Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
1.
Front Mol Neurosci ; 17: 1444629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092202

RESUMEN

The Ca2+-dependent activator protein for secretion (CAPS/CADPS) family protein facilitates catecholamine release through the dense-core vesicle exocytosis in model neuroendocrine cell lines. However, it remains unclear if it induces dopamine release in the central neurons. This study aimed to examine the expression and function of CADPS2, one of the two CADPS paralogs, in dopamine neurons of the mouse midbrain. This study shows that CADPS2 was expressed in tyrosine hydroxylase and the vesicular monoamine transporter 2 (VMAT2)-positive dopaminergic neurons of the midbrain samples and primary mesencephalic cell cultures. Subcellular fractions rich in dopamine were collected using immunoaffinity for CADPS2 from midbrain protein extracts. Cell imaging using fluorescent false neurotransmitter FFN511 as a substrate for VMAT2 showed decreased activity-dependent dopamine release in Cadps2-deficient cultures, compared to that in wild-type cultures. These results suggest that CADPS2 is involved in dopamine release from the central neurons, indicating its involvement in the central dopamine pathway.

2.
J Int Med Res ; 52(8): 3000605241260366, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39088655

RESUMEN

Documented cases of ipsilateral ptosis caused by midbrain infarction remain rare. Herein, we present a patient with isolated ipsilateral ptosis that was initially considered to be a consequence of myasthenia gravis but was subsequently attributed to ventral midbrain infarction. We also discuss the possible underlying mechanisms; ipsilateral ptosis in our patient was attributed to selective damage of the levator palpebral muscle branch of the oculomotor nerve. The patient was started on aspirin (200 mg once daily) and atorvastatin (40 mg once daily). Improvement in ptosis occurred from day 5 of admission, and the patient was subsequently discharged. Ptosis disappeared 1 month after onset. This report describes an extremely rare case of ventral midbrain infarction presenting with isolated ipsilateral ptosis. Careful examination, including magnetic resonance imaging, is essential in such patients, especially in those with multiple cerebrovascular risk factors.


Asunto(s)
Blefaroptosis , Imagen por Resonancia Magnética , Mesencéfalo , Humanos , Blefaroptosis/etiología , Mesencéfalo/diagnóstico por imagen , Mesencéfalo/patología , Masculino , Aspirina/uso terapéutico , Atorvastatina/uso terapéutico , Femenino , Anciano , Infarto Cerebral/diagnóstico por imagen , Infarto Cerebral/complicaciones , Persona de Mediana Edad
3.
J Neurosurg Case Lessons ; 8(6)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102747

RESUMEN

BACKGROUND: Understanding the intricate relationship between consciousness and the midbrain's structures remains a significant challenge in neuroscience. Transient lesions are perfect examples of the physiological functioning mechanism of these structures. OBSERVATIONS: The authors present the case of a 49-year-old female who experienced a transient disorder of consciousness due to a midbrain hematoma following surgical interventions to remove a cavernous malformation in the midbrain. This case explores the interplay between the ascending reticular activating system (ARAS) and the thalamic centers, highlighting the role of structural disruptions in influencing consciousness levels. Notably, the patient's recovery correlated with the resolution of midbrain edema, reinstating normal ARAS function and consciousness. LESSONS: In patients affected by midbrain lesions, edema can lead to a fluctuating neurological status, which can be difficult to diagnose. This case highlights the midbrain's crucial role in the consciousness network and the need to comprehend the intricate connections between subcortical and cortical structures for a comprehensive understanding of human consciousness. https://thejns.org/doi/10.3171/CASE2411.

4.
J Stroke Cerebrovasc Dis ; 33(10): 107920, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122055

RESUMEN

INTRODUCTION: Wernekinck commissure syndrome (WCS) is an extremely rare midbrain syndrome, which selectively destroys the decussation of the superior cerebellar peduncle and the central tegmental tract, which commonly presents with bilateral cerebellar ataxia, dysarthria, and internuclear ophthalmoplegia. Palatal myoclonus in Wernekinck commissure syndrome is uncommon and often occurs as a late phenomenon due to hypertrophic degeneration of bilateral inferior olivary nuclei. MATERIAL AND METHOD: A patient with WCS, admitted to our hospital from December 2023, was chosen for this study, and the syndrome's clinical manifestations, imaging features, and etiology were retrospectively analyzed based on the literature. A 68-year-old right-handed East Asian man presented with dizziness, slurred speech, difficulty with swallowing and walking, and rhythmic contractions of the soft palate. He had several risk factors for ischemic cerebrovascular diseases (age, sex, dyslipidemia, hypertension and smoking history). Brain magnetic resonance imaging showed hyperintensity of DWI and hypointensity of ADC at the caudal midbrain which was around the paramedian mesencephalic tegmentum anterior to the aqueduct of midbrain. RESULTS: He was diagnosed with Wernekinck commissure syndrome (WCS) secondary to caudal paramedian midbrain infarction. He was started on dual antiplatelet therapy (aspirin and clopidogrel) and intensive statin therapy. Blood pressure and glucose were also adjusted. His symptoms improved rapidly, and he walked steadily and speak clearly after 7 days of treatment. CONCLUSIONS: Palatal myoclonus is known to occur as a late phenomenon due to hypertrophic degeneration of bilateral inferior olivary nuclei. However, Our case suggests that palatal myoclonus can occur in the early stages in WCS.

5.
J Neurophysiol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140590

RESUMEN

Sinusoidal amplitude modulation (SAM) is a key feature of complex sounds. While psychophysical studies have characterized SAM perception, and neurophysiological studies in anesthetized animals report a transformation from the cochlear nucleus' (CN; brainstem) temporal code to the inferior colliculus' (IC; midbrain's) rate code, none have used awake animals or nonhuman primates to compare CN and IC's coding strategies to modulation-frequency perception. To address this, we recorded single-unit responses and compared derived neurometric measures in the CN and IC to psychometric measures of modulation frequency (MF) discrimination in macaques. IC and CN neurons often exhibited tuned responses to SAM in rate and spike-timing measures of modulation coding. Neurometric thresholds spanned a large range (2-200 Hz DMF). The lowest 40% of IC thresholds were less than or equal to psychometric thresholds, regardless of which code was used, while CN thresholds were greater than psychometric thresholds. Discrimination at 10-20 Hz could be explained by indiscriminately pooling 30 units in either structure, while discrimination at higher MFs was best explained by more selective pooling. This suggests that pooled CN activity was sufficient for AM discrimination. Psychometric and neurometric thresholds decreased as stimulus duration increased, but IC and CN thresholds were higher and more variable than behavior at short durations. This slower subcortical temporal integration compared to behavior was consistent with a drift diffusion model which reproduced individual differences in performance and can constrain future neurophysiological studies of temporal integration. These measures provide an account of AM perception at the neurophysiological, computational, and behavioral levels.

6.
Psychiatry Res ; 340: 116141, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39153291

RESUMEN

Increased activation of inflammatory macrophages and altered expression of dopamine markers are found in the midbrains of people with schizophrenia (SZ). The relationship of midbrain macrophages to dopamine neurons has not been explored, nor is it known if changes in midbrain macrophages are also present in bipolar disorder (BD) or major depressive disorder (MDD). Herein, we determined whether there were differences in CD163+ cell density in the Substantia Nigra (SN), and cerebral peduncles (CP) of SZ, BD, and MDD compared to controls (CTRL). We also analyzed whether CD163 protein and dopamine-synthesizing enzyme tyrosine hydroxylase (TH) mRNA levels differed among diagnostic groups and if they correlated with the density of macrophages. Overall, perivascular CD163+ cell density was higher in the gray matter (SN) than in the white matter (CP). Compared to CTRL, we found increased density of parenchymal CD163+ cells in the SN of the three psychiatric groups and increased CD163 protein levels in SZ. CD163 protein was positively correlated with density of perivascular CD163+ cells. TH mRNA was reduced in SZ and BD and negatively correlated with parenchymal CD163+ cell density. We provide the first quantitative and molecular evidence of an increase in the density of parenchymal macrophages in the midbrain of major mental illnesses and show that the presence of these macrophages may negatively impact dopaminergic neurons.

7.
Pflugers Arch ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177699

RESUMEN

Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.

8.
Curr Biol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39197457

RESUMEN

Recent work across species has shown that midbrain dopamine neurons signal not only errors in the prediction of reward value but also in the prediction of value-neutral sensory features. To support learning of associative structures in downstream areas, identity prediction errors (iPEs) should signal specific information about the mis-predicted outcome. Here, we used pattern-based analysis of functional magnetic resonance imaging (fMRI) data acquired during reversal learning to characterize the information content of iPE responses in the human midbrain. We find that fMRI responses to value-neutral identity errors contain information about the identity of the unexpectedly received reward (positive iPE+) but not about the identity of the omitted reward (negative iPE-). Exploratory analyses revealed representations of iPE- in the dorsomedial prefrontal cortex. These results demonstrate that ensemble midbrain responses to value-neutral identity errors convey information about the identity of unexpectedly received outcomes, which could shape the formation of novel stimulus-outcome associations that constitute cognitive maps.

9.
World Neurosurg ; 191: 23-24, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122114

RESUMEN

Midbrain cavernous malformations (MCMs) are rare and dangerous taken the important structures and tracts located in this segment of the brainstem. MCM treatment is still controversial, and surgical resection is basically indicated in cases of recurrent hemorrhage and progressive neurologic deterioration. The optimal moment to operate ruptured MCM is in the subacute stage. Once indicated for surgical resection, preoperative planning needs to be individualized. There are various ways to access midbrain lesions, depending on the extension and predominant location: lateral subtemporal, posterior transtentorial, interhemispheric transcallosal, and anterior temporopolar approaches, or some of the alternatives. The aim of this Video 1 case is to review the surrounding anatomic structures and demonstrate the advantages of the semisitting position and the viability of the supracerebellar infratentorial approach for a tegmental midbrain lesion.1-10 In this 2-dimensional video, we present an 18-year-old man with a 4-year history of diplopia and third nerve palsy, which worsened 10 days before admission. He underwent microsurgical total resection of this MCM via extreme lateral supracerebellar infratentorial approach in a semisitting position. At the end, the surgical site and surrounding structures were reviewed microscopically and endoscopically. The patient tolerated the surgery well, and the perioperative course was uneventful. His recovery was smooth but he maintained the previous oculomotor nerve palsy. We discuss important steps of the surgical approach, local neuroanatomy, and the microsurgical techniques for the resection of these challenging MCM. The goal is total resection of the MCM with the preservation of the developmental venous anomaly and the surrounding white fiber tracts.

10.
Protein Cell ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066574

RESUMEN

The cerebellum is heavily connected with other brain regions, sub-serving not only motor but also non-motor functions. Genetic mutations leading to cerebellar dysfunction are associated with mental diseases, but cerebellar outputs have not been systematically studied in this context. Here, we present three dimensional distributions of 50,168 target neurons of cerebellar nuclei (CN) from wild-type mice and Nlgn3R451C mutant mice, a mouse model for autism. Our results derived from 36 target nuclei show that the projections from CN to thalamus, midbrain and brainstem are differentially affected by Nlgn3R451C mutation. Importantly, Nlgn3R451C mutation altered the innervation power of CN→zona incerta (ZI) pathway, and chemogenetic inhibition of a neuronal subpopulation in the ZI that receives inputs from the CN rescues social defects in Nlgn3R451C mice. Our study highlights potential role of cerebellar outputs in the pathogenesis of autism and provides potential new therapeutic strategy for this disease.

11.
World Neurosurg ; 190: 20-21, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971495

RESUMEN

Vertical "half-and-half" syndrome, characterized by contralateral upward and ipsilateral downward gaze palsy, is a rare variant of vertical eye movement disturbance. Similarly, pseudoabducens palsy, manifesting as abductive palsy despite no lesion to the pons, constitutes another rare type of eye movement disturbance. Both conditions have been associated with lesions in the thalamo-mesencephalic junction. We present a rare case report detailing a patient exhibiting vertical "half-and-half" syndrome with ipsilateral pseudoabducens palsy following a left lacunar infarction of the thalamo-mesencephalic junction. Additionally, we discuss the potential underlying mechanisms contributing to this rare combination of eye movement disorders.

12.
Curr Biol ; 34(15): 3405-3415.e5, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39032492

RESUMEN

A major challenge in neuroscience is to understand how neural representations of sensory information are transformed by the network of ascending and descending connections in each sensory system. By recording from neurons at several levels of the auditory pathway, we show that much of the nonlinear encoding of complex sounds in auditory cortex can be explained by transformations in the midbrain and thalamus. Modeling cortical neurons in terms of their inputs across these subcortical populations enables their responses to be predicted with unprecedented accuracy. By contrast, subcortical responses cannot be predicted from descending cortical inputs, indicating that ascending transformations are irreversible, resulting in increasingly lossy, higher-order representations across the auditory pathway. Rather, auditory cortex selectively modulates the nonlinear aspects of thalamic auditory responses and the functional coupling between subcortical neurons without affecting the linear encoding of sound. These findings reveal the fundamental role of subcortical transformations in shaping cortical responses.


Asunto(s)
Corteza Auditiva , Tálamo , Corteza Auditiva/fisiología , Animales , Tálamo/fisiología , Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Sonido , Estimulación Acústica , Modelos Neurológicos , Mesencéfalo/fisiología , Neuronas/fisiología
13.
Brain Sci ; 14(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061463

RESUMEN

Major depressive disorder (MDD) is prevalent with a high subjective and socio-economic burden. Despite the effectiveness of classical treatment methods, 20-30% of patients stay treatment-resistant. Deep Brain Stimulation of the superolateral branch of the medial forebrain bundle is emerging as a clinical treatment. The stimulation region (ventral tegmental area, VTA), supported by experimental data, points to the role of dopaminergic (DA) transmission in disease pathology. This work sets out to develop a workflow that will allow the performance of analyses on midbrain DA-ergic neurons and projections in subjects who have committed suicide. Human midbrains were retrieved during autopsy, formalin-fixed, and scanned in a Bruker MRI scanner (7T). Sections were sliced, stained for tyrosine hydroxylase (TH), digitized, and integrated into the Montreal Neurological Institute (MNI) brain space together with a high-resolution fiber tract atlas. Subnuclei of the VTA region were identified. TH-positive neurons and fibers were semi-quantitatively evaluated. The study established a rigorous protocol allowing for parallel histological assessments and fiber tractographic analysis in a common space. Semi-quantitative readings are feasible and allow the detection of cell loss in VTA subnuclei. This work describes the intricate workflow and first results of an investigation of DA anatomy in VTA subnuclei in a growing naturalistic database.

14.
ACS Sens ; 9(7): 3573-3580, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38954790

RESUMEN

Brain organoids are being recognized as valuable tools for drug evaluation in neurodegenerative diseases due to their similarity to the human brain's structure and function. However, a critical challenge is the lack of selective and sensitive electrochemical sensing platforms to detect the response of brain organoids, particularly changes in the neurotransmitter concentration upon drug treatment. This study introduces a 3D concave electrode patterned with a mesoporous Au nanodot for the detection of electrochemical signals of dopamine in response to drugs in brain organoids for the first time. The mesoporous Au nanodot-patterned film was fabricated using laser interference lithography and electrochemical deposition. Then, the film was attached to a polymer-based 3D concave mold to obtain a 3D concave electrode. Midbrain organoids generated from Parkinson's disease (PD) patient-derived iPSCs with gene mutations (named as PD midbrain organoid) or normal midbrain organoids were positioned on the developed 3D concave electrode. The 3D concave electrode showed a 1.4 times higher electrochemical signal of dopamine compared to the bare gold electrode. And the dopamine secreted from normal midbrain organoids or PD midbrain organoids on the 3D concave electrode could be detected electrochemically. After the treatment of PD midbrain organoids with levodopa, the drug for PD, the increase in dopamine level was detected due to the activation of dopaminergic neurons by the drug. The results suggest the potential of the proposed 3D concave electrode combined with brain organoids as a useful tool for assessing drug efficacy. This sensing system can be applied to a variety of organoids for a comprehensive drug evaluation.


Asunto(s)
Dopamina , Electrodos , Oro , Mesencéfalo , Organoides , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Organoides/patología , Oro/química , Mesencéfalo/citología , Dopamina/análisis , Porosidad , Levodopa/farmacología , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Evaluación Preclínica de Medicamentos , Nanopartículas del Metal/química
15.
Front Neuroanat ; 18: 1396829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962392

RESUMEN

Introduction: Recurrent isolated sleep paralysis (RISP) is a rapid eye movement sleep (REM) parasomnia, characterized by the loss of voluntary movements upon sleep onset and/or awakening with preserved consciousness. Evidence suggests microstructural changes of sleep in RISP, although the mechanism of this difference has not been clarified yet. Our research aims to identify potential morphological changes in the brain that can reflect these regulations. Materials and methods: We recruited 10 participants with RISP (8 women; mean age 24.7 years; SD 2.4) and 10 healthy control subjects (w/o RISP; 3 women; mean age 26.3 years; SD 3.7). They underwent video-polysomnography (vPSG) and sleep macrostructure was analyzed. After that participants underwent magnetic resonance imaging (MRI) of the brain. We focused on 2-dimensional measurements of cerebellum, pons and thalamus. Statistical analysis was done in SPSS program. After analysis for normality we performed Mann-Whitney U test to compare our data. Results: We did not find any statistically significant difference in sleep macrostructure between patients with and w/o RISP. No evidence of other sleep disturbances was found. 2-dimensional MRI measurements revealed statistically significant increase in cerebellar vermis height (p = 0.044) and antero-posterior diameter of midbrain-pons junction (p = 0.018) in RISP compared to w/o RISP. Discussion: Our results suggest increase in size of cerebellum and midbrain-pons junction in RISP. This enlargement could be a sign of an over-compensatory mechanism to otherwise dysfunctional regulatory pathways. Further research should be done to measure these differences in time and with closer respect to the frequency of RISP episodes.

16.
J Psychiatr Res ; 177: 118-128, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39004003

RESUMEN

Stress and inflammation are risk factors for schizophrenia. Chronic psychosocial stress is associated with subcortical hyperdopaminergia, a core feature of schizophrenia. Hyperdopaminergia arises from midbrain neurons, leading us to hypothesise that changes in stress response pathways may occur in this region. To identify whether transcriptional changes in glucocorticoid and mineralocorticoid receptors (NR3C1/GR, NR3C2/MR) or other stress signalling molecules (FKBP4, FKBP5) exist in schizophrenia midbrain, we measured gene expression in the human brain (N = 56) using qRT-PCR. We assessed whether alterations in these mRNAs were related to previously identified high/low inflammatory status. We investigated relationships between stress-related transcripts themselves, and between FKBP5 mRNA, dopaminergic, and glial cell transcripts in diagnostic and inflammatory subgroups. Though unchanged by diagnosis, GR mRNA levels were reduced in high inflammatory compared to low inflammatory schizophrenia cases (p = 0.026). We found no effect of diagnosis or inflammation on MR mRNA. FKBP4 mRNA was decreased and FKBP5 mRNA was increased in schizophrenia (p < 0.05). FKBP5 changes occurred in high inflammatory (p < 0.001), whereas FKBP4 changes occurred in low inflammatory schizophrenia cases (p < 0.05). The decrease in mRNA encoding the main stress receptor (GR), as well as increased transcript levels of the stress-responsive negative regulator (FKBP5), may combine to blunt the midbrain response to stress in schizophrenia when neuroinflammation is present. Negative correlations between FKBP5 mRNA and dopaminergic transcripts in the low inflammatory subgroup suggest higher levels of FKBP5 mRNA may also attenuate dopaminergic neurotransmission in schizophrenia even when inflammation is absent. We report alterations in GR-mediated stress signalling in the midbrain in schizophrenia.

17.
Curr Biol ; 34(16): 3654-3664.e6, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39053464

RESUMEN

Social play is pervasive in juvenile mammals, yet it is poorly understood in terms of its underlying brain mechanisms. Specifically, we do not know why young animals are most playful and why most adults cease to social play. Here, we analyze the synaptic mechanisms underlying social play. We found that blocking the rat periaqueductal gray (PAG) interfered with social play. Furthermore, an age-related decrease of neural firing in the PAG is associated with a decrease in synaptic release of glycine. Most importantly, modulation of glycine concentration-apparently acting on the glycinergic binding site of the N-methyl-D-aspartate (NMDA) receptor-not only strongly modulates social play but can also reverse the age-related decline in social play. In conclusion, we demonstrate that social play critically depends on the neurotransmitter glycine within the PAG.


Asunto(s)
Glicina , Sustancia Gris Periacueductal , Conducta Social , Animales , Glicina/metabolismo , Ratas , Sustancia Gris Periacueductal/fisiología , Sustancia Gris Periacueductal/metabolismo , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo
18.
World Neurosurg ; 190: 255-259, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038645

RESUMEN

BACKGROUND: The transcallosal retroforniceal transchoroidal approach represents an advanced neurosurgical technique that allows access to lesions located within the posterior third ventricle and mesencephalon. It relies on a comprehensive understanding of microsurgical anatomy and embryology, integrating modern neurosurgical operative techniques to minimize retraction and injury to the normal neuronal structures. METHODS: We report the cases of 2 patients undergoing treatment via this approach, one presenting with a thalamic cavernoma and the other with cystic low-grade glioma of the midbrain. RESULTS: In these 2 cases, the decision to use the transcallosal approach was mainly due to improved trajectory, gravitational retraction of the hemisphere, and improved delivery of the lesion into the operative field by gravity alone. CONCLUSIONS: Through a detailed description of the surgical approach and anatomy, we illustrate the feasibility of the transcallosal retroforniceal transchoroidal approach for accessing lesions located deeply in the brain.

19.
Front Pharmacol ; 15: 1426506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015373

RESUMEN

Introduction: Tobacco smoking is the leading preventable cause of death, causing more than six million deaths annually worldwide, mainly due to cardiovascular disease and cancer. Many habitual smokers try to stop smoking but only about 7% are successful, despite widespread knowledge of the risks. Development of addiction to a range of substances is associated with progressive blunting of brain reward responses and sensitisation of stress responses, as described by the allostasis theory of addiction. There is pre-clinical evidence from rodents for a dramatic decrease in brain reward function during nicotine withdrawal. Methods: Here we tested the hypothesis that habitual smokers would also exhibit blunted reward function during nicotine withdrawal using a decision-making task and fMRI. Results: Our findings supported this hypothesis, with midbrain reward-related responses particularly blunted. We also tested the hypothesis that smokers with a longer duration of smoking would have more pronounced abnormalities. Contrary to expectations, we found that a shorter duration of smoking in younger smokers was associated with the most marked abnormalities, with blunted midbrain reward related activation including the dopaminergic ventral tegmental area. Discussion: Given the substantial mortality associated with smoking, and the small percent of people who manage to achieve sustained abstinence, further translational studies on nicotine addiction mechanisms are indicated.

20.
Hear Res ; 450: 109066, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38889563

RESUMEN

Many neurons in the central nucleus of the inferior colliculus (IC) show sensitivity to interaural time differences (ITDs), which is thought to be relayed from the brainstem. However, studies with interaural phase modulation of pure tones showed that IC neurons have a sensitivity to changes in ITD that is not present at the level of the brainstem. This sensitivity has been interpreted as a form of sensitivity to motion. A new type of stimulus is used here to study the sensitivity of IC neurons to dynamic changes in ITD, in which broad- or narrowband stimuli are swept through a range of ITDs with arbitrary start-ITD, end-ITD, speed, and direction. Extracellular recordings were obtained under barbiturate anesthesia in the cat. We applied the same analyses as previously introduced for the study of responses to tones. We find effects of motion which are similar to those described in response to interaural phase modulation of tones. The size of the effects strongly depended on the motion parameters but was overall smaller than reported for tones. We found that the effects of motion could largely be explained by the temporal response pattern of the neuron such as adaptation and build-up. Our data add to previous evidence questioning true coding of motion at the level of the IC.


Asunto(s)
Estimulación Acústica , Colículos Inferiores , Ruido , Animales , Gatos , Colículos Inferiores/fisiología , Neuronas/fisiología , Vías Auditivas/fisiología , Localización de Sonidos , Factores de Tiempo , Mesencéfalo/fisiología , Percepción de Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA