

RESUMEN

This paper explores the impact of encapsulation techniques on bioactive compounds, vitamins, and minerals, which are crucial for delivering bioactive compounds. Due to their instability and reactivity with the environment, encapsulation is often necessary to make these compounds suitable for medical or dietary applications. The evaluation of the kinetic model of bioactives reveals that encapsulation can significantly enhance their stability. However, encapsulation is not without its drawbacks. Incomplete encapsulation can reduce the effectiveness of the bioactives, and complexity of encapsulation processes can hinder widespread adoption. Interactions between the encapsulated materials and the encapsulating agents may also impact the release and bioavailability of the bioactives. It also presents perspectives for future research aimed at overcoming the limitations and enhancing the effectiveness of encapsulation. As research continues to advance, encapsulation is poised to play critical role in improving the delivery and stability of bioactive compounds, benefiting the food, pharmaceutical, and cosmetic industries.

7.
Bioengineering (Basel) ; 11(9)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39329606

RESUMEN

Inflammatory Bowel Disease (IBD) is a chronic condition that affects approximately 1.6 million Americans. While current polyphenols for treating IBD can be expensive and cause unwanted side effects, there is an opportunity regarding a new drug/polymer formulation using silymarin and an electrospray procedure. Silymarin is a naturally occurring polyphenolic flavonoid antioxidant that has shown promising results as a pharmacological agent due to its antioxidant and hepatoprotective characteristics. This study aims to produce a drug-polymer complex named the SILS100-Electrofiber complex, using an electrospray system. The vertical set-up of the electrospray system was optimized at a 1:10 of silymarin and Eudragit® S100 polymer to enhance surface area and microfiber encapsulation. The SILS100-Electrofiber complex was evaluated using drug release kinetics via UV Spectrophotometry, Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC). Drug loading, apparent solubility, and antioxidant activity were also evaluated. The study was successful in creating fiber-like encapsulation of the silymarin drug with strand diameters ranging from 5-7 µm, with results showing greater silymarin release in Simulated Intestinal Fluid (SIF) compared to Simulated Gastric Fluid (SGF). Moving forward, this study aims to provide future insight into the formulation of drug-polymer complexes for IBD treatment and targeted drug release using electrospray and microencapsulation.

8.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274095

RESUMEN

This paper presents a two-stage microencapsulation process that uses pH modulation to enhance the thermal stability of microcapsules that consist of a melamine-formaldehyde (MF) shell and a butyl stearate core. In the first stage, the pH value was modulated between 6.0 and 8.0. Rising the pH value to 8.0 slowed the polycondensation rate, allowing the MF resin with a lower degree of polymerization to migrate to the capsule surface and form a smooth shell. Lowering the pH value to 6.0 accelerated polycondensation. In the second stage, a relatively fast, continuous reduction in the pH value to 5.0 led to further MF polycondensation, hardening the shell. Post-curing at 100 °C prevented shell damage caused by the liquid-gas phase transition of the core material during the process. The microcapsules produced by increasing the pH value to 8.0 twice demonstrated improved thermal stability, with only a minimal overall weight loss of 5% at 300 °C. Significant weight loss was observed between 350 and 400 °C, temperatures at which the methylene bridges in the MF shell undergo thermal degradation. The results from differential scanning calorimetry, electron microscopy, and thermogravimetry analyses confirmed a successful optimization of the microencapsulation, showing that these microcapsules are promising for thermal energy storage and other applications that require high thermal stability.

9.
Polymers (Basel) ; 16(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39274113

RESUMEN

Islet allotransplantation offers a promising cell therapy for type 1 diabetes, but challenges such as limited donor availability and immunosuppression persist. Microencapsulation of islets in polymer-coated alginate microcapsules is a favored strategy for immune protection and maintaining islet viability. This study introduces Poly [2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) as an innovative coating material for microcapsules. PMETAC enhances biocompatibility and durability, marking a significant advancement in islet encapsulation. Our approach combines alginate with PMETAC to create Langerhans islet microcapsules, simplifying material composition and preparation and ultimately lowering costs and increasing clinical applicability. Our comprehensive evaluation of the stability (including osmotic stability, thermal stability, and culture condition stability) and cytotoxicity of a novel microencapsulation system based on alginate-PMETAC-alginate offers insights into its potential application in islet immunoisolation strategies. Microcapsules with PMETAC content ranging from 0.01 to 1% are explored in the current work. The results indicate that the coatings made with 0.4% PMETAC show the most promising outcomes, remaining stable in the mentioned tests and exhibiting the required permeability. It was shown that the islets encapsulated in this manner retain viability and functional activity. Thus, alginate microcapsules coated with 0.4% PMETAC are suitable for further animal trials. While our findings are promising, further studies, including animal testing, will be necessary to evaluate the clinical applicability of our encapsulation method.

10.
J Food Sci ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39323244

RESUMEN

In this study, microcapsules of Lactiplantibacillus plantarum 299V were prepared using an emulsification/internal gelation technique. Loads of the probiotics were condensed to 9.86 ± 0.13 log CFU/g after 24 h fermentation of the microcapsules. Physical characterization revealed that L. plantarum 299V cells were uniformly distributed within the core of the microcapsules, with a mean diameter of 109.81 ± 0.39 µm and a span value of 0.36 ± 0.00, which were comparable to those of the unfermented microcapsules (p > 0.05). The viability of L. plantarum 299V in the fermented microcapsules was 2.08 ± 0.15 log higher than that of free cells at the end of 5 h simulated gastrointestinal digestion (p < 0.05). Oysters were able to accumulate the fermented microcapsules through filter feeding, resulting in a load of probiotics exceeding 6.00 log CFU/g. The presence of L. plantarum 299V-carrying microcapsules in oyster tissues significantly suppressed spoilage-causing bacteria during 11 days refrigeration storage, suggested by the tested parameters, including total psychrotrophic bacteria, H2S-producing bacteria, and Pseudomonas spp. (p < 0.05). Pathogenic bacteria, including Vibrio parahaemolyticus and Salmonella enterica artificially introduced into oysters, were also significantly suppressed by over 1.00-log within 4 days compared to control samples (p < 0.05). In summary, oysters bioaccumulated with fermented L. plantarum 299V-carrying microcapsules, justified a novel probiotic-carrying product to exsert the health-promoting effect of probiotics. This solution could also enhance the microbial quality and safety of oysters during storage.

11.
Front Vet Sci ; 11: 1456181, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229599

RESUMEN

Introduction: Plant essential oils (PEOs) have received significant attention in animal production due to their diverse beneficial properties and hold potential to alleviate weaning stress. However, PEOs effectiveness is often compromised by volatility and degradation. Microencapsulation can enhance the stability and control release rate of essential oils. Whether different microencapsulation techniques affect the effectiveness remain unknown. This study aimed to investigate the effects of PEOs coated by different microencapsulation techniques on growth performance, immunity, and intestinal health of weaned Tibetan piglets. Methods: A total of 120 Tibetan piglets, aged 30 days, were randomly divided into five groups with four replicates, each containing six piglets. The experimental period lasted for 32 days. The groups were fed different diets: a basal diet without antibiotics (NC), a basal diet supplemented with 10 mg/kg tylosin and 50 mg/kg colistin sulfate (PC), 300 mg/kg solidified PEO particles (SPEO), 300 mg/kg cold spray-coated PEO (CSPEO), or 300 mg/kg hot spray-coated PEO (HSPEO). Results: The results showed that supplementation with SPEO, CSPEO, or HSPEO led to a notable decrease in diarrhea incidence and feed to gain ratio, as well as duodenum lipopolysaccharide content, while simultaneously increase in average daily gain, interleukin-10 (IL-10) levels and the abundance of ileum Bifidobacterium compared with the NC group (p < 0.05). Supplementation with SPEO, CSPEO, or HSPEO significantly elevated serum immunoglobulin G (IgG) levels and concurrently reduced serum lipopolysaccharide and interferon γ levels compared with the NC and PC groups (p < 0.05). Serum insulin-like growth factor 1 (IGF-1) levels in the SPEO and HSPEO groups significantly increased compared with the NC group (p < 0.05). Additionally, CSPEO and HSPEO significantly reduced jejunum pH value (p < 0.05) compared with the NC and PC groups (p<0.05). Additionally, Supplementation with HSPEO significantly elevated levels of serum immunoglobulin M (IgM) and interleukin-4 (IL-4), abundance of ileum Lactobacillus, along with decreased serum interleukin-1 beta (IL-1ß) levels compared with both the NC and PC groups. Discussion: Our findings suggest that different microencapsulation techniques affect the effectiveness. Dietary supplemented with PEOs, especially HSPEO, increased growth performance, improved immune function, and optimized gut microbiota composition of weaned piglets, making it a promising feed additive in piglet production.

12.
Int J Pharm ; 665: 124670, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39244071

RESUMEN

The rapid acceleration of microbiome research has identified many potential Next Generation Probiotics (NGPs). Conventional formulation processing methods are non-compatible, leading to reduced viability and unconfirmed incorporation into intestinal microbial communities; consequently, demand for more bespoke formulation strategies of such NGPs is apparent. In this study, Akkermansia muciniphila (A.muciniphila) as a candidate NGP was investigated for its growth and metabolism properties, based on which a novel microcomposite-based oral formulation was formed. Initially, a chitosan-based microcomposite was coated with mucin to establish a surface culture of A.muciniphila. This was followed by 'double encapsulation' with pectin (PEC) using a novel Entrapment Deposition by Prilling method to create core-shell double-encapsulated microcapsules. The formulation of A.muciniphila was verified to require no oxygen-restriction properties, and additionally, biopolymers were selected, including carboxymethylcellulose (CMC), that support and enhance its growth; consequently, a high viability (6 log CFU/g) of A.muciniphila microencapsulated in PEC-CMC double-encapsulates was obtained. Subsequently, the high stability of the PEC-CMC double-encapsulates was verified in simulated gastric fluid, successfully protecting and then releasing the A.muciniphila under intestinal conditions. Finally, employing a model of gastrointestinal transit and faecal-inoculated colonic bioreactors, significant alterations in microbial communities following administration and successful establishment of A.muciniphila were demonstrated.

13.
Int J Biol Macromol ; 280(Pt 3): 135926, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322170

RESUMEN

Rising climate change and extreme weather conditions underpin thermoregulation limitations of conventional textiles. This study investigates enhancing the thermal properties of cotton fabric by incorporating synthesized 1-tetradecanol (TD) phase change material (PCM) microcapsules. Characterization of the TD microcapsules was performed using dynamic light scattering (DLS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The microcapsules (average size of 0.49 µm) displayed a melting enthalpy (∆Hm) of 105 J·g-1 and a crystallization enthalpy (∆Hc) of 51 J·g-1. The microcapsules were mixed with the acrylic binder in three different ratios (75:25, 50:50, and 25:75). Hydrothermal, knife-over-roll, and pad-dry-cure methods were employed for coating microcapsules to cotton fabric. Microcapsule coating on cotton fabric using hydrothermal coating with a 75:25 microcapsule binder ratio achieved the highest add-on (55 %) and good durability after 25 home washes. The thermal insulation R-value of the coated fabric was enhanced (0.0029 m2 K·W-1) at 40 °C. The real-time test showed a temperature difference of 2.8 °C and thermal imaging displayed lower emissivity for TD-coated fabric. The TD microcapsule coating offers a promising method for developing climate-responsive textiles, enhancing thermal comfort, and reducing energy consumption in heating and cooling systems.

14.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154209

RESUMEN

In recent years, the worldwide increase in lifestyle diseases and metabolic disorders has been ascribed to the excessive consumption of sucrose and added sugars. For this reason, many approaches have been developed in order to replace sucrose in food and beverage formulations with alternative sweetening compounds. The raising awareness concerning the synthetic sweeteners due to their negative impact on health, triggered the need to search for alternative substances. Natural sweeteners may be classified in: (i) non-nutritive (e.g., neohesperidine dihydrochalcone, thaumatin, glycyrrhizin mogroside and stevia) and (ii) bulk sweeteners, including both polyols (e.g., maltitol, mannitol, erythritol) and rare sugars (e.g., tagatose and allulose). In this review we discuss the most popular natural sweeteners and their application in the main food sectors (e.g., bakery, dairy, confectionary and beverage), providing a full understanding of their impact on the textural and sensory properties in comparison to sucrose. Furthermore, we analyze the use of natural sweeteners in blends, which in addition to enabling an effective replacement of sugar, in order to complement the merits and limits of individual compounds. Finally, microencapsulation technology is presented as an alternative strategy to solving some issues such as aftertaste, bitterness, unpleasant flavors, but also to enhance their stability and ease of use.

15.
J Biomater Sci Polym Ed ; : 1-29, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155301

RESUMEN

This study focuses on encapsulating and characterizing essential oils such as thyme and calendula oils, which are known for their therapeutic properties but are limited in pharmaceutical formulations due to their low water solubility and instability, with alginate microspheres. Alginate presents an excellent option for microencapsulation due to its biocompatibility and biological degradability. The ionic gelation (IG) technique, based on the ionic binding between alginate and divalent cations, allows the formation of hydrogel materials with high water content, mechanical strength, and biocompatibility. The microspheres were characterized using FT-IR, SEM, and swelling analyses. After determining the encapsulation efficiency and drug loading capacity, the microspheres were subjected to dissolution studies under simulated digestion conditions. It was observed that the swelling percentage of the microspheres in simulated gastric fluid (SGF) ranged from ∼15% to 100%, while in simulated intestinal fluid (SIF) it ranged from ∼150% to 325%. Thyme oil, with low viscosity, exhibited higher encapsulation efficiency than marigold oil. The highest encapsulation efficiency was observed in A-TO-2 microspheres, while the highest drug loading capacity was observed in A-TO-5 microspheres. During the examination of the dissolution profiles of the microspheres, dissolution rates ranging from 10.98% to 23.56% in SGF and from 52.44% to 63.20% in SIF were observed.

16.
Int J Biol Macromol ; 277(Pt 4): 134468, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39217037

RESUMEN

Probiotics are active microorganisms that are beneficial to the health of the host. However, probiotics are highly sensitive to the external environment, and are susceptible to a variety of factors that reduce their activity during production, storage, and use. Microencapsulation is an effective method that enhances probiotic activity. Macromolecules like polysaccharides, who classified as biologically active prebiotics, have attracted significant attention for their utility in probiotic microencapsulation. This article summarized the types of commonly used microencapsulation materials and their structural characteristics from the perspective of polysaccharides prebiotics. It also discussed recent advancements, probiotic-prebiotic microcapsule-based modulation of the immune system, as well as the associated limitations. Furthermore, the advantages and disadvantages of eight prebiotics as microencapsulation wall materials. The honeycomb structure of ß-glucan enhances the bioavailability of probiotics, while, fructooligosaccharide and galactooligosaccharides improve microbead structure to tightly encapsulate probiotics. The terminal reducing groups of isomaltooligosaccharides and the free hydroxyl groups in xylooligosaccharides also positively affect the structure of microcapsules. Prebiotics not only enhance the survival rate and biological activity of probiotics as embedding materials during storage, but also exert their own probiotic effects. Collectively, prebiotics holds great promise as microencapsulation materials for probiotics delivery.


Asunto(s)
Oligosacáridos , Polisacáridos , Prebióticos , Probióticos , Probióticos/química , Oligosacáridos/química , Polisacáridos/química , Humanos , Animales , Composición de Medicamentos
17.
Food Chem ; 460(Pt 3): 140755, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39121768

RESUMEN

In this paper, tiger nut oil-loaded microcapsules (TNOMs) were prepared by complexation soybean protein isolate (SPI) and maltodextrin (MD) as wall materials using the spray drying method with tiger nut oil (TNO) as the core material, and its physicochemical properties and stabilities were characterized and analyzed. Under the optimum conditions, the encapsulation efficiency (EE) of TNOMs could reach up to 91.23%. Of note, after 60 days of storage at 60 °C, the peroxide value (PV) of TNO was almost 21.8 times as much as that of TNO encapsulated. Furthermore, TNOMs had good thermal stability below 200 °C and are sufficient for the general food processing needs. By fitting Arrhenius oxidation kinetics model, it was predicted that the shelf life of the product stored at 25 °C was 352.48 d. Therefore, it is promised to be applied to the development of high oleic acid food in the future. This study offered a theoretical framework for utilization and broadening the range of applications of TNO in the food industry.


Asunto(s)
Cápsulas , Cyperus , Oxidación-Reducción , Aceites de Plantas , Cápsulas/química , Aceites de Plantas/química , Cyperus/química , Polisacáridos/química , Cinética
18.
ACS Biomater Sci Eng ; 10(8): 5210-5225, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39087888

RESUMEN

Lactococcus lactis (L. lactis), the first genetically modified Generally Recognized As Safe (GRAS) category Lactic Acid producing Bacteria (LAB), is best known for its generalized health-promoting benefits and ability to express heterologous proteins. However, achieving the optimal probiotic effects requires a selective approach that would allow us to study in vivo microbial biodistribution, fate, and immunological consequences. Although the chemical conjugation of fluorophores and chromophores represent the standard procedure to tag microbial cells for various downstream applications, it requires a high-throughput synthesis scheme, which is often time-consuming and expensive. On the contrary, the genetic manipulation of LAB vector, either chromosomally or extra-chromosomally, to express bioluminescent or fluorescent reporter proteins has greatly enhanced our ability to monitor bacterial transit through a complex gut environment. However, with faster passage and quick washing out from the gut due to rhythmic contractions of the digestive tract, real-time tracking of LAB vectors, particularly non-commensal ones, remains problematic. To get a deeper insight into the biodistribution of non-commensal probiotic bacteria in vivo, we bioengineered L. lactis to express fluorescence reporter proteins, mCherry (bright red monomeric fluorescent protein) and mEGFP (monomeric enhanced green fluorescent protein), followed by microencapsulation with a mucoadhesive and biodegradable polymer, chitosan. We show that coating of recombinant Lactococcus lactis (rL. lactis) with chitosan polymer, cross-linked with tripolyphosphate (TPP), retains their ability to express the reporter proteins stably without altering the specificity and sensitivity of fluorescence detection in vitro and in vivo. Further, we provide evidence of enhanced intragastric stability by chitosan-TPP (CS) coating of rL. lactis cells, allowing us to study the spatiotemporal distribution for an extended time in the gut of two unrelated hosts, avian and murine. The present scheme involving genetic modification and chitosan encapsulation of non-commensal LAB vector demonstrates great promise as a non-invasive and intensive tool for active live tracking of gut microbes.


Asunto(s)
Lactococcus lactis , Proteínas Luminiscentes , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Animales , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Vectores Genéticos , Genes Reporteros , Ratones , Probióticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteína Fluorescente Roja
19.
J Food Sci ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126687

RESUMEN

In this research, a novel kind of walnut (Juglans regia L.) peptides-zinc (Zn-WPs) chelate was obtained using the mass ratio of the walnut peptides (WPs) to ZnSO4.7H2O of 3.5:1 at pH 8.5 and 50°C for 84 min, with the chelation rate of 84.5%. In comparison to walnut peptides (WPs), the contents of aspartic acid and glutamic acid in Zn-WPs chelate are approximately 27%, indicating that hydrophilic amino acids predominantly bind with walnut peptides. Following chelation with zinc ions, the ultraviolet-visible (UV) characteristic absorption peak shifted from 213 nm to 210 nm, while the average particle size of the chelate increased to 8.0 ± 0.14 µm, presenting a loose spherical structure under scanning electron microscopy. These findings suggest the formation of new substances. Fourier-transform infrared spectroscopy (FTIR) revealed carboxyl, amino, and peptide bonds as the chelation sites of WPs and zinc. The IC50 of walnut peptides-zinc (Zn-WPs) chelate is 2.91 mg/mL, indicative of a favorable DPPH radical scavenging rate. Furthermore, Zn-WPs chelate microcapsules were produced via the spray drying method, achieving an encapsulation rate of 75.67 ± 0.83% under optimal conditions. These microcapsules demonstrate robust stability across diverse environmental conditions. This study underscores the potential of Zn-WPs and its chelate microcapsules to enhance stability and bioactivity under varying circumstances. PRACTICAL APPLICATION: In this study, a new walnut peptide-zinc (Zn-WPs) chelate was prepared. The presence of zinc ions changes the structure and properties of walnut peptides and improves its stability. The production of Zn-WPs chelate microcapsules enables Zn-WPs to have strong in vitro stability under different pH and simulated gastrointestinal digestion conditions. These results provide novel insights for developing the walnut peptides as bioactive ingredients in functional foods.

20.
J Microencapsul ; : 1-30, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133055

RESUMEN

AIMS: This study examines microencapsulation as a method to enhance the stability of natural compounds, which typically suffer from inherent instability under environmental conditions, aiming to extend their application in the pharmaceutical industry. METHODS: We explore and compare various microencapsulation techniques, including spray drying, freeze drying, and coacervation, with a focus on spray drying due to its noted advantages. RESULTS: The analysis reveals that microencapsulation, especially via spray drying, significantly improves natural compounds' stability, offering varied morphologies, sizes, and efficiencies in encapsulation. These advancements facilitate controlled release, taste modification, protection from degradation, and extended shelf life of pharmaceutical products. CONCLUSION: Microencapsulation, particularly through spray drying, presents a viable solution to the instability of natural compounds, broadening their application in pharmaceuticals by enhancing protection and shelf life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA